
1ScIentIfIc REPoRTS | 7: 9570  | DOI:10.1038/s41598-017-10075-w

www.nature.com/scientificreports

Engineering of versatile redox 
partner fusions that support 
monooxygenase activity of 
functionally diverse cytochrome 
P450s
Patrick J. Bakkes1, Jan L. Riehm2, Tanja Sagadin3, Ansgar Rühlmann1, Peter Schubert1, Stefan 
Biemann1, Marco Girhard1, Michael C. Hutter2, Rita Bernhardt3 & Vlada B. Urlacher1

Most bacterial cytochrome P450 monooxygenases (P450s or CYPs) require two redox partner proteins 
for activity. To reduce complexity of the redox chain, the Bacillus subtilis flavodoxin YkuN (Y) was fused 
to the Escherichia coli flavodoxin reductase Fpr (R), and activity was tuned by placing flexible (GGGGS)n 
or rigid ([E/L]PPPP)n linkers (n = 1–5) in between. P-linker constructs typically outperformed their 
G-linker counterparts, with superior performance of YR-P5, which carries linker ([E/L]PPPP)5. Molecular 
dynamics simulations demonstrated that ([E/L]PPPP)n linkers are intrinsically rigid, whereas (GGGGS)n 
linkers are highly flexible and biochemical experiments suggest a higher degree of separation between 
the fusion partners in case of long rigid P-linkers. The catalytic properties of the individual redox 
partners were best preserved in the YR-P5 construct. In comparison to the separate redox partners, 
YR-P5 exhibited attenuated rates of NADPH oxidation and heme iron (III) reduction, while coupling 
efficiency was improved (28% vs. 49% coupling with B. subtilis CYP109B1, and 44% vs. 50% with 
Thermobifida fusca CYP154E1). In addition, YR-P5 supported monooxygenase activity of the CYP106A2 
from Bacillus megaterium and bovine CYP21A2. The versatile YR-P5 may serve as a non-physiological 
electron transfer system for exploitation of the catalytic potential of other P450s.

Cytochrome P450 monooxygenases (CYPs or P450s) are highly versatile heme containing enzymes that catalyse 
a wide variety of oxidation reactions, while accepting a large diversity of substrates. The impressive range of reac-
tions catalysed by P450s includes amongst others hydroxylation, epoxidation, dealkylation and deamination, as 
well as unusual reactions such as aromatic dehalogenation and Baeyer-Villiger oxidation1–3. Illustrative of their 
diverse biological functions, P450s are capable of converting amongst others fatty acids, steroids, prostaglandins, 
terpenes, and xenobiotics such as drugs and antibiotics4, 5. It is therefore not surprising that these multipurpose 
biocatalysts have become attractive targets for application in biotechnology and synthetic biology6.

P450s catalyse the reductive scission of molecular oxygen upon which one oxygen atom is introduced into 
the non-activated substrate, while the second atom is reduced to water7. Activation of molecular oxygen relies on 
the successive delivery of two electrons derived from the pyridine cofactor NAD(P)H to the heme iron, which is 
typically facilitated by a dedicated redox partner system8, 9.

Based on the number of proteins involved, two major types of P450 redox systems can be distinguished: (i) 
two-component systems consisting of an FAD-containing reductase and either an iron-sulfur containing ferre-
doxin or an FMN-containing flavodoxin. These systems are commonly found in bacteria and mitochondria, and 
(ii) a single diflavin (FAD/FMN) P450 reductase (CPR) that supports the function of eukaryotic microsomal 
P450s. A limited number of bacterial P450s have been identified that carry such a CPR-like module as a fused 
functional domain (for example CYP102A1 from Bacillus subtilis)8, 9.
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The intrinsic dependence on NAD(P)H and redox partner(s) however limits the application and development 
of P450s as biocatalysts10. Moreover, identification of the physiological redox partner(s) of a given P450 is often 
hampered by the fact that host genomes usually contain numerous candidate genes coding for electron transfer 
proteins, which mostly are not located near the P450 gene(s)8, 10. Therefore surrogate electron transfer systems 
are frequently used for functional characterization and/or biocatalytic application of P450s. Cross-reactivity 
of eukaryotic P450s has been successfully exploited to support catalysis of a variety of mammalian enzymes11, 
whereas two-component systems are frequently used to support the function of P450s from microorganisms. 
Notorious examples of these latter systems include putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from 
Pseudomonas putida12, 13, bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx)14, 15 and flavodoxin/
ferredoxin reductase (Fpr) from E. coli combined with either the flavodoxin FldA from E. coli or the flavodoxin 
YkuN from Bacillus subtilis16, 17. Moreover, in several cases electron transfer proteins could be covalently joined 
or even functionally attached to a P45018–25. The principal aims of creating such artificial fusion constructs are 
to reduce complexity of the P450 systems and to improve the electron transfer properties to enhance catalytic 
performance11, 26.

Here, we report the construction of a set of redox fusion enzymes in which the flavodoxin YkuN from B. 
subtilis is fused to the N-terminus of the flavodoxin reductase Fpr from E. coli. To tune activity of the fused redox 
partners the linker region between them was varied in a systematic manner. Herein, both flexible (GGGGS)n and 
rigid ([E/L]PPPP)n linkers of different lengths (n = 1–5) were introduced between YkuN and Fpr by using the 
previously established DuaLinX tool19. After expression in E. coli and subsequent purification, the activity of the 
fusion constructs was investigated with respect to their ability to oxidize NADPH and reduce the P450 heme iron, 
as well as their capability to support the monooxygenase activity of a variety of P450s in vitro.

Results
Construction of redox partner fusion enzymes consisting of B. subtilis YkuN and E. coli 
Fpr. The flavodoxin YkuN from Bacillus subtilis is a promiscuous electron carrier capable of transferring elec-
trons to a variety of P450s, including endogenous CYP107H1 (P450 BioI) and CYP109B1, but also to heterolo-
gous P450s such as CYP154A8 from Nocardia farcinica or CYP154E1 from Thermobifida fusca YX16, 17, 27. Herein, 
YkuN is typically paired with the flavodoxin reductase Fpr from E. coli, which provides the NADPH-derived 
electrons. The “mixed” redox pair Fpr/YkuN often outperforms physiological redox pairs such as E. coli Fpr/FldA 
or P. putida PdR/Pdx16, 17. Consistent with this, Fpr/YkuN supported substantially higher conversion of myristic 
acid by CYP109B1 than the Fpr/FldA system (Fig. 1a).

