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Abstract: 22 

There is strong interest in accurate methods for predicting changes in protein stability resulting 23 

from amino acid mutations to the protein sequence. Recombinant proteins must often be stabilized 24 

to be used as therapeutics or reagents, and destabilizing mutations are implicated in a variety of 25 

diseases. Due to increased data availability and improved modeling techniques, recent studies have 26 

shown advancements in predicting changes in protein stability when a single point mutation is 27 

made. Less focus has been directed toward predicting changes in protein stability when there are 28 

two or more mutations, despite the significance of mutation clusters for disease pathways and 29 

protein design studies. Here, we analyze the largest available dataset of double point mutation 30 

stability and benchmark several widely used protein stability models on this and other datasets. 31 

We identify a blind spot in how predictors are typically evaluated on multiple mutations, finding 32 

that, contrary to assumptions in the field, current stability models are unable to consistently capture 33 

epistatic interactions between double mutations. We observe one notable deviation from this trend, 34 

which is that epistasis-aware models provide marginally better predictions on stabilizing double 35 

point mutations. We develop an extension of the ThermoMPNN framework for double mutant 36 

modeling as well as a novel data augmentation scheme which mitigates some of the limitations in 37 

available datasets. Collectively, our findings indicate that current protein stability models fail to 38 

capture the nuanced epistatic interactions between concurrent mutations due to several factors, 39 

including training dataset limitations and insufficient model sensitivity. 40 
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 44 

Significance: 45 

Protein stability is governed in part by epistatic interactions between energetically coupled 46 

residues. Prediction of these couplings represents the next frontier in protein stability modeling. In 47 

this work, we benchmark protein stability models on a large dataset of double point mutations and 48 

identify previously overlooked limitations in model design and evaluation. We also introduce 49 

several new strategies to improve modeling of epistatic couplings between protein point mutations.  50 
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Introduction: 52 

Thermodynamic stability is an important property that can impact the fitness of a protein1,2. 53 

Molecular biologists often introduce mutations to probe structure-function relationships within 54 

proteins, and aberrant stability profiles are implicated in a variety of diseases3,4. Additionally, as 55 

engineered proteins are increasingly used as therapeutics5 and research tools6, their stability must 56 

often be optimized to improve production yields and efficacy7. Recent advancements in assay 57 

design and transfer learning have enabled deep neural networks to predict the change in stability 58 

(DDG) caused by single point mutations faster and more accurately than prior approaches8–10. 59 

However, relatively few studies have attempted to explicitly model multiple point mutations, for 60 

a few reasons. Not only is reliable stability data less abundant for multiple mutations, but the 61 

possible mutation space also increases exponentially with the number of mutations, resulting in a 62 

sparse energy landscape that is difficult to model.  63 

In this study, we focus on the task of predicting changes in stability (DDG) caused by double 64 

point mutations. We are partially motivated by the observation that protein engineers often seek to 65 

identify clusters of two or more mutations which may improve stability beyond levels achievable 66 

with single mutant sweeps through favorable couplings such as hydrogen bonding or apolar 67 

packing11. Also, biological researchers must sometimes contend with multiple concurrent 68 

mutations introduced by cancer12, bacteria13, or viruses14. A single mutant stability model can be 69 

used to approximate double mutant DDG by simply adding the two constituent single mutant 70 

contributions. The drawback of this additive approach is that it omits any epistatic coupling that 71 

may arise from the interaction of the two mutations. As such, the utility of a double mutant 72 

predictor is derived from its ability to provide improvements relative to the additive predictions 73 

provided from its equivalent single mutant model. Despite this observation, double mutant stability 74 
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models are rarely evaluated in this way. We posit that this represents a significant blind spot in our 75 

current understanding of protein stability models, which we aim to address in this work. 76 

 To that end, we develop a novel method for modeling stability changes due to double point 77 

mutations which we call ThermoMPNN-Double (“ThermoMPNN-D”). We analyze the largest 78 

available double mutant dataset and introduce a new data augmentation protocol to address 79 

shortcomings in data availability. We evaluate ThermoMPNN-D against popular methods from the 80 

literature, and we take the additional step of evaluating each predictor against its own additive 81 

equivalent. We show that ThermoMPNN-D and its single mutant analogue, ThermoMPNN, 82 

provide competitive performance on two datasets of double mutants gathered on a diverse set of 83 

proteins. We use deep mutational scanning (DMS) data as an orthogonal test set, finding that the 84 

methods Mutate Everything and FoldX perform the best on this task. Overall, we find that 85 

epistasis-aware double mutant models rarely outperform their single mutant counterparts, with the 86 

notable exception that they provide improved prediction of stabilizing double mutants. 87 

  88 
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Results: 89 

Adapting ThermoMPNN to model double mutations 90 

We developed a novel neural network, ThermoMPNN-D, to model double point mutations by 91 

making several modifications to the previously described ThermoMPNN framework10 (Fig. 1A).  92 

