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Abstract: The second most common progressive neurodegenerative disorder, Parkinson’s disease
(PD), is characterized by a broad spectrum of symptoms that are associated with its progression.
Several studies have attempted to classify PD according to its clinical manifestations and establish
objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent
comprehensive research on the classification of PD using clinical phenotypes has included factors
such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers.
Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor
symptoms. Genetic and transcriptomic studies have contributed to our understanding of the un-
derlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an
understanding of the heterogeneity of clinical manifestations in PD is required for a personalized
medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neu-
roimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a
preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate
the development of therapeutic strategies for PD.

Keywords: biomarker; clinical subtyping; cluster analysis; neurodegenerative disorders; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD), a common chronic progressive neurodegenerative disorder,
is characterized by α-synuclein aggregations and neuronal loss in the substantia nigra,
which results in striatal dopamine deficiency [1]. The pathophysiology of PD involves
multiple neurotransmitter deficiencies resulting in multisystem neurodegeneration, con-
tributing to a clinical phenotyping variability [2,3]. PD is associated with a broad spectrum
of clinical symptoms, including motor and non-motor symptoms [1,3]. These multiple clini-
cal symptoms are associated with the progression of PD. In other words, the progression of
PD is driven by the combination of increasing severity of non-motor and motor symptoms,
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complications, and poor response to standard therapy [1]. The clinical manifestations,
course of progression, and biomarker profiles in PD vary widely from person to person [4].
Due to the clinical heterogeneity of PD, a personalized approach with a holistic perspective
is needed for each patient [3]. For personalized medicine, subtyping according to the com-
mon clinical characterization is required. Therefore, a classification for subtyping PD based
on clinical, pathological, genetic, and molecular features and biomarkers for distinguishing
each subtype should be developed [5]. Here, we have focused on the clinical manifestations,
including gait disturbance, neuroimaging, and molecular markers for subtyping PD.

Among the motor symptoms of PD, the gait disturbance increases as the disease
progresses [6,7]. The gait disturbance in PD is characterized by decreased steps per minute,
stride length, and velocity, and increased double support time and gait variability [8,9]. In a
study using kinematic patterns for gait analysis in PD, a difference in kinematic parameters
during gait has been reported in patients with PD and healthy elderly subjects [10]. As
such, by assessing gait patterns, patients with PD can be distinguished from healthy elderly
subjects. Moreover, there are differences in gait even among patients with PD. However,
subtype classification studies using gait patterns in PD are still limited.

In research settings, neuroimaging has been used in the differential diagnosis of PD for
decades. For a long time, neuroimaging research in PD has focused on the dopaminergic
system; however, in recent years, there has been an increase in techniques that are based on
magnetic resonance imaging (MRI) and functional imaging (positron emission tomography
(PET) and single-photon emission computed tomography (SPECT)) [11,12]. SPECT and
PET are effective in distinguishing between degenerative and non-degenerative causes
of PD [13]. MRI also provides information about the degeneration in PD. MRI and PET
can differentiate between PD and atypical Parkinsonism, but they may require advanced
tools for enhancement [14]. Dopaminergic and serotonergic PET can be used to monitor the
progression of PD and its motor and non-motor symptoms and complications; however,
few of these findings have been applied to clinical practice. Hybrid PET-MRI technology
has dramatically altered PD imaging, but image reconstruction must be addressed before
its use in research and clinical settings. The high cost prevents the transfer of neuroimaging
from research to clinical practice.

Various studies have been attempted to develop reliable diagnostic and prognostic
biomarkers for PD through genetic, biochemical, and transcriptomic analyses. Linkage
and next-generation sequencing studies have revealed the genetic landscape of PD [15].
Investigations on the pathobiology of identified genetic risk factors that may result in
a difference in onset, symptoms, and progression of PD are still ongoing. Biochemical
markers in the blood or cerebrospinal fluid (CSF) are expected to facilitate an early diagnosis
and assess the severity of PD [16]. The concentration levels of these markers are associated
with clinical symptoms and neuroimaging features. Transcriptome analysis based on high-
throughput sequencing technology allows the characterization of genome-wide expression
levels in patients with PD [17]. Transcriptomic signatures in patients with PD have been
reported to be distinct from those observed in healthy controls (HCs); similar differences
have been observed among subgroups of patients with PD.

Meanwhile, previous studies using a single feature for PD subtyping have limited
applicability in clinical practice. Additionally, the biomarker profiles in PD differ among
individuals [4], and there is a growing number of failed attempts at establishing a simplistic,
single-target approach towards the treatment of PD. Therefore, the symptomatic and
pathological differences between patients with PD should be addressed [5]. Subtyping
according to clinical manifestations and objective biomarkers is necessary for an accurate
diagnosis of PD occurrence and progression. We investigated the classification of PD
subtypes using clinical symptoms, neuroimaging, and molecular markers in previous
studies. Additionally, we conducted a pilot study on whether preliminary clustering using
gait features is possible for classifying PD subtypes. As PD is a disease associated with
complicated motor and non-motor symptoms, the subtyping should integrate features,
such as gait disturbance, neuroimaging, and molecular markers, among others. Therefore,
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here, we aimed to develop an integrated classification model for PD subtypes (Figure 1)
based on the results of the pilot study.

Figure 1. Schematic flow diagram of the classification for subtyping of Parkinson’s disease (PD).
MRI, magnetic resonance imaging; PET, positron emission tomography; fNIRS, functional near-
infrared spectroscopy.

2. Classification of PD

The age of onset, clinical phenotypes, and disease severity or neuropathological
alterations have been reported as the criteria for classifying PD subtypes [3]. In this section,
we review PD subtypes using clinical features, neuroimaging, and molecular markers.

2.1. Classification of Subtype According to Clinical Features

The clinical symptoms of patients with PD are complex, encompassing a broad spec-
trum of symptoms, including cardinal motor symptoms (tremor, rigidity, bradykinesia,
postural instability, and gait disorders) and non-motor symptoms (sleep–wake cycle dis-
orders, cognitive impairment, mood and affective disorders, autonomic dysfunction, and
sensory symptoms and pain) [1]. The variability in the clinical phenotype of PD is sug-
gested to represent various subtypes of the disease [18], implicating the difference in their
pathogenetic hypotheses and therapeutic strategies [19]. Previous studies classifying PD
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subtypes using clinical phenotypes have suggested the following four subtypes: type I,
tremor-dominant (TD); type II, postural instability and gait difficulty (PIGD); type III,
rigidity-dominant; type IV, axial-dominant; type V, appendicular-dominant. This clas-
sification was based on the presence of motor symptoms as the dominant criteria [20].
Recently, it has been observed that the non-motor symptoms are playing an increasingly
important role in the clinical heterogeneity of PD [21], and subtype classification studies
utilizing the dominant clinical symptom and disease severity as criteria, considering both
motor and non-motor symptoms, have been reported [18,19,21]. In three previous studies,
based on the severity of symptoms, the disease was classified as mild [21] or mild motor
and non-motor disease [18], and severe [21] or severe motor and non-motor disease with
poor psychological well-being [18]; based on the dominance of symptoms, it was classified
as non-motor-dominant [19,21] or poor psychological well-being, rapid eye movement
sleep behavior disorder (RBD), and sleep [18], motor-dominant [19,21], poor posture and
cognition [18], and severe tremor [18], benign pure motor [19], and benign mixed motor–
non-motor [19]. Several clinical studies have attempted to classify the clinical subtypes of
PD from cluster analysis using a longitudinal database including cohorts (Table 1).