Importantly, even in the case of natural P450 redox chains, such as PdR:Pdx:P450cam, excess of the ferredoxin 
Pdx is required for productive catalysis in vitro28. Similarly, for Fpr/YkuN/P450 systems, a respective stoichiom-
etry of 1:10:1 is usually sufficient to efficiently drive P450-mediated catalysis in vitro16, 17. Thus surplus of flavo-
doxin or ferredoxin overcomes apparent rate-limiting steps in electron transfer16, 28, 29. In support of this, a 1:10:1 
Fpr/YkuN/CYP109B1 system achieved 36% higher conversion of myristic acid than a 1:1:1 system (Fig. 1a), 
which is consistent with the function of YkuN as an electron shuttle that transfers the NADPH-derived electrons 

Figure 1. Myristic acid conversion by B. subtilis CYP109B1 supported by different redox partners. Reactions 
were started by the addition of a mixture of NADPH and myristic acid and allowed to proceed for 120 min 
under the support of an NADPH regenerating system. (a) CYP109B1 (1 µM) conversion reactions were carried 
out in the presence of non-fused redox partners Fpr and FldA (black bars), Fpr and YkuN (white bars) or with 
different YkuN-Fpr fusion constructs (grey bars). Reductase (Fpr) and flavodoxin (FldA or YkuN) together 
with CYP109B1 were employed at respective ratios of 1:1:1, 1:10:1 and 4:4:1. Reactions conducted with 
YkuN-Fpr (YR) fusion constructs and CYP109B1 were carried out at a respective ratio of 4:1. YR indicates the 
linker-less YkuN-Fpr fusion construct, whereas linker designations P1 - P5 and G1 - G5 correspond to linker 
sequences (GGGGS)n and ([E/L]PPPP)n of different lengths (n = 1–5). The data presented are average values 
of 3–6 independent conversion reactions with indicated standard deviation. (b) Myristic acid conversion by 
CYP109B1 in the presence of different concentrations of selected fusion constructs or non-fused Fpr/YkuN. The 
ratio of non-fused redox partners was maintained at 1:1.
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from the reductase to the P45027, 29. A stimulatory effect was also noted for the alternative system using the E. 
coli flavodoxin FldA (Fig. 1a). Nevertheless, independent of the stoichiometry applied the Fpr/YkuN redox pair 
proved to be superior to Fpr/FldA in supporting CYP109B1 catalysis, which makes YkuN a promising candidate 
for covalent fusion to Fpr.

YkuN was fused to the N-terminus of Fpr, leaving the C-terminus of Fpr free, as it was demonstrated previ-
ously that attachment of FldA to the C-terminus of Fpr leads to reduced enzyme function, whereas constructs 
with the fusion partners in reversed order were substantially more active19. Attachment of the flavodoxin to the 
C-terminus of Fpr likely interferes with the function of the aromatic residues at the extreme C-terminus of Fpr, 
which are important for NADPH binding and electron exchange30–32. It is worthy of note that homologous cata-
lytic residues within the reductase domain of natural fusion proteins such as CPR and self-sufficient P450s such 
as CYP102A1 are also found at the C-terminus8, 9.

To optimize activity of the YkuN-Fpr (YR) fusion construct both flexible (GGGGS)n and rigid ([E/L]PPPP)n 
linkers of different lengths (n = 1–5) were placed between the fusion partners (for linker specifications see 
Supplementary Table S2). Thus, 11 different fusion constructs were created that were expressed in E. coli. The 
corresponding fusion proteins were subsequently isolated from the soluble protein fraction and purified to near 
homogeneity by IMAC (Supplementary Fig. S1), typically yielding 1–2 mg of purified fusion protein from 40 ml 
culture (OD600 = 4–5).

Ykun-Fpr fusion constructs support monooxygenase activity of CYP109B1. The ability of the 
fusion constructs (4 µM) to support P450 monooxygenase activity was tested in vitro with CYP109B1 (1 µM) 
using myristic acid as substrate (Fig. 1a). Because the stoichiometry of the fused redox partners is fixed at 1:1, 
control reactions were conducted with 4 µM each of non-fused Fpr and YkuN. Independent of the flavodoxin 
used (FldA or YkuN), myristic acid conversion achieved with the 4:4:1 reconstituted system was nearly equal 
to that obtained with the commonly used 1:10:1 system (Fig. 1a). Importantly, the different fusion constructs 
were all able to support CYP109B1 catalysis (Fig. 1a), which indicates that the covalently attached Fpr and YkuN 
have retained their ability to deliver the necessary electrons to CYP109B1. The linker-less fusion YR exhibited 
appreciable activity, supporting ~38% conversion of myristic acid (Fig. 1). Nevertheless, conversion was sub-
stantially lower than with equivalent amounts of non-fused Fpr/YkuN, suggesting reduced functionality upon 
direct attachment of the redox partners. Introduction of a linker between YkuN and Fpr however substantially 
improved activity. In particular the fusion constructs YR-P4 and YR-P5 supported high myristic acid conversion 
(79% and 86%, respectively), which is close to the 94% conversion achieved with non-fused Fpr/YkuN (Fig. 1a). 
Quantitative product analysis revealed that both the regioselectivity of CYP109B1 for myristic acid hydroxylation 
as well as product distribution was not affected by the fusion constructs (Supplementary Table S3). In all cases, the 
carbon atoms C-11 (ω−3) and C-12 (ω−2) of myristic acid were preferentially hydroxylated.

Interestingly, the fusion constructs carrying proline-rich linkers (P1 - P5) in all cases outperformed their 
glycine-rich (G1–G5) counterparts (Fig. 1a). Moreover, the performance of the P-linker constructs seems to 
be dependent on the linker length, supporting higher conversion with increased linker length, whereas for the 
G-linker constructs a dependence on linker length was not evident (Fig. 1a).

Spectral analysis of the different YkuN-Fpr fusion constructs revealed nearly identical absorbance character-
istics (Supplementary Fig. S3), which indicates that the fusion proteins have a similar cofactor content (Fpr-FAD 
and YkuN-FMN) as well as a similar cofactor-protein environment. It seems therefore unlikely that the differ-
ences in activity between the fusion constructs relate to linker induced effects on cofactor binding or protein 
folding.

The performance of the fusion constructs was further investigated using different redox protein concentra-
tions (0–8 µM). In all cases, sigmoid curves were obtained over the range of concentrations tested (Fig. 1b). The 
dependence of CYP109B1 activity on the fusion protein concentration was clearly different from that of an equiv-
alent system of non-fused Fpr/YkuN maintained at a 1:1 ratio, and also differed among the fusion constructs, 
which indicates rather complex behaviour (Fig. 1b).

Overall, YR-P5 proved the most effective fusion construct, as it supported nearly complete conversion of 
myristic acid at protein concentrations of 4–8 µM, much like the non-fused redox partners. However, at con-
centrations <4 µM, the performance of YR-P5 dropped well below that of the non-fused Fpr/YkuN, as was 
also observed for the other tested fusion constructs (Fig. 1b). As a measure for the overall performance of the 
redox partners, the concentration of the redox enzymes at which 50% of myristic acid (EC50) was converted by 
CYP109B1 was estimated from Fig. 1b. The approximate EC50 are 0.8 µM for non-fused Fpr/YkuN, 2.7 µM for 
YR-P5, 3.5 µM for both YR-P1 and YR-G1, 3.6 µM for YR-G5 and 4.5 µM for the linker-less construct YR, which 
demonstrates that YR-P5 is the superior fusion construct.