ThermoMPNN is a structure-based protein stability model that extracts learned residue 93 

embeddings from ProteinMPNN and passes these features through a lightweight prediction head 94 

to obtain single mutant DDG predictions. ProteinMPNN is a graph neural network trained to predict 95 

protein sequences from the 3D structure of the protein15. Both models use message passing to 96 

encode the local context surrounding the residue of interest, including the relative positions of 97 

nearby residues. In this way, they use a combination of structure and sequence information to learn 98 

what amino acids are likely to form favorable interactions if placed at a given position. In addition 99 

to sequence and node embeddings from ProteinMPNN, we also extract directed edge features 100 

representing the interaction between the mutated residue pair (Fig. 1B). We formulate our model 101 

as a Siamese network by passing the concatenated per-mutation features through a shared 102 

prediction head twice, once in each possible order. The raw predicted scores (DDGAB and DDGBA) 103 

are then symmetrized using a specialized loss function to enforce invariance to the mutation order 104 

(details in Methods). We train ThermoMPNN-D on the double mutant subset of the Megascale 105 

cDNA proteolysis dataset from Tsuboyama et al.16, which we call Megascale-D. Using this 106 

scheme, ThermoMPNN-D obtains a high degree of order-invariance, with a Spearman correlation 107 

coefficient (SCC) of 0.999 and average bias of 0.003 between DDGAB and DDGBA across the 108 

Megascale-D test set.  109 

Training ThermoMPNN-D on the Megascale-D dataset produced reasonable results on the 110 

test split of the same dataset (SCC = 0.49 ± 0.01), but it struggled to generalize when tested on an 111 
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orthogonal test set from the literature, the Protherm double mutant dataset17, which we call 112 

PTMUL-D (SCC = 0.35 ± 0.03) (Table 1, top section). After examining Megascale-D, we found 113 

that, unlike its single mutant counterpart (Megascale-S), it is skewed in several ways. Most notably, 114 

mutated residue pairs are typically close in 3D space, often in direct contact via side chain 115 

interactions (Fig. 2A, blue bars), with a mean pairwise distance of 3.7Å. Wildtype residue pairs in 116 

the dataset also tend to consist of large polar or aromatic groups engaged in strong couplings such 117 

as hydrogen bonds and pi-cation interactions (Fig. 2B, blue bars). We hypothesized that training 118 

on a dataset with these characteristics may lead to subpar generalizability. To address this issue, 119 

we propose a new data augmentation trick which we call over-and-back data augmentation. 120 

 121 

Over-and-back data augmentation 122 

Our key observation is that every pair of single mutations in a protein are separated from each 123 

other by two mutations. To construct an augmented data point (Fig. 1C), we select a single mutant 124 

to serve as the wildtype state and invert its experimentally measured DDGsingle to represent the 125 

reverse mutation. We then randomly sample a second single mutant within the same protein, but 126 

at a different residue position, and add its experimentally measured DDGsingle to obtain our final 127 

DDGdouble. In this way, we can generate a much larger dataset which more evenly samples the 128 

expected distribution in terms of pairwise distance and wildtype amino acid types (Figs. 2A and 129 

2B, orange bars). In doing so, we hoped to enable our model to distinguish between distal, roughly 130 

additive mutations and proximal, tightly coupled mutations. After retraining on the augmented 131 

dataset, we observed significantly better results on PTMUL-D (SCC = 0.57 ± 0.02) at the cost of 132 

a small drop in some Megascale-D metrics (Table 1, top panel). We noticed that this procedure 133 

tends to generate a disproportionate fraction of stabilizing double mutants. Since most single 134 
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mutants are destabilizing, flipping the first DDGsingle tends to bias the resulting distribution toward 135 

lower DDGdouble values (Fig. 2C, yellow peak). To partially correct for this effect, we implemented 136 

a biased sampling procedure to shift the distribution closer to that of the non-augmented 137 

Megascale-D dataset (Fig. 2C, orange peak). This adjustment slightly improved both root mean 138 

squared error (RMSE) and correlation metrics across both datasets (Table 1, top panel). 139 

 140 

ThermoMPNN-D ablation study 141 

We next tested whether the Siamese aggregation scheme was necessary to achieve strong 142 

performance (Table 1, middle panel). We found that this approach obtained better results on both 143 

datasets when compared to previously proposed order-invariant aggregation functions such as 144 

element-wise summation and averaging. We also experimented with modifying or removing other 145 

components of our network (Table 1, bottom panel). We found that removing edge features slightly 146 

degraded scores, but not as much as removing the Siamese aggregation. Additionally, we tested 147 

fine-tuning ProteinMPNN by unfreezing the weights from the sequence recovery encoder/decoder, 148 

which are kept fixed by default. Consistent with the original ThermoMPNN study, fine-tuning the 149 