2.1.1. Subtype Classification Using Motor Symptoms and Marker Investigation

Several studies have investigated markers for distinguishing subtypes in PD, classified
by the clinical phenotype (Table 1). Previously, PD was often divided into two subtypes
based on the dominant motor symptom: TD and PIGD [22]. According to the subtype,
the disease progression was closely related to clinical symptoms [23,24]. Therefore, many
studies were conducted to develop markers and compare the characteristics of the TD
and PIGD subtypes. On comparing the severity of clinical symptoms between the two
distinct subtypes, PIGD was associated with more severe symptoms and a higher mortality
rate than TD [25–30]. In addition, several studies have attempted to classify PD subtypes
based on gait characteristics [23,24]. The gait and balance disturbances, such as reduced
gait speed, shorter strides, increased stride variability, and increased stride irregularity,
and performance-based tests for mobility, balance, and fall risk using the objectively
quantified assessment, were more severe in the PIGD subtype [23,31]. Wu et al. compared
spatiotemporal and kinematic parameters of gait by dividing 86 patients with PD into
PIGD (n = 56) and TD (n = 30) groups [32]. In terms of spatiotemporal parameters, the
PIGD group showed shorter stride length, increased stride time, and higher stride length
variability when compared to the TD group. In terms of the kinematic parameters, the
ankle joint angle and toe-off angle during gait were significantly decreased in the PIGD
group when compared to the TD group, and there was no significant difference between
the two groups in the knee joint, hip joint, and heel strike angle. As a result, the PIGD
group was more severely affected by spatiotemporal parameters during gait; in particular,
the motor deficit was more severe in the distal joint. As a behavioral marker for subtyping
PD, the different aspects of interoceptive, somatosensory sensations related to non-motor
phenomena, and processing deficits in PIGD and TD subtypes, were demonstrated. The
interoceptive accuracy and sensibility were more reduced in the patients with the TD
subtype than in those with the PIGD subtype [33].

Freezing of gait (FOG) is a common symptom in patients with PD; it is defined as
restriction in the forward locomotion despite efforts to move forward [34,35]. Factor et al.
classified patients with FOG into responsive FOG (RFOG) and unresponsive FOG (URFOG)
based on the patients’ response to levodopa, and compared them with PD patients without
FOG [35]. The URFOG group had a higher age of disease onset and a higher unified
Parkinson’s disease rating scale score than the RFOG group [35]. For cognitive function,
the patients with URFOG and RFOG had a lower score than those without FOG. In terms
of visuospatial performance (visuospatial domain and executive functioning domain),
the URFOG group showed lower performance than the RFOG and no FOG groups [35].
Conversely, the frequency of general hallucinations was higher in the RFOG group (53%)
compared to the URFOG (25%) and no FOG (20%) groups. In terms of dyskinesia, both the
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URFOG (44%) and RFOG groups (70%) had more frequent dyskinesia compared to the no
FOG group (24%) [35]. This indicates that, depending on the response to levodopa in PD
patients with FOG, there may be differences in the patient’s cognitive, motor, and perceptual
functions; moreover, PD patients can be sub-grouped using various other methods.

To develop markers, the differences in the pathophysiological mechanisms, dysfunc-
tion in specific brain regions [36,37], and serum antioxidative property [38] in PD were
investigated. To investigate the brain connectivity dysfunction in the TD and PIGD sub-
types, the difference in the PD-related degeneration of brain hubs in the TD and PIGD
subtypes was analyzed using 3T resting-state functional MRI [36]. The topological orga-
nization of brain functional networks was altered [39], and comprehensive disruption in
brain regions, including the basal ganglia, cerebellum, superior temporal gyrus, pre- and
postcentral gyri, inferior frontal gyrus, middle temporal gyrus, lingual gyrus, insula, and
parahippocampal gyrus, was found in both subtypes of PD. Notably, the PIGD subtype
displayed more disrupted hubs in the cerebellum. The cerebellum demonstrated dopamin-
ergic degeneration, α-synuclein deposition, and aberrant projections from the basal ganglia
in PD. Therefore, more severe cerebellum disruptions in the PIGD subtype can explain
the greater loss of functional connectivity [36]. In another study, both subtypes of PD had
shown a change in the regional homogeneity values in the basal ganglia–thalamus–cerebral
cortex circuit and extensive abnormalities in the basal ganglia, thalamus, limbic system,
parietal lobe, occipital lobe, and frontal lobe. In particular, regional homogeneity values
in the parahippocampal gyrus were more increased in the TD subtype than in the PIGD
subtype, thereby indicating a compensatory slow progressive cognitive decline in the TD
subtype [37]. To investigate the correlation between the motor subtype and serum antiox-
idative property, the differences in serum bilirubin (an important natural antioxidant and
a major contributor to the total antioxidant capacity of plasma [40]) concentrations were
evaluated in patients with the motor PD subtype and HCs. Total bilirubin and indirect
bilirubin concentrations were significantly lower in PD patients than in HCs and in the
PIGD subtype than in the TD subtype. The decrease in indirect bilirubin concentrations
may result in the lack of an endogenous defense system required to prevent oxidative stress
from the damage and destruction of dopaminergic cells in the substantia nigra of the motor
subtype [38].

In addition to the PIGD and TD subtypes, four motor progression phenotypes were
identified using the Hoehn and Yahr scale at the baseline, 12 months, and 36 months
milestones: secondarily progressive PD, early progressive PD, non-progressive PD, and
minimally improving PD. SFT, serum insulin-like growth factor-1, CSF α-synuclein, and
dopamine transporter (DaT)-SPECT-derived basal ganglia striatal binding ratios were
suggested as possible motor progression biomarkers [41].

2.1.2. Subtype Classification Using Non-Motor Symptoms and Marker Investigation

The motor symptoms are considered a core feature in PD. However, with emerging
non-motor symptoms, its diagnostic criteria were revised to include non-motor symptoms
in the core parameters [21]. For the diagnosis, non-motor symptoms in PD were classified
into the following subtypes: amnestic and non-amnestic mild cognitive impairment (MCI).
The cortical thickness, hippocampal volume, white matter integrity, and striatal dopamine
nerve terminal integrity between the two subtypes were not significantly different. How-
ever, cognitive impairment, dementia conversion, and functional connectivity in the left
parietal cortex with the salience network were increased in PD patients with amnestic
MCI [42]. PD-amnestic MCI may exhibit different functional correlations of the substantia
nigra without concomitant structural abnormalities, and this difference may affect the
cognitive prognosis and PD dementia conversion risk.
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2.1.3. Subtype Classification Using Motor and Non-Motor Symptoms and
Marker Investigation

According to a previous study, the most critical determinants for classifying subtypes
and predicting the prognosis of PD were non-motor symptoms, including cognitive status,
RBD, and orthostatic hypotension [43]. Thus, the subtyping in PD should not be limited
to motor symptoms; several studies have subtyped via clustering motor and non-motor
features [21].