Intrinsic properties of the (GGGGS)n and ([E/L]PPPP)n linkers. To further evaluate the properties 
of the (GGGGS)n and ([E/L]PPPP)n linkers molecular dynamics (MD) simulations were carried out. MD sim-
ulations of the G-linkers revealed that starting from a linear extended conformation these linkers readily fold 
into more compact random structures (Fig. 2a). Collapse of the extended conformation is particularly evident 
for linkers G3, G4 and G5, which consist of 3, 4 and 5 (GGGGS)-repeats, respectively. These linkers exhibited 
a substantial (>1 Å) decrease in the radius of gyration (Rg) over time (Fig. 2b). Moreover, the Rg of the G4 and 
G5 linker exhibited large oscillations over time, which indicates substantial structural rearrangements and high 
structural flexibility. Structural behaviour of the ([E/L]PPPP)n linkers on the other hand was clearly different. 
The Rg of the different P-linkers remained largely constant over time, with only minor oscillations observed for 
linkers P3–P5 (Fig. 2c). Thus, the P-linkers effectively maintained their linear conformation. Consequently, the 
Rg of the P-linkers exhibited a dependence on the linker length. For each additional ([E/L]PPPP)-segment the 
Rg increased by ~0.4–0.5 Å (Fig. 2c). Linker P5, which consists of 25 residues forms an exception to this as it 
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exhibited an Rg similar to that of the P4 linker, i.e. ~1.8 Å (Fig. 2c). Overall bending of the long P-linkers may have 
contributed to this occurrence (Fig. 2a).

Influence of auxiliary YkuN on CYP109B1 catalysis driven by the YkuN-Fpr fusion constructs.  
In comparison to the separate redox enzymes the fusion constructs exhibit a reduced performance at low pro-
tein concentration (Fig. 1b), which may indicate that one (or both) of the fused redox partners is limiting the 
P450-catalysed reaction. With reconstituted P450 systems the electron shuttle ferredoxin/flavodoxin is usually 
a major limiting factor that is typically overcome by applying an excess of this electron transfer protein16, 28, 29.  
To investigate this, the different fusion constructs (1 µM) were incubated together with CYP109B1 (1 µM) in the 
absence or presence of an excess of YkuN (4 or 9 µM). In all cases, mixing the fusion proteins with additional 
YkuN led to an increase in myristic acid conversion (Fig. 3), which confirms that YkuN is limiting the reaction. 
By increasing the concentration of the fusion constructs itself in the P450-catalysed reaction, this apparent limi-
tation was also (partly) overcome (Fig. 1b).

Since the reductase (Fpr) domain of the fusion constructs is capable of donating electrons to the auxiliary 
electron shuttle YkuN, this also indicates that no strict functional coupling between the Fpr and YkuN domain 
exists within the fusion constructs. Generally, electron transfer rates are thought to be controlled in part by the 
distance between the redox centres33. Considering the YkuN-Fpr fusion constructs it is likely that both the length 
and the structural properties of the linker contribute to the relative distance between the respective redox centres. 
Regarding the rigid nature of the ([E/L]PPPP)n linkers (Fig. 2) it seems plausible that in particular long P-linkers 

Figure 2. MD simulations of the (GGGGS)n and ([E/L]PPPP)n linkers used to functionally connect YkuN 
and Fpr. (a) Structural snapshots of (GGGGS)n and ([E/L]PPPP)n linkers of length 1 and 5. Depicted in each 
panel are the starting conformations (left) and the lowest energy conformation found during the 20 ns MD 
simulations (right). Development of the radius of gyration (Rg) during MD simulations for (GGGGS)n and 
([E/L]PPPP)n linkers of lengths (n = 1–5) are shown in (b) and (c), respectively. The strong decrease in Rg for 
(GGGGS)n linkers reflects the hydrophobic collapse, whereas the ([E/L]PPPP)n linkers remain in an extended 
conformation.
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might facilitate a higher degree of separation of the fusion partners. In line with this, the increase in conversion 
upon YkuN addition was much more pronounced for fusion constructs carrying the rigid P-linkers (Fig. 3), 
which more effectively maintain an extended conformation than their glycine-rich counterparts (Fig. 2). In fact, 
the highest increase in myristic acid conversion governed by the addition of YkuN was observed for the YR-P5 
construct which carries the longest P-linker tested (25 residues), achieving a similar conversion as the comparable 
1:10 system of non-fused Fpr/YkuN (Fig. 3).

NADPH oxidation rates and coupling efficiencies measured with the YkuN-Fpr fusion 
enzymes. The overall performance of a reconstituted P450-redox partner system depends amongst others 
on its NAD(P)H oxidation rate and the coupling efficiency between NAD(P)H oxidation and P450 substrate 
conversion. Since delivery of electrons to CYP109B1 depends on functional reductase (Fpr) as well as flavo-
doxin (YkuN), a loss of electrons may occur either upon electron transfer from Fpr to YkuN or from YkuN to 
CYP109B1, which in both cases will lead to uncoupling between NADPH oxidation and product formation.

The NADPH oxidation rate and the coupling efficiency were determined for various reconstituted systems 
(Table 1). CYP109B1 reconstituted with the non-fused redox partners exhibited the highest NADPH oxidation 
rate, i.e. 26 nmol·(nmol P450)−1·min−1, along with a coupling efficiency of 28.3%. In contrast, for the fusion 
constructs substantially lower NADPH consumption rates were observed, whereas the coupling efficiency was 
markedly improved (Table 1). Direct attachment of YkuN to Fpr (YR) led to a ~1.8-fold improvement of the 
coupling efficiency (49.8%) and a more than 8-fold decrease in NADPH oxidation rate (Table 1). In comparison 
to YR, the superior construct YR-P5 (Fig. 1) showed a similar coupling (48.9%), whereas the NADPH oxidation 
rate was 3.6-fold higher, i.e. 11.3 nmol·(nmol CYP)−1·min−1 (Table 1). The highest coupling efficiency of 81.2% 
was however observed for YR-G5, which, notably, exhibited the lowest NADPH oxidation rate of 1.4 nmol·(nmol 
P450)−1·min−1.