ProteinMPNN weights produced mixed results due to overfitting10. A small performance gain was 150 

achieved by ensembling three independently trained models, a boost that we do not observe when 151 

applied to single mutant ThermoMPNN. We suspect that this is enabled by the randomness 152 

introduced by the data augmentation procedure. The final ensembled ThermoMPNN-D predictor 153 

achieved SCC values of 0.54 and 0.59 on the Megascale-D and PTMUL-D test sets, respectively. 154 

 155 

Benchmarking ThermoMPNN-D against other double mutant models 156 
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We then benchmarked ThermoMPNN-D against existing methods for double mutant DDG 157 

prediction from the literature (Fig. 3). To do so, we performed 5-fold cross-validation across the 158 

full Megascale-D dataset. We found that ThermoMPNN-D achieved state-of-the-art performance 159 

on PTMUL-D, while only recent AlphaFold-based method Mutate Everything obtained 160 

comparable performance on Megascale-D when evaluated on matching splits (SCC = 0.55). As a 161 

baseline, we also included an additive ThermoMPNN prediction in which we simply added the 162 

two predicted DDGsingle values for comparison to the epistasis-aware prediction of ThermoMPNN-163 

D. To our surprise, this method achieved even better results on Megascale-D (SCC = 0.59), along 164 

with similar results on PTMUL-D, depending on the splits used. Intrigued by this finding, we 165 

reevaluated each double mutant predictor from the literature by running a similar additive baseline 166 

when available (Fig. 3A and 3B, green bars). We found that most methods provide little or no 167 

improvement over their additive equivalent when utilized in epistatic mode. The only epistasis-168 

aware methods to provide better scores on both datasets were Rosetta and ESM-1v. 169 

To further probe this phenomenon, we evaluated each predictor on Megascale-S for the 170 

same set of proteins. We then plotted the single and double mutant error (RMSE) for each method 171 

(Fig. 3C). All but two methods had lower error on single mutants, and they closely followed the 172 

expected trajectory for the propagation of random additive errors. This indicates that the surveyed 173 

methods generally fail to reduce the error on double mutants beyond what would be expected from 174 

a purely additive model. The other two methods, FoldX and DDGun, instead followed the identity 175 

line, with similar error on single and double mutants. 176 

Since the Megascale dataset includes single and double mutant scans for the same proteins, 177 

we can calculate the expected DDG for a particular double mutant assuming an additive model 178 

(DDGadditive). We plotted these values against the measured DDGdouble for the full Megascale-D 179 
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dataset (Fig. 2D). Notably, DDGdouble is highly correlated with DDGadditive across the dataset (SCC 180 

= 0.81), while the average observed epistatic coupling is -0.9 kcal/mol, indicating that DDGdouble is 181 

typically less destabilizing than would be expected based on the observed DDGsingle. Fitting a linear 182 

regression to this dataset produces a y-intercept of 0.62 and a slope of 1.15, indicating that the 183 

magnitude of epistatic effects increases with increasing DDGadditive. 184 

 185 

Deep mutational scan benchmark 186 

We next tested the same predictors on a collection of six deep mutational scans (DMS) gathered 187 

from the literature (Table 2). Each DMS dataset consisted of at least 1,000 phenotypic 188 

measurements for double mutants gathered in a single study (details in Table 3). Since these assays 189 

each measure some proxy of protein fitness rather than stability, we anticipated lower correlations 190 

with predicted DDG than on the previous datasets. This was observed in most cases, and the best 191 

methods across the full suite of assays were Mutate Everything (additive) and FoldX (epistatic), 192 

with average SCC values of 0.40 and 0.39, respectively. Consistent with the prior results, most 193 

methods show similar or worse performance in epistatic mode. Only FoldX produced equivalent 194 

or better scores across all DMS assays. 195 

 196 

Stabilizing mutation detection 197 

We next evaluated stabilizing mutation predictions across the Megascale-D and PTMUL-D 198 

datasets (Table 4). Stabilizing mutations are particularly difficult to predict, since the vast majority 199 

of mutations are typically neutral or destabilizing compared to the wildtype. Indeed, less than 1% 200 

of mutations in Megascale-D (n=1,254) fell under the commonly used threshold of DDG £ -0.5 201 

kcal/mol. Surprisingly, nearly every predictor showed improvement on both datasets when in 202 
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epistatic mode. While positive predictive value (PPV) showed mixed results in some cases, all 203 

other metrics including Matthews Correlation Coefficient (MCC) consistently favored the epistatic 204 

predictors. ThermoMPNN-D achieved the best prediction metrics on the Megascale-D and 205 

PTMUL-D datasets, with an MCC of 0.19 and 0.38, respectively, compared to 0.17 and 0.28 for 206 

additive ThermoMPNN. When evaluated on the cDNA2 test split of Megascale-D, Mutate 207 