To investigate the association of dopaminergic dysfunction in the putamen, caudate,
and striatum with the clinical phenotype (motor and non-motor), a non-hierarchical clus-
ter analysis including motor and non-motor data of PD patients was performed using
123(I)-FP-CIT SPECT (iodine I 123–radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-
fluoropropyl) nortropane) SPECT images [44]. Three different subtypes were identified:
subtype 1 showed the lowest motor and non-motor burdens, possibly indicating its benign
nature; groups 2 and 3 displayed similar motor disability but differed from each other
in the presence of additional non-motor features, including apathy and hallucinations.
123(I)-FP-CIT binding values paralleled motor disability burden; the non-dopaminergic
system was possibly associated with the non-motor variability in PD [44].

In addition to the basal ganglia and midbrain, the cerebellar changes in different
PD subtypes were compared using MRI [45]. The cerebellar gray matter atrophy was
more commonly found in PD subtypes showing depression and anxiety than in the motor-
dominant subtypes, thus suggesting a possible role of the cerebellum in the depressive and
anxious symptoms in PD [45].

To estimate the course, prognosis, and survival of PD, clinical subtypes considering
the severity and rate of longitudinal progression of neuropathologies have been reported.
The motor and non-motor symptoms were comprehensively assessed at the baseline and
reassessed at the follow-up. In three studies, three distinct subtypes were classified: mild
motor-predominant [4,46] or slow progression [43], diffuse malignant, and intermedi-
ate. The subtype clustering was based on non-motor features (MCI, RBD, dysautonomia,
depression, and anxiety) and motor symptom scores [43]. The motor/slow progression
subtype was characterized by either predominant motor manifestations [43] or motor
and all three non-motor scores below the 75th percentile [4,46]; it was associated with
a favorable course of disease [43]. The diffuse/malignant subtype was characterized by
more severe motor symptoms and prominent non-psychiatric disorders [43] or with motor
score plus ≥ 1/3 non-motor score above the 75th percentile or all three non-motor scores
above the 75th percentile [4,46]; the subtype was associated with rapid malignant pro-
gression [4,43] and reduced survival [46]. The intermediate subtype was characterized by
motor features similar to the motor/slow progression subtype and moderate/intermediate
non-motor symptoms [4,43,46]; it was associated with disease progression higher than the
motor/slow progression subtype [43]. The diffuse malignant subtype was more likely to
have MCI, orthostatic hypotension, RBD [43], prominent dopaminergic deficit, atrophy in
PD-specific brain networks, and an Alzheimer’s disease (AD)-like CSF profile [4]. Although
the diffuse malignant subtype progressed rapidly and showed an AD-like CSF profile,
the neuropathological findings, such as staging of Lewy body dementia and AD-related
pathology at post-mortem, did not differ between subtypes [46]. In a longitudinal cohort
study utilizing an automated deep learning algorithm, three subtypes were identified using
motor and non-motor assessments, biospecimen examinations, and neuroimaging mark-
ers [47]. Subtype I was characterized by a moderate functional decay in motor ability, stable
cognitive ability, and significantly lower CSF t-tau levels. Subtype II was characterized
by a mild functional decay in both motor and non-motor symptoms. Subtype III was
characterized by a rapid progression of both motor and non-motor symptoms; it had the
lowest DaTScan striatal binding ratio value in the caudate and putamen, indicating a more
severe disease course [47]. Blood biomarkers, including apolipoprotein A1 (lower ApoA1
correlated with DAT deficit), C-reactive protein (CRP; markers of a proinflammatory state),
uric acid (role as an antioxidant and free-radical scavenger), and vitamin D (neuroprotective
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effect in animal models), predicted prognosis for motor and non-motor symptoms in PD
subtypes derived from the clinical features [48]. The patients with the severe motor disease
subtype had poor psychological well-being and sleep, reduced apolipoprotein A1 levels,
and raised CRP levels. The proinflammatory biomarker profile (reduced apolipoprotein A1
and raised CRP) was significantly associated with the severe motor and non-motor disease
phenotype [48]. Although the role of uric acid levels as a biomarker in identifying different
subtypes of PD was not well explained in the above-mentioned study [48], another study
suggested that higher serum uric acid levels were associated with the tremor motor subtype
and less fatigue in early PD and could be utilized as an important biomarker for specific
motor features [49].

Taken together, pathological results, biospecimen examinations, neuroimaging, and
prognosis of the disease tended to be poor in subtypes with severe motor and non-
motor symptoms.

Table 1. The classification of subtypes according to the clinical features in patients with Parkinson’s
disease (summary).

Criteria of Classifier Classification of Subtype Other Variables of Classifier Profile Findings Reference

Motor symptoms

TD
PIGD

Non-motor and motor
symptoms; mortality

More severe non-motor symptoms (cognitive
impairment, hallucinations, psychosis, sleep

impairment, fatigue, urinary disturbance)
[25–27] and QOL ↓ [27] in PIGD

More severe motor symptoms (H&Y,
UPDRS-motor) [29] in PIGD

Mortality ↑ [28] in PIGD
Severe olfactory impairment in TD [30]

[25–30]

TD
PIGD

Gait pattern using a single
body-fixed sensor under single and

dual task; balance; fall risk [23]
Spatiotemporal parameter under

two conditions (unobstructed
walking and obstacle avoidance) [31]

Gait speed ↓, stride L ↓, stride variability ↑,
stride regularity ↓, performance test score ↓ in

PIGD [23]
Stride L ↓, velocity ↓, double support ↑ in

PIGD and stride velocity ↓ in PIGD and TD
during unobstructed walking [31]

Trailing toe clearance ↓, leading and trailing
velocity ↓, leading crossing step width ↑ in

PIGD during obstacle avoidance [31]

[23,31]

TD
PIGD

IMU sensor; spatiotemporal
parameter, kinematic parameter

Stride length ↓, stride time ↑, step
length variability ↑

Cadence ↑, ankle joint ROM ↓, toe-off angle ↓
in PIGD

[32]

TD
PIGD Behavioral marker Interoceptive accuracy and sensibility↓ using

heat beat perception task in TD [33]