Figure 3. Influence of auxiliary YkuN on CYP109B1 catalysis driven by the different YkuN-Fpr fusion 
constructs. Myristic acid conversion with CYP109B1 (1 µM) was carried out in the presence of the different 
Ykun-Fpr fusion constructs either in the absence (- YkuN) or presence of additional YkuN (4 or 9 µM). In 
all cases reactions were started by the addition of a mixture of NADPH and myristic acid and allowed to 
proceed for 120 min under the support of an NADPH regenerating system. The Fpr/YkuN/CYP109B1 system 
reconstituted at 1:10:1 and 1:1:1 ratio, respectively achieved 96% and 60% conversion of myristic acid in 
120 min.

Reconstituted systema NADPH oxidation rateb Couplingc efficiency (%)

Fpr / YkuN / CYP109B1 – [4:4:1] 26.0 ± 1.9 28.3 ± 3.6

YR / CYP109B1 – [4:1] 3.1 ± 0.3 49.8 ± 8.3

YR-P1 / CYP109B1 – [4:1] 12.7 ± 1.3 62.1 ± 5.1

YR-P5 / CYP109B1 – [4:1] 11.3 ± 1.9 48.9 ± 3.4

YR-G1 / CYP109B1 – [4:1] 6.6 ± 0.3 72.4 ± 3.6

YR-G5 / CYP109B1 – [4:1] 1.4 ± 0.2 81.2 ± 4.1

Table 1. NADPH oxidation rate and coupling efficiency of the CYP109B1-catalysed conversion of myristic 
acid, supported by different redox partners. Presented data represent average values of at least three 
independent reactions. The ratio of NADPH:myristic acid employed was 1:1 (200 µM each, respectively) aValues 
in brackets indicate applied ratio as well as final concentration (µM) of indicated proteins. bRates are given 
in nmol NADPH per nmol CYP109B1 per minute. The background NADPH oxidation rate in the absence 
of redox partner(s) was 0.1 ± 0.0. cThe coupling efficiency equals the myristic acid conversion achieved upon 
NADPH depletion (see also Supplementary Fig S5).

http://S5


www.nature.com/scientificreports/

6ScIentIfIc REPoRTS | 7: 9570  | DOI:10.1038/s41598-017-10075-w

Reduction of CYP109B1 Fe3+-heme by the YkuN-Fpr fusion constructs. Since the YkuN-Fpr 
fusion constructs exhibited attenuated NADPH oxidation rates along with improved coupling, the question arises 
whether the crucial step of electron transfer to the P450 is also influenced upon attachment of YkuN to Fpr. The 
reduction of the Fe3+ to Fe2+-heme can be conveniently monitored by the addition of carbon monoxide (CO), 
yielding a stable complex that exhibits the characteristic absorbance maximum at 450 nm34.

Indeed, absorbance spectroscopy of the anaerobic reduction of CYP109B1 in the presence of CO by the dif-
ferent redox partners revealed the formation of the typical absorbance peak at ∼450 nm, which is governed by 
the reduction of Fe3+ to Fe2+-heme and the subsequent formation of the stable heme-Fe2+-CO complex. Typical 
traces for the time dependent reduction are shown in Supplementary Fig. S4. P450 reduction occurred rather 
slowly under the tested conditions (Fig. S4). Data were fit to a bi-exponential function, revealing a slow and a fast 
phase; the corresponding reduction rates are shown in Table 2. Reduction occurred fastest by the non-fused Fpr/
YkuN, exhibiting a k1 of 0.009 s−1 and k2 of 0.078 s−1. For the linker-less fusion YR corresponding rates were 4.5 
and 2.6-fold decreased. In contrast, for the fusion constructs carrying the long P5 or G5 linker, k1 was virtually 
identical to that of the non-fused Fpr/YkuN and k2 was decreased to a lesser extent (Table 2). Of the tested fusion 
constructs, the superior YR-P5 also exhibited the highest heme-iron reduction rate (k1 0.008 s−1 and k2 0.045 s−1). 
Thus, introduction of the P5 linker (25 residues) between the fused YkuN and Fpr led to a substantial improve-
ment of the heme-iron reduction rate.

Versatility of the YkuN-Fpr redox fusion enzymes. From a biotechnological point of view, a redox 
partner system desirably should have the ability to transfer electrons to different terminal acceptors. To demon-
strate cross-reactivity, selected fusion constructs were additionally tested with CYP154E1 from Thermobifida 
fusca YX, CYP106A2 from Bacillus megaterium ATCC 13368 and bovine CYP21A2.

CYP154E1 is a versatile monooxygenase that converts a large variety of substrates, including fatty acids and 
alcohols, as well as acyclic and bulky cyclic terpenoids17, 35, 36. Since Fpr/YkuN are known to effectively support 
CYP154E1 catalysis17, 35, 36 it is expected that the YkuN-Fpr fusion constructs are also able to act as surrogate 
redox partners. To investigate this, selected fusion constructs were tested for their ability to support CYP154E1 
catalysis using β-ionone as substrate (Fig. 4). Ionones are cyclic terpenoids that are key fragrance components 
used for the production of perfumes, cosmetics and other fine chemicals37. Moreover, β-ionone is an important 
intermediate in the manufacturing of vitamin A, while its oxygenated derivative 4-hydroxy-β-ionone is a key 
intermediate in the synthesis of carotenoids and the plant hormone abscisic acid38–40.

Non-fused Fpr/YkuN (1:10 or 4:4 system) supported CYP154E1 catalysis, achieving >70% conversion of 
β-ionone in 1 h (Fig. 4). Thus, in addition to the previously reported terpenoid substrates36, β-ionone is also 
converted by CYP154E1. As expected, the fusion constructs were able to support CYP154E1 catalysis, of which 
YR-P5 again proved most effective at driving P450 catalysis (Fig. 4). In the presence of YR-P5 ~1 mM of β-ionone 
was converted in 1 h, yielding a turnover of ~16 min−1, while non-fused Fpr/YkuN (4:4) supported a turno-
ver of ~24 min−1. The YR-P5/CYP154E1 (4:1) system achieved a coupling efficiency of ~50%, whereas with the 
non-fused enzymes ~44% was measured (Supplementary Table S4). Furthermore, under cofactor regeneration 
conditions, total turnover numbers (TTN) were 1,582 with YR-P5 and 1,948 with the non-fused Fpr/YkuN 
(Supplementary Table S5). Regardless whether Fpr and YkuN were fused or not, in all cases a major oxidation 
product was formed, which was identified as 4-hydroxy-β-ionone by comparison to MS analysis of an authentic 
reference substance41.