Everything (epistatic) outperforms ThermoMPNN-D (MCC = 0.27 vs 0.15), but the latter is more 208 

effective on the PTMUL-D dataset when trained on the same splits (MCC = 0.38 for 209 

ThermoMPNN-D vs 0.33 for Mutate Everything).  We observe a significant discrepancy in 210 

stabilizing mutation scores between PTMUL-D and Megascale-D, with nearly all methods 211 

producing significantly better metrics on PTMUL-D in both additive and epistatic mode. 212 

  213 
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Discussion 214 

This study was motivated by the hypothesis that a network designed to explicitly model double 215 

point mutations could provide better DDG predictions than a naïve model assuming additive 216 

mutational effects. To test this hypothesis, we developed ThermoMPNN-D, which uses a Siamese 217 

aggregation scheme and extensive data augmentation to leverage extensive mutagenesis data and 218 

enforce helpful inductive biases such as the distance dependence of epistatic interactions and 219 

mutation order invariance. Through rigorous benchmarking, we found our initial hypothesis was 220 

not always correct, as ThermoMPNN-D and other double mutant predictors nearly all achieved 221 

similar or worse overall results than their additive counterparts when evaluated by full-dataset 222 

correlation coefficients. However, epistasis-aware predictors including ThermoMPNN-D enabled 223 

improved prediction of stabilizing double mutations, which are critically important for protein 224 

design applications. 225 

 Our study is one of the first to utilize the double mutant subset of the Megascale cDNA 226 

proteolysis dataset recently published by Tsuboyama et al.18, which we call Megascale-D. As such, 227 

it is important to note that models trained solely on Megascale-D proved unable to generalize to 228 

unseen datasets. To address this issue, we introduce a novel data augmentation technique, over-229 

and-back augmentation, which may be considered as an extension of the recently introduced 230 

thermodynamic permutation technique9 for sampling double mutations. The other extant study 231 

utilizing the Megascale-D dataset also chose to expand their training dataset by pre-training on 232 

Megascale-S19, although they did not evaluate a model trained only on Megascale-D. Taken 233 

together, these findings raise the question: what constitutes a representative double mutant 234 

landscape for modeling purposes? While exhaustive single mutant scans are now feasible for small 235 

proteins, enumeration of double mutations remains challenging due to the exponential increase in 236 
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scale. With this in mind, we contend that data augmentation is an attractive strategy to expand the 237 

pool of double mutant data to better capture the full mutational landscape. To enable further 238 

development of data augmentation protocols, we make readily available our full dataset of 340,000 239 

modeled mutant structures and Rosetta energies. 240 

  Most other protein stability models are limited to predicting single point mutations, while 241 

even those with multiple mutation functionality have rarely been benchmarked against an 242 

appropriate additive baseline. Still, a few previous studies provide evidence to corroborate our 243 

findings. Consistent with our observations, Ouyang-Zhang et al. find that the epistatic version of 244 

Mutate Everything behaves similarly to ThermoMPNN-D, in that its overall regression metrics are 245 

similar or worse compared to its additive equivalent despite showing improved prediction of 246 

stabilizing double mutations19. We also found that epistasis-aware models were often better 247 

performing on certain datasets but worse on others. This is consistent with prior works which find 248 

that epistatic terms derived from coevolutionary models are only beneficial for around 2/3 of tested 249 

proteins20,21, with factors such as MSA depth and assay design suggested as possible explanations. 250 

  We anticipated that predicting DDG for double mutations would be more difficult than for 251 

single mutations. This was generally observed, as top predictors including ThermoMPNN obtained 252 

an SCC below 0.60 on Megascale-D, while the top reported score10 on Megascale-S is around 253 

0.75. As expected, we also observe a lower success rate on stabilizing mutations, as ThermoMPNN 254 

obtains a state-of-the-art PPV of 0.13 and 0.29 on different splits of Megascale-D compared to 255 

0.45 on Megascale-S10. Double mutant data is less abundant than single mutant data, which makes 256 

benchmarking more prone to random variance. To alleviate this issue, we employ DMS data to 257 

supplement our stability datasets and cross-validate across all available data, which enabled 258 

evaluation of >125,000 stability measurements and >74,000 DMS measurements gathered on 259 
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double mutations. Future work includes benchmarking and model development on higher-order 260 

(3+) mutation datasets, which face even greater limitations in data availability and evaluation. 261 

 Epistasis is a complex phenomenon in which both global (per-protein) and local (per-262 

mutation) effects can influence variant fitness22, and their relative importance can vary by fitness 263 

level and biological context23. With this in mind, several avenues for future work may offer 264 

potential for improvement. The pre-training schemes underpinning many recent models may be 265 

redesigned to explicitly learn patterns of epistatic interaction rather than autoregressive or one-266 

shot decoding schemes. Model architecture may also be improved either by separating energetic 267 

contributions from individual and pairwise residue terms, such as with a Potts model24, or by 268 

incorporating latent variables to represent global nonlinearities25. Recent efforts to model protein 269 

fitness with epistasis-aware neural networks26,27 may serve as a starting point for future protein 270 

stability models. However, these methods tend to require parameterization with initial DMS data 271 

for the target protein, so it remains to be seen how well they can generalize to novel proteins. 272 