RFOG
URFOG
No FOG

UPDRS,
Mini-mental status exam, Visual

hallucinations; Scale for the
Assessment of Positive Symptoms,

Comprehensive battery of
neuropsychological measures

UPDRS ↑ in URFOG compared with RFOG,
MMSE ↓ in URFOG and RFOG compared

with no FOG,
Visuospatial performance ↓ URFOG
compared with RFOG and no FOG,

Dyskinesia ↑ in URFOG and RFOG compared
with no FOG

[35]

TD
PIGD MRI [37], fMRI [36]

More distrusted hub in cerebellum in
PIGD [36]

ReHo value ↑ in right para-hippocampal
gyrus in TD [37]

* Compensatory performance slow
progressive cognitive decline

[36,37]

TD
PIGD

Intermediate

Total bilirubin, IBIL, Direct bilirubin
in serum

IBIL ↓ in PD than control, IBIL ↓ in PIGD
than TD

* antioxidative property of IBIL
[38]

SPPD
EPPD
NPPD
MIPD

Serum, CSF, neuroimaging

Differentiated NPPD from EPPD: Serum
IGF1, SFT

HVLT-R Delayed Recall, HVLT-R Retention,
Mean Striatum SBR, Mean Caudate SBR, and

Mean Putamen SBR
Differentiated NPPD from SPPD: Serum

IGF1Differentiated NPPD from MIPD: CSF
αSyn, Benton Judgement of Line

Orientation Test

[41]
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Table 1. Cont.

Criteria of Classifier Classification of Subtype Other Variables of Classifier Profile Findings Reference

Non-motor symptoms
PD-aMCI (amnestic MCI)

PD-naMCI
(non-amnestic MCI)

Dementia conversion risk ↑, cognitive decline
in frontal/executive function ↑, functional
connectivity in the left posterior parietal

region ↑, memory domain score ↓ in PD-aMCI

[42]

Motor and non-motor
symptoms

Lowest motor and
non-motor

Motor disability
Motor disability with

apathy and hallucination

Dopaminergic dysfunction
measured by 123(I)-FP-CIT

SPECT scan

Motor disability burden paralleled with
dopaminergic dysfunction and negatively

correlated with depression
[44]

Akinetic/rigidity-
predominant

tremor-predominant
non-motor (dPD, aPD,

coPD, nPD)

MRI

GMV ↓ in the left Crus I in dPD
GMV ↓ in the tonsil and the right lobule VIII

in aPD than nPD
GM atrophy including the tonsil, the left

lobule VIII, the right lobule VI, the left Crus I,
vermis IV, and V in coPD than HC

[45]

PIGD tremor Mixed
non-motor Serum uric acid Serum uric acid ↑ in tremor subtype

Serum uric acid ↓ in mixed motor subtype [49]

Mild motor predominant
[4,46] or slow

progression [43]
Diffuse malignant

Intermediate

Lewy pathology and AD-related
pathology [46]; CSF amyloid-β and

atrophy using MRI [4]

Disease milestones development risk ↑ and
survival ↓ [46]; level of CSF amyloid-β and
amyloid-β/total-tau ratio↓ and whole brain
atrophy ↑ [4]; MCI ↑, orthostatic hypotension
↑, RBD ↑ and rapid progression [43] in diffuse

malignant subtype

[4,43,46]

Subtype I (Mild
baseline, moderate
motor progression)

Subtype II (Moderate
baseline, mild progression)

Subtype III (Severe
baseline, rapid progression)

Clinical information (motor and
non-motor assessment), biospecimen
examinations, neuroimaging using a

deep learning algorithm, LSTM

CSF t-tau level ↓ in subtype I
Subtype II

DaTScan SBR value ↓ in subtype III
[47]

Fast motor progression
Mild motor diseaseSevere

motor diseaseSlow
motor progression

Apolipoprotein A1, CRP, uric acid,
vitamin D [48]

Apolipoprotein A1 ↓, CRP ↑ in severe motor
disease, poor psychological well-being, and

poor sleep with intermediate motor
progression [48]

[48,50]

TD, tremor-dominant; PIGD, postural instability and gait difficulty; UPDRS, unified Parkinson’s disease rating
scale; QOL, quality of life; IMU, inertial measurement unit; ROM, range of motion; RFOG, responsive freezing of
gait; URGOG, unresponsive freezing of gait; MMSE, mini mental status examination; MRI, magnetic resonance
imaging; fMRI, functional magnetic resonance imaging; IBIL, indirect bilirubin; dPD, depressive but not anxious;
aPD, anxious but not depressive; coPD, comorbid depressive and anxious (n = 8); nPD, without depressive or
anxious symptoms; GMV, gray matter volume; SPPD, Secondarily Progressive PD, H&Y progression between
V04 and V08; EPPD, Early Progressive PD, H&Y progression between V0 and V04; NPPD, Non-Progressive PD,
no H&Y progression; MIPD, Minimally Improving PD; DaTScan SBR, Striatal Binding Ratio, ReHo, regional
homogeneity; IGF1, insulin-like growth factor 1; SFT, serum insulin-like growth factor-1; HVLT-R, Hopkins
verbal learning test—revised; MCI, mild cognitive impairment; aMCI, amnestic MCI; naMCI, non-amnestic
MCI; 123(I)-FP-CIT SPECT, iodine I 123–radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)
nortropane SPECT; RBD, rapid eye movement sleep behavior disorder; CRP, C-reactive protein.

2.2. Neuroimaging Biomarkers

Several studies have attempted to establish biomarkers for an early diagnosis and to
monitor PD progression (Table 2) [51]. In the context of neuroimaging, PET [52,53] and
SPECT [54] can accurately detect PD. However, these methodologies are based on detecting
the loss of dopaminergic neurons, which may make them increasingly less sensitive to
disease progression. It is desirable to diagnose the disease early, before this regression
occurs and motor symptoms begin.

MRI-based techniques, such as structural and morphometric MRI, diffusion-weighted
imaging, and magnetic resonance spectroscopy, are representative neuroimaging methods
for the differential diagnosis and classification of PD. Structural MRI can also reveal
structural changes in the brain, such as cortical characteristics and volume reduction.
Through diffusion tensor imaging, structural differences in various brain regions can be
observed and potential early PD indicators can be identified.
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Table 2. Neuroimaging.

Criteria of Classifier Classification of Subtypes Classifier Profile Findings Reference

Structural imaging

PD with the PIGD
PD with the non-PIGD

Multi-modal MRI scan in PIGD
(resting-state fMRI, 3D

T1-weighted MRI and DTI)

The classifier discriminated
patients with the PIGD subtype

with a diagnostic accuracy
of 92.31%.

Machine learning-based
automatic classification

[55]

PD with the PIGD
PD with the non-PIGD Diffusion tensor imaging in PIGD

Greater loss of white matter
integrity in PIGD

In particular, bilateral superior
longitudinal fasciculus

[56]

Neuroimaging cluster by cortical
atrophy patterns

pattern 1 (n = 33): cortical thinning in
bilateral orbitofrontal, anterior

cingulate, and lateral and medial
anterior temporal gyri

pattern 2 (n = 44): cortical thinning in
bilateral occipital gyrus, cuneus,
superior parietal gyrus, and left

postcentral gyrus

MRI (T1-weighted images in a
3-tesla Siemens scanner)

There is evidence of cortical brain
atrophy in the early stages of PD.
Neuroimaging clustering analysis
is able to detect subgroups based

on cortical thinning.