To further substantiate functional promiscuity, the best construct YR-P5 was tested with CYP106A2 and 
CYP21A2 using progesterone as substrate in both cases. It is of note that these P450s have not been tested pre-
viously with Fpr/YkuN as surrogate redox partners. CYP106A2 is a regio- and stereoselective 15β-hydroxylase 
of 3-oxo-∆4-steroids42, 43 that recently has been demonstrated to also accept 3-hydroxy-∆5-steroids as well as 
di- and triterpenes as substrates44, 45. Herein, the bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx) 
typically serve as surrogate redox partners. Interestingly Fpr/YkuN and its fused derivative YR-P5 were able to 
functionally substitute for AdR/Adx in the CYP106A2-mediated conversion of progesterone (Table 3). Moreover, 
performance of the 4:4:1 Fpr/YkuN/CYP106A2 system was virtually identical to that of the 4:4:1 AdR/Adx/
CYP106A2 system, both with respect to progesterone conversion and product distribution (Table 3). With both 
systems nearly all progesterone was converted after 120 min and 15β-hydroxyprogesterone was the main product 

Reconstituted systema

Heme-iron reduction rateb

k1 (s−1) k2 (s−1)

Fpr / FldA / CYP109B1 – [4:4:1] 0.004 ± 0.001 0.027 ± 0.008

Fpr / YkuN / CYP109B1 – [4:4:1] 0.009 ± 0.001 0.078 ± 0.023

YR / CYP109B1 – [4:1] 0.002 ± 0.001 0.030 ± 0.002

YR-P5 / CYP109B1 – [4:1] 0.008 ± 0.002 0.045 ± 0.005

YR-G5 / CYP109B1 – [4:1] 0.007 ± 0.001 0.035 ± 0.002

Table 2. Reduction of CYP109B1 Fe3+-heme by different redox partners. aValues in brackets indicate applied 
ratio as well as final concentration (µM) of the proteins in the employed reconstituted systems. bThe heme-iron 
reduction rates were measured as described in the Methods section. Kinetic traces were fit to a bi-exponential 
function, revealing a slow and a fast phase. Typical kinetic traces and corresponding fits are shown in the online 
Supplementary Information. Presented reduction rates represent average values of at least three independent 
reactions carried out under anaerobic conditions at 20 °C.
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formed (Table 3). The fusion construct YR-P5 also supported CYP106A2 catalysis, albeit with lower efficacy 
(Table 3). The YR-P5/CYP106A2 (4:1) system achieved ~46% conversion after 120 min, producing almost exclu-
sively 15β-OH-progesterone (Table 3). By increasing the YR-P5 concentration (10:1 system) conversion could 
be enhanced to near completion (95%) after 120 min, while only minor amounts of undesired polyhydroxylated 
progesterone were formed (up to 6%).

Figure 4. Conversion of β-ionone by T. fusca YX CYP154E1 supported by selected fusion constructs. Reactions 
were carried out in the presence of 1 µM CYP154E1 and 4 µM of indicated fusion constructs. Control reactions 
with non-fused Fpr/YkuN were conducted with 1 µM CYP154E1 together with either 1 µM Fpr + 10 µM YkuN 
[1:10], or 4 µM Fpr + 4 µM YkuN [4:4]. In all cases the initial concentration of the substrate β-ionone was 
2 mM. Reactions were started by the addition of NADP+ under support of an NADPH regenerating system and 
stopped after 1 h.

Redox partner(s) Ratioa
Conversion time 
(min)

Progesterone 
conversion (%)

Compounds (%)

15β-OHb mono-OHb poly-OHbProg.b

AdR/Adx

(4:4:1)
30 96.0 ± 0.5 4.0 ± 0.5 81.7 ± 1.0 8.7 ± 1.3 5.6 ± 0.9

120 99.0 ± 0.1 1.0 ± 0.1 81.1 ± 0.5 6.9 ± 0.5 11.0 ± 0.7

(10:10:1)
30 96.0 ± 0.6 4.0 ± 0.6 81.5 ± 0.5 7.9 ± 0.1 6.6 ± 0.2

120 96.7 ± 1.0 3.3 ± 1.0 82.6 ± 1.6 7.9 ± 0.3 6.1 ± 1.4

Fpr/YkuN

(4:4:1)
30 92.7 ± 0.7 7.3 ± 0.7 80.4 ± 0.5 4.0 ± 0.4 8.3 ± 0.1

120 98.9 ± 0.0 1.1 ± 0.0 81.9 ± 0.0 4.3 ± 0.0 12.8 ± 0.0

(10:10:1)

5 (500 µM)c 84.7 ± 5.4 15.3 ± 5.4 80.4 ± 3.1 2.0 ± 0.2 2.2 ± 2.2

30 91.5 ± 1.3 8.5 ± 1.3 63.0 ± 1.0 4.4 ± 0.1 24.1 ± 0.2

60 94.0 ± 0.1 6.0 ± 0.1 58.4 ± 0.7 5.2 ± 0.7 30.5 ± 0.1

90 98.5 ± 0.4 1.5 ± 0.4 68.2 ± 4.2 6.5 ± 0.4 23.8 ± 4.7

120 97.8 ± 0.2 2.1 ± 0.2 66.3 ± 2.6 6.4 ± 0.4 25.2 ± 3.0

YR-P5

(4:1)

30 19.5 ± 2.6 80.5 ± 2.6 19.1 ± 2.1 0.4 ± 0.5 —

60 29.6 ± 5.4 70.4 ± 5.4 29.2 ± 4.9 0.4 ± 0.6 —

90 39.7 ± 16.2 60.3 ± 16.2 39.7 ± 16.2 — —

120 45.9 ± 15.2 54.1 ± 15.2 44.0 ± 13.4 1.9 ± 1.9 —

(10:1)

5 (500 µM)c 29.7 ± 0.6 70.3 ± 0.6 29.7 ± 0.6 — —

30 75.9 ± 3.8 24.1 ± 3.8 71.3 ± 4.2 3.4 ± 0.5 1.2 ± 0.9

60 80.0 ± 0.9 20.0 ± 0.9 74.9 ± 1.4 3.2 ± 0.8 1.8 ± 0.3

90 90.7 ± 5.3 9.3 ± 5.3 81.5 ± 3.7 3.6 ± 0.8 5.6 ± 1.0

120 94.9 ± 0.7 5.1 ± 0.7 84.9 ± 0.7 4.0 ± 1.3 6.1 ± 0.2

Table 3. Product distribution for the CYP106A2-catalysed conversion of progesterone supported by different 
redox partners. Data represent average values of three independent reactions (using 200 µM progesterone) 
with indicated standard deviation. aRedox partner-CYP106A2 ratio of reconstituted system. bB. megaterium 
CYP106A2 hydroxylates progesterone at positions 15β, 6β, 11α and 9α76; mono-OH, monohydroxylated 
progesterone at positions other than 15β; poly-OH, di- or polyhydroxylated progesterone. cTo assess turnover, 
conversion reactions were carried out for 5 min using 500 µM progesterone.
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To assess turnover rates, reactions were carried out under conditions in which essentially no overoxidation 
products were formed (5 min reactions using 500 µM progesterone). With the Fpr/YkuN/CYP106A2 system 
(10:10:1) nearly 85% of the progesterone was converted, thus achieving a turnover of 169 min−1, whereas with 
the YR-P5/CYP106A2 system (10:1) nearly 30% progesterone conversion was achieved, thus yielding a turnover 
of 59.4 min−1.