  273 
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Methods 274 

ThermoMPNN-D architecture 275 

ThermoMPNN-D (Fig. 1A) was implemented as an extension of the ThermoMPNN framework10, 276 

which uses sequence recovery model ProteinMPNN as a feature extractor15. All experiments used 277 

the ProteinMPNN model trained with 0.2Å backbone noise, and ProteinMPNN weights were kept 278 

frozen during training unless otherwise stated. To represent each mutation, we extracted the node 279 

representation ni for the mutated position from the molecular graph held in the last two decoder 280 

layers of ProteinMPNN. We also retrieved the directed edge representation eji connecting from the 281 

other mutated residue to the residue of interest (Fig. 1B). If no such edge existed (i.e., the mutations 282 

are not within 48 nearest neighbors), a zero vector was substituted as the edge representation. We 283 

subtracted the sequence embedding of the wildtype and mutant amino acids to obtain a sequence 284 

representation si. The node, edge, and sequence representations were concatenated, and each 285 

mutation vector was then passed through a shared MLP to aggregate and downsample to 128 286 

dimensions. The mutation features were then concatenated in both AB and BA order, and each 287 

permutation was passed through another shared MLP to produce raw predictions DDGAB and 288 

DDGBA, which were averaged to obtain a final DDG. 289 

 290 

ThermoMPNN-D training procedure 291 

ThermoMPNN-D includes 116,000 trainable parameters, which were trained for up to 100 epochs 292 

using the Adam optimizer with an initial learning rate of 10-5 and a batch size of 256 mutations. 293 

Dropout (p=0.1) and LayerNorm were used on all fully connected layers. Learning rate decay and 294 

early stopping was conditioned on validation set mean squared error (MSE). Training used a 295 
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custom loss function inspired by antisymmetric single mutant predictor ACDC-NN28 and applied 296 

to the raw predictions DDGAB and DDGBA: 297 

𝑙𝑜𝑠𝑠 = 	𝑀𝑆𝐸(∆∆𝐺!"#$ , ∆∆𝐺%&'	) +	 〈∆∆𝐺()*〉 298 

∆∆𝐺%&' =
∆∆𝐺+, + ∆∆𝐺,+

2  299 

〈∆∆𝐺()*〉 = 〈
|∆∆𝐺+, − ∆∆𝐺,+|

2
〉 300 

A non-Siamese model was built to test other aggregators (Table 1, middle panel). This model used 301 

the same featurization scheme, but after downsampling, mutation embeddings were aggregated 302 

instead of concatenated and passed once through the final MLP. Fine-tuning ProteinMPNN was 303 

implemented by unfreezing all layers with a separate learning rate, which was selected via 304 

parameter sweep (10-6 gave the best results). Ensembling was implemented by averaging the 305 

predicted DDG from three independently trained models with different random seeds for training 306 

and data augmentation. 307 

 308 

Over-and-back data augmentation 309 

For each single mutant in the Megascale training set, the modeled mutant structure was obtained 310 

using Rosetta11. The second mutation was sampled stochastically from all possible single 311 

mutations that a) shared the same PDB ID and b) did not share the same amino acid position. To 312 

bias sampling toward more destabilizing DDG values, the DDGsingle values for the whole dataset 313 

were used to obtain a weighted sampling probability (P) as follows: 314 

𝑦 = −1 ∗	∆∆𝐺!"#$ 315 

𝑃 = [𝑦 − min	(𝑦)]- 316 
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This distribution was normalized for each individual mutation. Augmented datasets were sampled 317 

once at the beginning of training and randomly shuffled after every epoch. 318 

 319 

Dataset splits and curation 320 

For the ThermoMPNN-D ablation study, we obtained the Megascale dataset reported in 321 

Tsuboyama et al.18 from its Zenodo repository16, following the splitting procedure previously 322 

described for ThermoMPNN10, with the following modifications. We removed any homologues 323 

(>25% sequence similarity) to proteins in the PTMUL dataset. Second, we trained on double 324 

mutants with defined ddG_ML values. After removing duplicate data points, we obtained a 325 

training/validation/test split of 85,253/10,282/18,574 mutations across 90/17/20 proteins. 326 

For the double mutant model benchmarks, we used the full Megascale dataset and 327 

evaluated ThermoMPNN using 5-fold cross-validation split by sequence similarity, as previously 328 

described. To compare additive and epistatic models, we matched single and double mutant 329 

measurements and dropped any double mutants without valid single mutant data, resulting in 330 