[57]

Neuroimaging cluster by cortical
atrophy patterns
i. parieto-temporal pattern of

atrophy with worse cognitive
performance (pattern 1)

ii. occipital and frontal cortical
atrophy with younger disease
onset (pattern 2)

iii. non-detectable cortical
atrophy (pattern 3)

Neuropsychological assessment
MRI

Decline in processing speed (as
measured by the Stroop

Word-Color test, the Symbol
Digits Modalities test and the Trail

Making Test Part B) and in
semantic fluency in pattern 2, 3,

and HC
Greater compromise in activities

of daily living and suffered higher
attrition rate in pattern 1

[58]

Mild-motor-predominant
Intermediate-malignant

Diffuse-malignant
DTI

MD of globus pallidus was
associated with worsening of

motor severity, cognition,
and GCO.

Baseline MD of nucleus
accumbens, globus pallidus, and

basal ganglia were linked to
clinical subtypes

[59]

Functional imaging

TDPIGD fNIRS, EEG, and gait parameters

PFC activation ↑ in PIGD than TD
patients, regardless of the

walking condition.
Alpha and beta power in the FCz
and CPz ↓ in both TD and PIGD.

PIGD patients need to recruit
additional cognitive resources

from the PFC for walking.

[60]

Young adults (YA)
Older adults (OA)

PD
fNIRS

PFC activity can be acceptably
reliable and can differentiate
young, older, and PD groups.

PFC activation ↑ in PD than in
young and older people

during walking.

[61]

PDNC MRI (complex networks for
accurate early diagnoses)

Connectivity of several brain
regions is significantly related

to PD.
Provide a diagnostic index using
complex network features with

clinical scores

[62]

DTI, diffusion tensor imaging; MD, mean diffusivity; GCO, global composite outcome; fNIRS, functional near-
infrared spectroscopy; PFC, prefrontal cortex; NC, normal controls.

For example, structural MRI showed that abnormal T2 hypointensities in multiple-
system atrophy of parkinsonian-type patients could distinguish these individuals from
PD patients with a sensitivity of 88% and specificity of 89% [63]. The PIGD subtype is
mainly associated with white matter lesions [64]. Diffusion differences in voxel-based
anisotropy, axial diffusion, and radial diffusion were compared in PD patients with PIGD
and non-PIGD subtypes [56]. A more significant loss of white matter integrity was found
in PIGD subtypes than in non-PIGD subtypes [56].

A functional MRI (fMRI) study evaluated functional brain network alterations in
the striatum subregions of early PD patients and HCs [65]. Compared with the control
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group, the PD group showed reduced functional connectivity in the mesangial–striatal
and cortical pleural loops. These results demonstrate the reduced functional integration
of neural networks, including the striatum, mesolimbic cortex, and sensorimotor regions,
thus suggesting that general disconnection of the mesolimbic–striatal loop is associated
with early clinical non-motor functions in PD.

In another study, based on 3T resting-state functional MRI, the intrinsic functional
connectivity patterns of forebrain networks were investigated according to PD subtypes [36].
In both the TD and PIGD subtypes, inclusive interruptions were found, mainly in the basal
ganglia, cerebellum, superior temporal gyrus, anteroventral gyrus, inferior frontal gyrus,
middle temporal gyrus, lingual gyrus, islet, and hippocampus [36]. Additionally, the PIGD
subgroup had more hub disruption in the cerebellum than the TD subgroup. These results
suggest that the pathophysiological mechanisms of neuronal dysfunction differ between
PD subgroups.

In addition, neuroimaging has revealed the pathological substrate of motor symptoms
in PD. Morphometric MRI showed that FOG was associated with cortical gray matter
loss [66] and decreased fMRI blood oxygenation level-dependent signal in the striatal and
extrastriatal regions during virtual reality gait tasks [67]. Glucose metabolism PET imaging
in PD patients showed metabolic degradation in the striatum and parietal cortex, which
was associated with gait arrest [68].

Studies to date have shown that gait impairment is associated with disruption of the
“executive” attention network due to decreased functional connectivity, resulting in atrophy
and processing impairments. In line with this notion, patients with FOG had significantly
reduced scores on various tests related to executive function [66,67]. These findings also
highlighted potential mechanisms that could serve as a target for novel treatments.

Cortical/subcortical pathway degeneration is different for each subtype of PD patients,
which is known to be due to differences in their motor behavior. However, the effects of
PD subtypes on cortical activity during walking are not yet well understood. In a study
examining PD motor subtypes for cortical activity during walking using functional near-
infrared spectroscopy (fNIRS), PIGD patients showed higher prefrontal cortical activity
than TD patients [60]. Prefrontal cortical activity was higher in the PD group, even with the
change in cortical activity during walking on a treadmill between the healthy control and
PD groups [69]. These results indicate that PD patients need to recruit additional cognitive
resources from the prefrontal cortex for gait. Subtyping of PD based on cortical activity is
in the nascent stage, and only a few studies have attempted subtyping using fNIRS.

2.3. Molecular Biomarkers
2.3.1. Genetic Markers

Several genetic factors, such as SNCA, LRRK2, PRKN, PINK1, and GBA, have been
associated with PD [15], and new genetic loci that confer the risk for PD are still being
discovered [70] (Table 3). Each mutation may result in a different pathogenic pathway and
be vulnerable to specific molecular targets (similar to oncogenic mutations in carcinogenesis
that have led to the development of matched anti-cancer drugs), but the evidence that the
clinical symptoms and treatment outcomes of PD differ among molecular subtypes is still
debatable [5,71,72]. A multi-modal clustering study combining clinical and genetic informa-
tion from the Parkinson’s Progression Markers Initiative (PPMI) dataset demonstrated that
the genetic risk score, defined by 30 PD-specific mutations, was of much less significance
than clinical features [4]. Additionally, 90–95% of patients with PD are idiopathic, without
known genetic etiology [73]. The precision medicine for PD subtypes based on genomic
profiling requires more extensive studies on the role of genetics in the pathogenesis of PD.
Clinical trials in genetically stratified patients with PD have only recently begun [74].
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Table 3. Molecular subtypes.