To further illustrate versatility of YR-P5, bovine CYP21A2, which is a membrane-bound microsomal P450, 
was used as terminal electron acceptor. CYP21A2 is involved in the biosynthesis of steroid hormones, and typi-
cally catalyses the hydroxylation of the carbon atom 21 in steroids46. In general, CYP21A2 obtains the necessary 
electrons from NADPH via an FAD and FMN-containing microsomal CPR8. However, it is also able to use AdR 
and Adx as redox partners47. Notably, YR-P5 supported CYP21A2 catalysis; with YR-P5 40% of the (200 µM) 
progesterone was converted to 21-hydroxyprogesterone in 30 min, while ~80% conversion was achieved with 
non-fused Fpr/YkuN (Fig. 5). Taken together, the Fpr/YkuN redox pair and its fused derivative YR-P5 are able to 
support the activity of the steroidogenic CYP106A2 and CYP21A2 in vitro, which indicates that these bacterial 
electron transfer systems may serve as alternatives to the mammalian electron transfer systems AdR/Adx and 
CPR.

Discussion
Flavodoxins are promiscuous electron carriers that donate electrons to structurally and functionally diverse 
enzymes, including pyruvate-formate lyase48, ribonucleotide reductase49, key enzymes in photosynthesis50, nitro-
gen fixation51, methionine52 and biotin53 synthesis, but also P450s16, 27, 29, 54, 55. The mixed redox pair Fpr/YkuN 
outperformed the physiological redox pair Fpr/FldA from E. coli in supporting CYP109B1 catalysis (Fig. 1a), 
which suggests that electron transfer by the flavodoxin YkuN is more effective. Since YkuN and CYP109B1 both 
originate from B. subtilis it is possible that YkuN is the physiological redox partner of CYP109B1 and therefore a 
more favourable electron carrier than the heterologous FldA.

Typically, the midpoint potentials of the oxidised/semiquinone (E1′) and semiquinone/hydroquinone (E2′) 
couples reported for the short-chain flavodoxin YkuN are higher than those for the long-chain flavodoxin FldA, 
i.e. −105 mV and −382 mV27 vs. −254 mV and −433 mV, respectively55. E1′ and E2′ of the employed E. coli reduc-
tase Fpr are −308 mV and −268 mV, respectively55. Indeed, the anaerobic reduction of CYP109B1 heme iron 
by YkuN occurred 2–3 times faster than by FldA (Table 2). Similarly, stopped-flow experiments monitoring the 
reduction of B. subtilis CYP107H1 have indicated that YkuN is more effective than FldA in first electron transfer 
to palmitoleate-bound CYP107H1, as evidenced by a ~12-fold higher kred

27. Thus, accelerated electron transfer 
likely contributed to the overall better performance of YkuN compared to FldA in the CYP109B1-catalysed con-
version of myristic acid (Table 2, Fig. 1a).

The inherent dependence of P450s on electron transfer proteins presents a challenging limitation in their 
biotechnological exploitation. To simplify redox chains and to improve the catalytic properties of P450 sys-
tems, a variety of man-made P450 fusion enzymes have been successfully created using a variety of molecu-
lar approaches, including “Molecular Lego”22, “LICRED”56, and”PUPPET”57. Here, the versatility and superior 
properties of YkuN were exploited to generate redox fusion enzymes capable of driving catalysis of different 
CYPs, using the previously established DuaLinX procedure19 for linker engineering. The catalytic performance 
of a reconstituted P450 system is often limited by a low coupling efficiency. Uncoupling events waste expensive 
reduced cofactors (NAD(P)H) and lead to the generation of reactive oxygen species that can cause enzyme inacti-
vation58. With non-physiological redox chains the coupling efficiency is often particularly poor (less than 20%)16 
and also when P450s catalyse reactions with non-physiological substrates, coupling efficiencies are frequently 
severely diminished (<10%)58. Achieving a high coupling efficiency is thus a particularly challenging task.

Direct attachment of YkuN to Fpr via genetic fusion led to a 1.8-fold improvement of the coupling efficiency 
in CYP109B1-catalysed reactions (Table 1). Coupling efficiency could be even further improved by insertion of 

Figure 5. Conversion of progesterone by bovine CYP21A2 supported by Fpr/YkuN and their fused derivative 
YR-P5. In all cases reactions were carried out in the presence of 0.5 µM CYP21A2, 200 µM progesterone and 
5 µM of indicated redox partner(s). Corresponding ratios of redox partner(s) relative to CYP21A2 are indicated 
in brackets. Reactions were started by the addition of NADPH and supported by a NADPH regenerating system. 
Reactions were stopped after 30 min.
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an appropriate linker between the fusion partners. In case of the YR-G5 construct a coupling efficiency as high as 
81.2% was achieved. Notably, in all cases the CYP109B1 systems reconstituted with the different YkuN-Fpr fusion 
constructs exhibited a higher coupling efficiency than those reported previously using a variety of different redox 
partners (1.8–45.8%)16, which is an advantage under cofactor regeneration condition. However, the NADPH 
oxidation rate was markedly reduced.

Despite improved coupling, overall performance of the parental linker-less YkuN-Fpr fusion construct in 
P450-catalsed reactions was rather modest in comparison to the non-fused enzymes (Figs 1 and 4). A > 8-fold 
reduction in NADPH oxidation rate (Table 1) combined with slower electron transfer to the CYP109B1 (Table 2) 
likely contributed to the reduced performance of the YR fusion construct. Insertion of a suitable linker between 
the fusion partners however, substantially improved the overall performance. Herein, long ([E/L]PPPP)n linkers 
(n = 4–5) were particularly effective (Figs 1 and 4), which is consistent with previous findings for fusions between 
E. coli FldA and Fpr19. At protein concentrations ≥4 µM, the superior construct YR-P5 acted as a nearly equiva-
lent substitute for non-fused Fpr/YkuN in driving CYP109B1 catalysis (Fig. 1). Insertion of the P5 linker between 
the fused YkuN and Fpr resulted in a 1.5-fold increase in heme iron reduction rate (Table 2, k2) along with a 
3.6-fold higher NADPH oxidation rate, while maintaining a high coupling efficiency of nearly 50% (Table 1), 
thus contributing to the improved overall performance (Fig. 1). However, despite poorer coupling efficiency, 
the non-fused redox partners proved generally more effective than YR-P5 in supporting P450 catalysis (Table 3, 
Figs 1, 4 and 5), which is likely governed by faster overall electron transfer (accelerated NADPH oxidation as well 
as P450 reduction). The higher amount of progesterone overoxidation products formed by CYP106A2 when the 
non-fused redox partners are used as opposed to YR-P5, is also consistent with this notion (Table 3).