127,476 double mutations across 153 proteins. The Protherm multiple mutation (PTMUL) dataset 331 

introduced in the DDGun paper17 and re-curated for Mutate Everything19 was used after dropping 332 

higher-order (3+) mutation measurements, resulting in 536 mutations across 83 proteins (PTMUL-333 

D). Since Mutate Everything was trained on different splits of the Megascale dataset, we retrained 334 

and reevaluated ThermoMPNN using their training/test splits, which they denote “cDNA2”, 335 

resulting in a test set of 22,913 mutations across 18 proteins. For the single vs double mutant error 336 

calculation, we used the full single mutant Megascale dataset (Megascale-S), which contained 337 

271,231 mutations across 298 proteins.  338 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608844doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15151611&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15132496&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16690222&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8479447&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16690381&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2024.08.20.608844
http://creativecommons.org/licenses/by-nd/4.0/


We curated deep mutational scanning (DMS) datasets from the ProteinGym benchmark29. 339 

We selected DMS datasets with >1000 double mutations and endpoints that might serve as 340 

reasonable proxies for thermodynamic stability. From this pool, we eliminated assays overlapping 341 

with the Megascale dataset and those without a high-confidence AlphaFold model or crystal 342 

structure. We were then left with six assays, which are summarized in Table 3. 343 

 344 

Literature model benchmarking 345 

For the Rosetta benchmark, we adapted a previously published RosettaScripts point mutation 346 

protocol11 for use on double mutations by applying constraints to all residues nearby to either 347 

residue. To convert REU into approximate kcal/mol units, we divided all energy values by 2.9, as 348 

recommended for the ref2015 score function30. FoldX was downloaded under an academic license 349 

(https://foldxsuite.crg.eu), and predictions were obtained by running RepairPDB on all input 350 

structures, followed by PositionScan for single mutants or additive predictions and BuildModel 351 

for epistatic predictions31. MAESTRO32 was downloaded from its website 352 

(https://pbwww.services.came.sbg.ac.at), while DDGun/DDGun3D17 353 

(https://github.com/biofold/ddgun), ESM-1v33 (https://github.com/facebookresearch/esm), 354 

ProteinMPNN15 (https://github.com/dauparas/ProteinMPNN), and Mutate Everything19 355 

(https://github.com/jozhang97/MutateEverything) were obtained from their respective GitHub 356 

repositories.  357 

ProteinMPNN zero-shot predictions were obtained by masking out the mutated residue(s) 358 

and calculating the difference in negative log-likelihood between the mutant and wildtype residues. 359 

For the ESM zero-shot predictions, we used an ensemble of five ESM-1v (650M, UR90S) models 360 

with the masked-marginals scoring method, as recommended33. To obtain epistatic predictions for 361 
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ProteinMPNN and ESM-1v, both mutated residues were masked prior to inference, while the 362 

additive predictions masked each residue individually. 363 

 364 

Theoretical error calculation 365 

We calculated the theoretical error for double mutant predictions as follows: 366 

𝜎+, = ?𝜎+. + 𝜎,. 367 

Where 𝜎+ and 𝜎, are the single mutant prediction errors (in RMSE) for mutation A and B, and 𝜎+, 368 

is the theoretical error for double mutants. Note that this model assumes that single mutant errors 369 

are randomly distributed and uncorrelated. 370 

 371 

Stabilizing mutation metrics 372 

To evaluate stabilizing mutation predictions (Table 4), we primarily use the Matthews correlation 373 

coefficient (MCC), which is widely accepted as a robust holistic measure of classifier accuracy on 374 

unbalanced datasets34. Following the convention from Ouyang-Zhang et al.19, we calculate MCC 375 

across the full dataset using a threshold of 0 kcal/mol. For the remaining metrics, we use the 376 

definition that mutations with DDG £ -0.5 kcal/mol are stabilizing. This resulted in 1254, 111, and 377 

198 stabilizing mutations for the Megascale-D, PTMUL-D, and cDNA2 test datasets, respectively.  378 

We calculate the positive predictive value (PPV) across each full dataset, while detection 379 

precision (DetPr) and normalized discounted cumulative gain (nDCG) are calculated separately 380 

for each protein and averaged. To calculate these last two metrics, the mutations for a given protein 381 

are sorted by predicted DDG, and the top K mutations are selected (K=30 in this study). The DetPr 382 

represents the fraction of top-30 mutations that are measured to be truly stabilizing, while nDCG 383 

is a more complicated measure of how highly the model ranks the best 30 mutations.  384 
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 385 

Code Availability 386 

ThermoMPNN-D trained model weights and code are available at https://github.com/Kuhlman-387 

Lab/ThermoMPNN-D.  388 

 389 

Data Availability 390 

The full Megascale dataset can be obtained from its Zenodo repository16, while the full 391 