Criteria of Classifier Classification of Subtype Participants (Number) Findings Reference

Genetic

LRRK2 PD,
iPD

LRRK2 PD (n = 25)
iPD (n = 84)

LRRK2 PD was associated with more tremor
and better olfactory identification than iPD. [75]

LRRK2 PD,
iPD

LRRK2 PD (n = 97)
iPD (n = 391)

LRRK2 PD was associated with lower
extremity involvement at onset and

PIGD score.
[76]

LRRK2 PD,
iPD

LRRK2 PD (n = 25)
iPD (n = 84)

No differences between motor progression
in LRRK2 PD and iPD. [77]

LRRK2 PD,
iPD

LRRK2 PD (n = 12)
iPD (n = 41)

Metabolomic profiles distinguished patients
with PD harboring LRRK2 G2019S mutation

from patients with iPD
[78]

GBA mutant PD,
GBA E326K PD,

Not GBA PD
or GBA variants

(mutant + E326K) PD,
Not GBA PD

GBA mutant PD (n = 27), GBA
E326K PD (n = 31), not GBA

PD (n = 675)

GBA variants PD was associated with more
rapid decline in UPDRS III score.

GBA variants and E326K PD was associated
with faster progression in PIGD scores.

GBA variants and E326K PD was associated
with progression to mild cognitive

impairment or dementia.

[79]

Mild, severe, risk, or complex
GBA PD,

Not GBA PD

Mild GBA PD (n = 32), severe
GBA PD (n = 36), risk GBA PD
(n = 21), or complex GBA PD
(n = 16), not GBA PD (n = 27)

GBA-PD was associated with earlier and
more frequent occurrence of several

non-motor symptoms.
Severe and complex GBA-PD was

associated with the highest burden of
symptoms and a higher risk of

hallucinations and cognitive impairment.
Complex GBA-PD was associated with the

lowest β-glucocerebrosidase activity.

[80]

GBA PD,
Not GBA PD

GBA PD (n = 33), not GBA PD
(n = 27)

GBA PD was associated with more rapid
disease progression of motor impairment

and cognitive decline, and reduced
survival rates.

[81]

Biochemical

Higher proinflammatory
score group,

lower proinflammatory
score group,

or higher anti-inflammatory
score group,

lower anti-inflammatory
score group

PD (n = 230) was
dichotomized at the mean

into high- and
low-score groups

Higher proinflammatory and lower
anti-inflammatory score groups were

associated with more rapid
motor progression.

Higher proinflammatory score group was
associated with lower MMSE.

[82]

Quintiles for CSF biomarker
levels, or TD and non-TD

PD (n = 660) was classified
into quintiles

(biomarker level 0–20, 20–40,
40–60, 60–80, and 80–100

percentile), or TD (n = 293)
and non-TD (n = 118).

PD with the lowest amyloid-β level, the
highest total tau/amyloid-β ratio, and the

highest total tau/α-synuclein quintiles
were associated with severe non-motor
dysfunction.The CSF level of α-syn was

significantly lower in non-TD.

[83]

PD, Parkinson’s disease; iPD, idiopathic PD; PIGD, postural instability and gait difficulty; UPDRS, unified Parkin-
son’s disease rating scale; MMSE, mini mental status examination; TD, tremor-dominant; CSF, cerebrospinal fluid.

LRRK2 is the most common PD-associated gene and is involved in multiple biological
functions, such as mitochondrial signaling, vesicular trafficking, autophagy, and oxidative
pathways [84]. Due to its versatility, we are still unaware of the function that has the
most critical role in the pathobiology of PD [85]. The patients with PD harboring LRRK2
mutation were clinically difficult to distinguish from idiopathic PD (iPD) patients [75].
Most phenotypes, with slight differences in tremor and non-motor features, overlapped
between these two groups. Additionally, responses to dopaminergic treatment [77] and
deep brain stimulation [86] were also similar in patients with LRRK2 PD and iPD. However,
according to a metabolomics study, LRRK2 PD had a unique metabolomic profile compared
to iPD [78]. Various studies focusing on the development of effective and safe drugs
inhibiting LRRK2 in LRRK2 PD patients are ongoing [87,88]. Since LRRK2 activity is also
known to increase in iPD [89], it still remains to be evaluated whether the therapeutic effect
of LRRK2-specific inhibitors will depend on the genetic subtype.

PINK1 or PRKN mutations can induce dysregulation in mitochondria and are known
to be associated with the risk of PD [90,91]. However, it is still unclear whether patients
with PD harboring PINK1 or PRKN mutations have a different neuropathology compared
to others [92]. However, clinical studies examining the effect of co-enzyme Q10 or vitamin
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K2, which support electron transfer and ATP production in mitochondria, are underway in
genetically stratified PD patients [72].

Glucocerebrosidase, encoded by another PD-causing gene, GBA, is another target of
genotype-based PD therapy [93]. As one of the lysosomal hydrolases, glucocerebrosidase
catalyzes the hydrolysis of glucosylceramide to ceramide and glucose. Considering that
GBA mutation leads to a decrease in the activity of glucocerebrosidase, resulting in the
accumulation of glucosylceramide, glucosylceramide synthase inhibitors are currently un-
dergoing a clinical trial to treat patients with PD harboring GBA mutations [74]. Conversely,
as glucocerebrosidase can reduce α-synuclein formation [94], upregulating the expression
level of glucocerebrosidase is also being investigated for treating PD patients without GBA
mutations [95].

In addition to causal mutations, single-nucleotide polymorphisms may result in en-
dophenotypes of PD. Patients with the rs356182 SNCA single-nucleotide polymorphism
were associated with the TD subtype and slow progression of motor symptoms [96]. PD
with severe GBA variants showed faster disease progression, increased risk of dementia,
and more rapid decline in cognitive function than PD with mild GBA variants [79,97]. PD
with severe GBA variants was also associated with hallucinations [80].

Contrary to hopes for gene-specific therapies, the penetrance of monogenic forms
of PD is incomplete [5,98]. For example, the penetrance of LRRK2 mutations in PD is
incomplete [99], and the age of onset or clinical phenomenology is different in individuals
with the same mutation of LRRK2 [100]. Other genetic, biological, and environmental
factors should be considered to adequately subcategorize PD patients.

2.3.2. Biochemical Markers

Since CSF is found within the tissue that surrounds the brain and spinal cord, it could
reflect the molecular changes in the brain. In contrast to the neuropathology of PD, i.e.,
the aggregation of α-synuclein, leading to Lewy bodies, the level of α-synuclein in CSF
was lower in patients with PD than in HCs; moreover, its association with clinical features
showed a discrepancy between studies [16]. Other components related to Lewy body
formation, including Aβ42, total tau, and phosphorylated-tau (p-tau), were also identified
to be different in the CSF of patients with PD when compared to that of HCs [16]. These
CSF fluid biomarkers might have a role in the early detection of PD [72].

Molecular-driven subtyping may result in a stratification that is different from the
clinical-driven subtyping [101]; however, most studies have only attempted to characterize
molecules between clinical-driven subtypes. Although the levels of total tau in CSF were
significantly different in PD subtypes classified by clinical features, there was not much
difference in serum markers [4]. On comparing PD subtypes, there was a decrease in
apolipoprotein A1 and an increase in CRP levels of CSF in the severe motor subtype of
PD [48]. The CSF of the diffuse-malignant PD subtype, associated with fast cognitive de-
cline, showed an AD-like profile comprising low amyloid-β and amyloid-β/t-tau ratio [4].
The lower levels of amyloid-β and p-tau were associated with the subtype demonstrating
postural instability and gait disturbances [102], while the lower level of α-synuclein in CSF
was associated with the non-tremor-dominant subtype of PD [83].