Examination of the linker properties using MD simulations revealed that the (GGGGS)n linkers are highly 
flexible and tend to adopt compact random structures, whereas the ([E/L]PPPP)n linkers maintain their linear 
conformation and are therefore structurally more rigid (Fig. 3). These results are consistent with the notion that 
glycine-rich and proline-rich amino acid sequences are flexible and rigid in nature, respectively59–61. Moreover, 
the high mobility of glycine-rich linkers is apparent from their lack of structural resolution in X-ray structures of 
a multitude of artificial fusion proteins62. Due to their flexibility, glycine-rich linkers are unstructured and tend to 
provide limited domain separation63, 64, whereas structurally rigid linkers, such as proline-rich linkers are more 
likely to separate the fusion partners60, 65.

For flavodoxins the binding areas for the electron donating reductase and the terminal electron acceptor 
(P450) are partially overlapping, which precludes the formation of a ternary protein complex66, 67. Considering 
the fusion constructs, an optimal linker should therefore facilitate the formation of an electron transfer com-
plex between Fpr and YkuN as well as between YkuN and the P450. In view of the superior performance of the 
YR-P5 construct these criteria are apparently best met by the ([E/L]PPPP)5 linker. Indeed, both the activity of Fpr 
(NADPH oxidation rate) and YkuN (heme-iron reduction) are reasonably well preserved in the YR-P5 construct 
(Tables 1 and 2). Herein, the rigid P5 linker may restrict the degrees of freedom of the fused redox partners, while 
allowing them to mutually interact in an effective manner, thus promoting intramolecular electron transfer. On 
the other hand, the extended rigid P5 linker (25 residues) may increase the distance between the redox centres 
of the fusion partners, thereby disfavouring intramolecular electron transfer and facilitating electron transfer 
between fusion proteins (i.e. intermolecularly). The available experimental data for YR-P5 seems to be more con-
sistent with a predominantly intermolecular electron transfer pathway. YR-P5 lacks a strict functional coupling 
between the Fpr and YkuN domain and its Fpr domain is readily accessible for external YkuN (Fig. 3), which is 
likely facilitated by a higher degree of separation of the fusion partners in case of the P5 linker. Moreover, P450 
mediated catalysis exhibited a higher order (sigmoidal) dependence on fusion enzyme concentration suggesting 
an intermolecular contribution, whereas a linear dependence would have been indicative of exclusive intramolec-
ular electron transfer (Fig. 1b). At elevated redox partner concentration, which increases the collision frequency 
between fusion proteins, apparent limitations in electron transfer were (partially) overcome and the performance 
of YR-P5 was similar to that of the non-fused Fpr/YkuN (Fig. 1b).

Finally, the superior construct YR-P5 exhibits versatility as it effectively supported monooxygenase activity 
of functionally diverse P450s, including B. subtilis CYP109B1 (Fig. 1), T. fusca YX CYP154E1 (Fig. 4), B. mega-
terium CYP106A2 (Table 3) and bovine CYP21A2 (Fig. 5). Thus, functional promiscuity of YR-P5 is not limited 
to bacterial P450s.

Considering the feasibility of the Fpr/YkuN system and its fused derivative YR-P5 for applied biocatalysis, 
the TTN presented here are rather modest. In case of CYP154E1 with β-ionone as substrate TTN were 1,582 
with YR-P5 and 1,948 with the non-fused Fpr/YkuN (Supplementary Table S5). On the other hand, we recently 
observed that a Fpr/YkuN/CYP154E1 system can achieve TTN of up to 20,000 with stilbene as substrate68. 
Although TTN in P450-based multi-component systems depend on many factors, the P450-substrate match 
seems to play a prominent role. For example, CYP154C5 catalysis supported by PdR/Pdx achieved TTN of 2,440 
with progesterone and 3,341 with androstenedione under optimized conditions69. For the natural fusion P450 
BM3 from Bacillus megaterium (and mutants thereof), TTN values range from 890 with omeprazole70, 2,200 
with n-octane71, to 6,195 with anisole72, and even TTN as high as 24,363 or 45,000 have been reported in case of 
cyclooctane73 and propane74, respectively.

Taken together, the intrinsic dependence on redox partner(s) represents an important limiting factor in the 
utilization of P450s as biocatalysts. Availability of suitable redox partner(s) is therefore a prerequisite to suc-
cessfully explore the catalytic potential of P450s10. By covalent fusion the complexity of the bacterial Fpr/YkuN 
electron transfer chain was effectively reduced, allowing easy protein production, purification and handling. 
Moreover, a stabilising effect on Fpr was noted upon fusion to YkuN (Supplementary Fig. S2). Through linker 
engineering the activity of the fusion construct could be tuned such that the high activity of the individual redox 
partners and the promiscuity for different P450s was largely preserved, with overall best performance of the 
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YR-P5 construct. The versatile YR-P5 may serve as an effective surrogate electron transfer system for exploitation 
of the catalytic potential of (orphan) P450s.

Methods
Generation of YkuN-Fpr fusion constructs. Construction of the ykuN:fpr fusion gene was performed by 
fusing the Bacillus subtilis flavodoxin gene ykuN lacking its stop codon to the 5’-end of the flavodoxin reductase 
gene fpr from E. coli JM109 by means of PCR with overlapping primers using pET16b-ykuN16 and pET11a-
hAR19 as respective DNA-templates. Three extra nucleotides (GCC) were incorporated at the fusion site to 
create a unique NcoI restriction site that facilitates linker (DuaLinX) insertion. DuaLinX are double stranded 
DNA elements of different lengths with NcoI-compatible overhangs, which depending on their orientation after 
insertion code for either (GGGGS)n or ([E/L]PPPP)n linkers (n = 1–5)19. Moreover, molecular dynamics (MD) 
simulations were carried out on these peptide linkers to gain insight in their intrinsic structural properties. 
Procedures for fusion PCR, linker insertion and MD simulations are described in detail in the accompanying 
online Supplementary Information. The different YkuN-Fpr fusion proteins were produced in E. coli BL21(DE3) 
and purified from the cytosol via their N-terminal His6-tag. Expression and purification procedures of the various 
proteins used in this study are described in the online Supplementary Information.