ProteinGym datasets are available at https://proteingym.org29 and the full PTMUL dataset is 392 

available at https://github.com/jozhang97/MutateEverything. The curated Megascale, PTMUL-D, 393 

and DMS double mutant datasets and splits used in this study are available on Zenodo at  394 

https://doi.org/10.5281/zenodo.13345274. Modeled single mutant structures and energies obtained 395 

using Rosetta for the full Megascale dataset are available in the same repository. 396 
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Tables: 509 

Table 1: ThermoMPNN-D ablation study results. D.A. stands for data augmentation. 510 

All statistics are reported as mean ± s.d. of triplicate runs, except for the ensemble.  511 

 Megascale-D PTMUL-D 

Trial PCC SCC RMSE PCC SCC RMSE 

No D.A. 0.54 ± 0.02 0.49 ± 0.01 0.96 ± 0.01 0.36 ± 0.04 0.35 ± 0.03 2.11 ± 0.02 

Naïve D.A. 0.50 ± 0.02 0.51 ± 0.02 1.19 ± 0.03 0.55 ± 0.03 0.57 ± 0.02 2.06 ± 0.04 

Biased D.A. 0.52 ± 0.02 0.53 ± 0.02 1.09 ± 0.02 0.55 ± 0.02 0.57 ± 0.02 1.96 ± 0.03 

Siamese 0.52 ± 0.02 0.53 ± 0.02 1.09 ± 0.02 0.55 ± 0.02 0.57 ± 0.02 1.96 ± 0.03 

Max 0.50 ± 0.01 0.52 ± 0.01 1.15 ± 0.02 0.50 ± 0.02 0.54 ± 0.01 2.05 ± 0.02 

Mean 0.43 ± 0.01 0.42 ± 0.01 1.19 ± 0.02 0.50 ± 0.01 0.52 ± 0.01 2.02 ± 0.01 

Sum 0.45 ± 0.01 0.43 ± 0.01 1.19 ± 0.03 0.50 ± 0.01 0.53 ± 0.01 2.02 ± 0.02 

Product 0.46 ± 0.04 0.47 ± 0.03 1.27 ± 0.02 0.49 ± 0.03 0.52 ± 0.02 2.07 ± 0.03 

Baseline 0.52 ± 0.02 0.53 ± 0.02 1.09 ± 0.02 0.55 ± 0.02 0.57 ± 0.02 1.96 ± 0.03 

- Edges 0.49 ± 0.01 0.51 ± 0.01 1.13 ± 0.01 0.52 ± 0.01 0.56 ± 0.02 2.00 ± 0.01 

+ Fine-tune 0.47 ± 0.02 0.48 ± 0.02 1.15 ± 0.01 0.55 ± 0.01 0.59 ± 0.01 1.96 ± 0.03 

+ Ensemble 0.54 0.55 1.07 0.57 0.59 1.95 
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Table 2: Deep mutational scan benchmark results for selected double mutant prediction methods 512 

(additive/epistatic models). The score of the best method on each assay is bolded. 513 

 Spearman Correlation Coefficient 

Model avGFP cgreGFP ppluGFP2 amacGFP His3 KRas Mean 

Rosetta11 0.41/0.42 0.37/0.34 0.29/0.29 0.21/0.21 0.26/0.26 0.37/0.35 0.32/0.31 

FoldX31 0.46/0.47 0.52/0.52 0.39/0.39 0.38/0.38 0.20/0.26 0.34/0.34 0.38/0.39 

DDGun17 0.13/-- 0.32/-- 0.17/-- 0.14/-- 0.14/-- 0.21/-- 0.19/-- 

DDGun3D17 0.27/-- 0.31/-- 0.18/-- 0.16/-- 0.11/-- 0.24/-- 0.21/-- 

MAESTRO32 0.26/0.22 0.23/0.15 0.14/0.08 0.11/0.07 0.17/0.13 0.25/0.26 0.19/0.15 

ESM-1v33 0.00/0.01 0.01/0.02 -0.01/0.02 -0.01/0.01 0.14/0.21 0.19/0.20 0.05/0.08 

ProteinMPNN15 0.35/0.36 0.23/0.26 0.12/0.11 0.13/0.12 0.18/0.15 0.36/0.37 0.23/0.22 

ThermoMPNN 0.46/0.40 0.40/0.24 0.21/0.03 0.26/0.16 0.28/0.24 0.37/0.31 0.33/0.23 

ThermoMPNN* 0.48/0.44 0.40/0.22 0.21/0.06 0.28/0.18 0.29/0.24 0.39/0.31 0.34/0.24 

Mutate 

Everything19 

0.53/0.49 0.50/0.43 0.37/0.30 0.32/0.27 0.27/0.27 0.40/0.36 0.40/0.35 

* Retrained on cDNA training splits from Ouyang-Zhang et al.19 514 
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Table 3: Summary of curated deep mutational scan assays of double mutants. 516 