Immune system dysfunction has been recognized as another hallmark of PD pathol-
ogy [103]. The interplay of the central and peripheral immune systems can synergistically
drive the initiation and progression of PD [104]. Immune-related biomarkers in the blood
were investigated for subtyping PD since the concentrations of cytokines [105] and in-
flammatory molecules [106] correlated with the motor severity of the disease. Using a
serum immune marker profile, patients with PD were classified based on the scores of
the proinflammatory or anti-inflammatory component [82]. When classified according
to proinflammatory components, the patients with a higher score were associated with
lower cognitive function, measured by the Mini Mental State Examination. Meanwhile,
when classified according to anti-inflammatory components, the patients with a higher
score were associated with slower motor progression. These results were comparable with
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the aforementioned study [48] reporting that the PD subtype with severe motor and non-
motor symptoms was associated with a proinflammatory biomarker profile with reduced
apolipoprotein A1 and increased CRP.

Several biochemical markers are associated with neuroimaging features. From the
network analysis of resting-state fMRI, the level of α-synuclein in CSF was correlated
with decreased motor-related functional connectivity [107], and network disruption was
correlated with both α-synuclein and Aβ42 [108]. The levels of α-synuclein and total
tau in CSF were associated with microstructural changes on regional diffusion tensor
imaging [109]. The structural connectivity analysis of patients with PD suggested that some
network metrics, such as global efficiency and clustering coefficient, were associated with
CSF levels of α-synuclein, Aβ42, and total tau [110]. Taken together, clinical, neurological,
and biochemical features are interrelated, despite inconsistent results observed between
certain studies.

2.3.3. Transcriptomic Markers

With the advent of microarray and RNA-sequencing technologies, transcriptomic
profiling has led to a better understanding as well as subtyping of diseases [111]. The
genome-wide expression analysis for PD focuses on the identification of differentially
expressed genes using the post-mortem brain [17]. In another prevalent neurodegenerative
disease, AD, a recent study suggested five stable molecular subtypes using transcriptome
data of 1543 cohort patients [112]. Each subtype demonstrated specific combinations of
dysregulated pathways and driver genes. The subtype heterogeneity was also recapitulated
in existing AD mouse models. However, further large-scale studies on PD subtypes based
on transcriptome data are warranted.

As another approach, many studies have investigated the transcriptome signature in
the peripheral blood of PD patients [17]. The blood–brain barrier is often compromised with
age [113], and its impairment is widely observed in neurodegenerative diseases, including
PD and AD [114,115]. Therefore, the blood of patients with PD may capture the pathobiol-
ogy of the brain. Analysis of the transcriptome from the brain of living patients with PD
consistently showed dysregulated PD biomarkers between the brain and blood compared
to HCs; the downregulated genes were ANKRD22, IL1R2, MARCH1, and OLFML2B, while
the upregulated genes were BTNL9 and STOX1 [116]. The differentially expressed genes
(including SYN1, GRIN1, GRIN2D, and DLGAP), enriched in the pathway of the neuronal
system, were also higher in the blood of patients with PD [117]. Several studies on the
post-mortem brain of PD also suggested SYN1 as one of the PD biomarkers [118–120].
Among them, SYN1 and ANKRD22 were proposed as therapeutic response markers in
blood samples of PD [121]. Additionally, the pathogenesis of PD, such as dysregulation
of mitochondria, the ubiquitin–proteasome system, metabolism, and oxidative system,
was captured in the transcriptome signature from the blood of patients with PD [122].
Such concordances imply that PD is not merely limited to neural tissue but is systemic in
nature [17].

The relationship between transcriptomic alteration in the blood and clinical features
has been investigated. Patients with rapid or slow PD progression have distinct transcrip-
tomic signatures [123]. In PD patients, several biomarkers, such as COPZ1, PTPN1, and
MLST8, were correlated with cognitive performance, measured by the Montreal cognitive
assessment [124].

The expression of SOD2, PKM2, ZNF134, ZNF160, and SLC14A1 was associated with
the Unified Parkinson Disease Rating Scale score [124,125]. The SNCA level was related
to cognitive decline in a longitudinal follow-up study of patients with PD [126]. Using
next-generation small RNA sequencing, a study compared miRNA signatures between PD
patients and HCs; the results suggested that the expression levels of multiple miRNAs in
the CSF and blood were associated with the severity of Lewy body pathology [127]. These
findings suggest that the molecular subtypes of PD can be matched to distinct clinical
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features. However, a study on the molecular subtypes of AD showed that classification by
a genotype or biochemical biomarker is not enough to stratify the AD subtypes [112].

Molecular subtyping of PD is still in its initial stages, and, so far, only a few studies
have been attempted [72,128]. The diagnostic potential of RNA biomarkers has been evalu-
ated to distinguish PD from progressive supranuclear palsy, which is another parkinsonian
syndrome classified as an atypical parkinsonian disorder [124]. Further studies are needed
for PD subtyping using the transcriptomic signature.

3. Potential Subtyping of PD Using New Cluster-Associated Variables: Pilot
Cluster Study

In our previous pilot assessor-blinded, randomized, controlled, parallel-group clinical
trial using fNIRS, we found that acupuncture in PD patients led to an improvement in
motor symptoms (gait disturbance) and rearrangement of the cerebral cortex, including the
prefrontal cortex and supplementary motor area [129]. To investigate whether PD patients
can be subtyped based on gait features, we preliminarily clustered participants (n = 26)
according to gait parameters at the baseline before acupuncture treatment [129].

3.1. Clustering Method

K-means clustering using Euclidean distances was carried out in participants (n = 26)
at the baseline before acupuncture treatment [130]. Based on data-driven analysis and
the empirical opinions of the gait and fNIRS researchers, seven parameters related to
gait and fNIRS results were evaluated. The selected gait features were velocity, cadence,
stride time, stride length, single support, double support, and spatial symmetry. Because
each feature had a different scale, we performed a Z-score transformation before cluster
analysis to prevent specific features from having a dominant effect [4,43,131,132]. We
also ruled out outliers with a magnitude of Z-score > 2.5 to improve the quality of the
outcome [4,43,132,133]. Because there were no missing data, pre-processing for missing
values was not required.

3.2. Clustering Results on Baseline Evaluation Using Gait Features in PD
(Cross-Sectional Analysis)

Various clustering analyses were performed to estimate the optimal cluster number; we
selected three clusters based on the silhouette coefficient of the cluster analysis. Silhouette
coefficients for the clustering number (K) were 0.487 (K = 3), 0.483 (K = 4), and 0.333 (K = 5),
respectively [133–135]. The clustering results are described in detail in Table 4. The three-
dimensional scatter plot of the principal component analysis to distinguish each subtype is
shown in Figure 2 [136,137].