P450-catalysed conversion reactions. CYP109B1 reaction mixtures contained 50 mM Tris-HCl pH 7.5, 
1 mM MgCl2, 4 mM glucose-6-phosphate (G6P), 1 U G6P-dehydrogenase from Saccharomyces cerevisiae, 1 µM 
CYP109B1 and redox protein(s) as indicated. Stock solutions of myristic acid (10 mM, dissolved in DMSO) and 
NADPH (1 mM, dissolved in 50 mM Tris-HCl, pH 7.5) were pre-mixed at 1:10 ratio, respectively. Hereof, 44 µl 
was used to start the reactions (final concentrations: 200 µM for both myristic acid and NADPH, and 2% (v/v) 
DMSO).Total reaction volume was 200 µl. Reactions were allowed to proceed for 120 min at 30 °C and 300 rpm in 
a thermo-shaker and then stopped by the addition of HCl (8 µl, 37% w/w). For quantitative gas-liquid chromatog-
raphy/mass spectrometry (GC/MS) analysis, the internal standard tridecanoic acid (dissolved in 100% DMSO) 
was added to a final concentration of 50 μM. For determination of NADPH consumption rates and coupling 
efficiencies, the CYP109B1 reactions mixtures lacked G6P-dehydrogenase and were transferred to 96-microwell 
plate followed by 2 min incubation at 30 °C in a TECAN infinite m200 pro plate reader equipped with an injector 
module. Reactions were started by injecting 44 µl of the NADPH-myristic acid solution (described above) and 
the change in absorbance was measured at 340 nm at 30 °C. The NADPH consumption rate was calculated using 
ε340 = 6.22 mM−1cm−1. After all NADPH was consumed, HCl and internal standard were added as described 
above for GC/MS analysis. The employed ratio of NADPH:myristic acid was 1:1 (200 µM each, respectively) 
and thus the coupling efficiency equals the proportion (%) of myristic acid converted upon NADPH depletion. 
CYP154E1 activity was determined in 125 µl reaction mixtures containing 100 mM KPi pH 7.5, 1 µM CYP154E1 
together with 4 µM each of Fpr and YkuN (unless stated otherwise) or 4 µM of YkuN-Fpr fusion construct, 2 mM 
β-ionone (dissolved in DMSO, yielding a final DMSO concentration of 2% v/v in the conversion assay) and 
200 µM NADP+. For NADPH regeneration and removal of hydrogen peroxide, 0.63 U GDH and 20 mM glucose, 
and 75 U catalase from bovine liver (Sigma-Aldrich) were also included, respectively. Reactions were performed 
at 30 °C and 600 rpm for 1 h and then extracted by the addition of 100 µl ethyl acetate under vigorous vortexing. 
For quantification purposes α-ionone (internal standard) was added to a final concentration of 2 mM. CYP106A2 
reactions were performed in 250 µl total reaction volume and contained 50 mM KPi pH 7.4, 0.5 µM CYP106A2 
together with the individual or fused redox partners at 2 or 5 µM, 200 µM of the substrate progesterone (dissolved 
in 100% ethanol), 5 mM G6P, 1 U G6P-dehydrogenase and 1 mM MgCl2.The reactions were started by addition of 
NADPH (final concentration 100 µM) and incubated at 30 °C and 900 rpm. At different time points, the reactions 
were stopped by the addition of ethyl acetate. Extraction was carried out two times using 250 µl ethyl acetate each, 
by vigorous mixing. CYP21A2 reactions (250 µl) contained 50 mM HEPES pH 7.4, 0.05% (v/v) Tween 20, 0.5 µM 
CYP21A2, 5 µM redox partner, 200 µM of the substrate progesterone (dissolved in 100% ethanol), 5 mM G6P, 1 
U G6P-dehydrogenase and 1 mM MgCl2.The reactions were started by addition of NADPH (final concentration 
100 µM) and allowed to proceed for 30 min at 37 °C and 900 rpm. Extraction and HPLC analysis was as described 
for CYP106A2.

Quantification of substrates and product identification. Presented conversion data are average values 
of multiple (at least three) independent conversion reactions with indicated standard deviations. Quantification 
of substrates and product identification were carried out as follows. CYP109B1 - For quantification of myristic 
acid (MA), the detector response was calibrated using tridecanoic acid (TDA) as internal standard. For this pur-
pose, TDA at a fixed concentration of 50 µM was mixed with MA at final concentrations ranging from 5–200 μM 
in 50 mM Tris-HCl buffer, pH 7.5. Samples were then treated, extracted and analysed by GC/MS as described 
for normal conversion reactions. The ratio of the area of the MA to that of the TDA was plotted against the MA 
concentration and yielded a linear calibration curve. CYP154E1 - For the quantification of β-ionone, a calibration 
curve was recorded with different concentrations of β-ionone ranging from 0.05–5 mM using 2 mM of α-ionone 
as internal standard. Conversion products were identified by their characteristic mass fragmentation patterns. In 
case of β-ionone conversion, the main conversion product 4-hydroxy-β-ionone was identified by its characteristic 
mass fragmentation pattern and retention time, and compared to those of the authentic reference compound. 
CYP106A2/CYP21A2 – The organic phases were combined and evaporated, after which the samples were stored 
at −20 °C until reversed-phase HPLC analysis. Evaluation of progesterone conversion and product formation 
was performed by HPLC peak integration, with the total peak area of substrate plus products set to 100%. The 
procedures for GC/MS and HPLC analyses are described in detail in the accompanying online Supplementary 
Information.
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Reduction of the heme-iron of CYP109B1 by various redox partners. Reduction of the heme iron 
was monitored by using a CO-difference spectroscopy-based method34. The reduction rate of heme Fe3+ to Fe2+ 
was measured under anaerobic conditions (nitrogen atmosphere) in a glovebox (Glovebox Systemtechnik, 
Malsch, Germany) at room temperature (20 °C). Buffer and protein solutions were incubated under anaerobic 
conditions to obtain oxygen-free solutions. Reduction of the P450 can be determined in the presence of CO by 
monitoring the formation of the characteristic absorbance peak at 450 nm. Absorbance spectra (340–700 nm) 
were recorded using a diode array spectrophotometer (TIDAS E BASE / VIS-NIR, J&M Analytik, Essingen, 
Germany). To this end, CYP109B1 (2 µM) and myristic acid (400 µM) were premixed in buffer containing 50 mM 
Tris-HCl, pH 7.5 and flushed with 1 ml of CO gas using a gas-tight syringe. Redox partner(s) were premixed in a 
separate solution containing 50 mM Tris-HCl, 8 µM redox partner(s) and 2 mM NADPH. Then, 100 µl of the P450 
solution were transferred to UV-cuvette and manually mixed with 100 µl of the solution containing the reduced 
redox partner(s). Kinetic traces were extracted from the acquired spectra by plotting the A450 −A490 against the 
time75. Kinetic data were analysed using OriginPro 9.0 software using a fitting routine with two-exponential steps. 
The equation used for the calculations was A = A1(1 − ek t1 ) + A2(1 − ek t2 ) + C.

Data availability. The data generated or analysed during the current study are either included in this pub-
lished article (and its Supplementary Information files) or are available from the corresponding author on rea-
sonable request.
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