Assay name and source Abbreviation Mutations Phenotype 

GFP_AEQVI35 avGFP 12,777 Fluorescence 

D7PM05_CLYGR36 cgreGFP 10,148 Fluorescence 

Q6WV13_9MAXI36 ppluGFP2 15,992 Fluorescence 

Q8WTC7_9CNID36 amacGFP 11,260 Fluorescence 

HIS7_YEAST37 His3 1,475 Enzyme activity 

RASK_HUMAN38 KRas 22,946 Expression 

  517 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608844doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=1480738&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13071188&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13071188&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13071188&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8741592&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15801111&pre=&suf=&sa=0&dbf=0
https://doi.org/10.1101/2024.08.20.608844
http://creativecommons.org/licenses/by-nd/4.0/


Table 4: Stabilizing mutation detection metrics for selected prediction methods (additive/epistatic 518 

models). The score of the best method on each metric is bolded.  519 

 Megascale-D (n=1,254) PTMUL-D (n=111) 

Model MCC PPV DetPr30 nDCG30 MCC PPV 

Rosetta11 0.11/0.15 0.05/0.09 0.07/0.12 0.15/0.20 0.29/0.29 0.48/0.42 

FoldX31 0.13/0.14 0.04/0.04 0.07/0.08 0.16/0.16 0.22/0.24 0.38/0.36 

DDGun17 0.12/-- 0.04/-- 0.10/-- 0.18/-- 0.22/-- 0.50/-- 

DDGun3D17 0.13/-- 0.05/-- 0.08/-- 0.17/-- 0.17/-- 0.47/-- 

MAESTRO32 0.15/0.14 0.04/0.03 0.09/0.09 0.13/0.17 --/-- --/-- 

ESM-1v33 0.02/0.03 0.01/0.02 0.03/0.05 0.05/0.12 0.07/0.09 0.30/0.31 

ProteinMPNN15 0.07/0.10 0.06/0.05 0.07/0.09 0.17/0.19 0.30/0.33 0.51/0.49 

ThermoMPNN 0.17/0.19 0.13/0.13 0.20/0.22 0.31/0.35 0.29/0.37 0.49/0.57 

 cDNA2 test (n=198) PTMUL-D (n=111) 

ThermoMPNN* 0.10/0.15 0.29/0.20 0.10/0.17 0.11/0.22 0.34/0.38 0.58/0.54 

Mutate Everything19 0.26/0.27 0.12/0.11 0.24/0.30 0.35/0.43 0.33/0.33 0.46/0.44 

* Re-trained on cDNA training splits from Ouyang-Zhang et al.19 520 
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Figures: 522 

523 

Figure 1: The ThermoMPNN-D modeling framework. A) Schematic of ThermoMPNN-D, a 524 

Siamese neural network for predicting double mutant stability changes. Dashed grey lines indicate 525 

shared weights. B) Example feature extraction step for hypothetical mutation i, in which the node 526 

(ni), sequence (si), and edge (eji) embeddings are extracted from the protein graph. C) 527 

Thermodynamic cycle demonstrating the principle of over-and-back data augmentation. Black 528 

arrows denote mutations with a defined DDG in the original dataset, dashed grey arrows indicate 529 

mutations missing data, and red arrows indicate mutations defined only via augmentation. The 530 

augmented wildtype state is outlined in red.  531 
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 532 

533 

Figure 2: Megascale double mutant (Megascale-D) dataset analysis and augmentation. A) 534 

Frequency of mutations stratified by minimum pairwise interatomic distance between mutated 535 

residues and B) frequency of wildtype amino acids in the original and augmented Megascale-D. 536 

C) Kernel density estimate distributions of Megascale dataset DDG values with and without 537 

augmentation. Dashed grey line indicates a theoretical neutral mutation. More positive DDG values 538 

indicate more destabilizing mutations. D) Kernel density estimate plot of Megascale-D comparing 539 

measured double mutant DDG to the corresponding additive DDG obtained from the sum of the 540 

two constituent single mutants. The identity line is shown in black.  541 
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 Figure 3: Comparison of ThermoMPNN 542 

and selected prior methods for modeling 543 

double mutants. A-B) Spearman correlation 544 

of selected additive and epistatic methods on 545 

A) the Megascale double mutant dataset 546 

(N=127,476) and B) the PTMUL double 547 

mutant dataset (N=536). Methods marked 548 

with asterisks were retrained and evaluated 549 

using different Megascale dataset splits. C) 550 

Root mean squared error (RMSE) of selected 551 

methods on the Megascale single mutant (x-552 

axis) and double mutant (y-axis) datasets. The 553 

identity line is shown in dashed grey, and the 554 

theoretical error for a method following naïve 555 

additive error propagation behavior is shown 556 

in solid black. 557 
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