Dimension reduction of the data was performed to reduce all features to three prin-
cipal components, which were representative of all features. This technique is useful in
visualizing the distribution of the clusters.

Patients in Cluster 1 showed more severe motor symptoms based on H&Y, UPDRSA,
and UPDRSM than patients in other clusters. The velocity and cadence in the patients of
Cluster 1 were the fastest. In contrast, patients in Cluster 0 showed the lowest velocity and
cadence. Although the severity of motor symptoms in PD was classified for each cluster, it
was difficult to analyze due to the limitation of the small sample size.

Because the proposed clustering was for a pilot study, we used a very small data set
(n = 26) for the subtype clustering analysis. Although the expected reliability of the results
was not high due to the small sample size, we verified the feasibility of the clustering
method using statistical techniques (p-values). In the future, we plan to include a larger
sample size to collect gait and fNIRS data to improve the quality of our clustering outcome
and prove the applicability of the proposed method in a larger cohort.
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Table 4. Mean and standard deviation of the seven features with three clusters.

Feature Cluster 0 (n = 11) Cluster 1 (n = 7) Cluster 2 (n = 6) p-Value † Post-Hoc ‡

Men, n (%) 6 (66.67%) 5 (62.50%) 4 (57.14%) 0.9999 †† -

Women, n (%) 3 (33.33%) 3 (37.50%) 3 (42.86%) - -

Age (years) 64.33 ± 6.44 60.88 ± 7.30 63.57 ± 11.80 0.6948 -

Age at onset (years) 57.22 ± 7.41 50.63 ± 9.77 58.14 ± 12.89 0.2882 -

Disease duration (years) 7.11 ± 3.48 10.25 ± 5.73 5.43 ± 2.23 0.0912 -

Hoehn and Yahr scale score 1.67 ± 0.50 2.25 ± 0.71 1.57 ± 0.53 0.0669 -

UPDRSA 1.33 ± 0.50 2.00 ± 1.07 1.86 ± 1.35 0.3650 -

UPDRSM 4.11 ± 2.37 6.13 ± 2.36 4.00 ± 1.29 0.1023 -

Velocity 105.35 ± 5.85 143.25 ± 8.76 116.63 ± 6.40 <0.0001 * A < C< B

Cadence 112.00 ± 4.08 127.07 ± 7.50 129.06 ± 3.52 <0.0001 * A < B,C

Stride time (s) 1.07 ± 0.04 0.95 ± 0.06 0.93 ± 0.02 <0.0001 * C,B < A

Stride length (cm) 113.15 ± 6.08 135.68 ± 7.03 108.52 ± 5.10 <0.0001 * C,A < B

Single support (s) 0.41 ± 0.02 0.37 ± 0.03 0.36 ± 0.01 0.0009 * C,B < A

Double support (s) 0.27 ± 0.01 0.20 ± 0.03 0.21 ± 0.03 <0.0001 * B,C < A

Spatial symmetry 36.69 ± 0.67 39.59 ± 1.07 38.66 ± 1.41 0.0031 * -

Values are presented as means ± standard deviation. † Significant difference between the intervention and
control group in one-way analysis of variance (ANOVA). ‡ Post-hoc test by Bonferroni procedure after one-way
ANOVA. †† p-value were analyzed by Exact-test. * p < 0.05. UPDRSA, a subsection of the Unified Parkinson’s
Disease Rating Scale (UPDRS) score that includes the “walking and balance” and “freezing” parts of the UPDRS
II assessment for activities of daily living; UPDRSM, a subsection of the UPDRS score that includes the “gait”,
“postural stability”, “posture”, and “body bradykinesia” parts of the UPDRS III motor assessment; A, Cluster 0;
B, Cluster 1; C, Cluster 2.

Figure 2. Three-dimensional scatter plot of the principal component analysis (PCA) to distinguish
the three clusters.
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3.3. Cluster Changes after 8 Weeks (Longitudinal Analysis)

After a follow-up period of 8 weeks, cluster changes within individual participants with
PD were analyzed using the machine learning process. As illustrated earlier (Section 3.2),
the cluster analysis revealed three clusters (Clusters 0, 1, and 2) on the baseline cross-
sectional assessment. We built a machine learning model (random forest) that could predict
the cluster changes within individual participants at 8 weeks post-clustering; the model
was based on the training data from the baseline clustering analysis. Figure 3 represents
the machine learning process for cluster change prediction.

Figure 3. The cluster change prediction process with machine learning.

Four patients out of the total (n = 26) shifted from the baseline cluster group to the
other group after 8 weeks of follow-up (Table 5). However, the reliability of our clustering
and classification method employing a random forest algorithm may not be so high due
to the insufficient sample size. Additionally, there was an acupuncture intervention in
some of the participants during the 8-week post-baseline analysis. Despite the limitations,
our results would provide a basis for further large-scale clinical trials for clustering and
subtyping PD using gait features.
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Table 5. Gait parameter changes during 8 weeks for four participants with changed clusters.

#4 Velocity Cadence Stride
Time (s)

Stride
Length (m)

Single
Support

Double
Support

Spatial
Symmetry Cluster

Base 133.20 121.90 0.99 131.25 0.37 0.25 37.87 1

V8 112.10 105.93 1.13 127.30 0.42 0.29 37.35 0

#10 Velocity Cadence Stride
time (s)

Stride
length (m)

Single
support

Double
support

Spatial
symmetry Cluster

Base 146.50 134.57 0.89 130.54 0.35 0.19 39.00 1

V8 128.76 133.13 0.90 116.49 0.34 0.22 37.85 2

#13 Velocity Cadence Stride
time (s)

Stride
length (m)

Single
support

Double
support

Spatial
symmetry Cluster

Base 101.27 112.83 1.07 107.86 0.40 0.27 37.83 0

V8 132.37 129.38 0.98 129.38 0.39 0.21 39.45 1

#15 Velocity Cadence Stride
time (s)

Stride
length (m)

Single
support

Double
support

Spatial
symmetry Cluster

Base 111.57 116.17 1.03 115.39 0.38 0.29 36.33 0

V8 137.43 128.73 0.93 127.66 0.35 0.23 37.73 1

4. Conclusions

PD is considered a social problem as it deteriorates the patients’ quality of life and
increases their financial burden [1]. Considering the clinical heterogeneity of PD, here,
we summarized its subtypes using the clinical symptoms, neuroimaging, and molecular
markers from previous studies for improving treatment efficiency through personalized
medicine. The clinical subtyping of PD is mainly based on motor symptoms: TD and
PIGD subtypes. The PIGD subtype shows severe clinical symptoms such as changes in
spatiotemporal parameters during gait [25–30], greater loss of functional connectivity
in the cerebellum [36], and lack of an endogenous defense system to prevent oxidative
stress from damaging and destroying dopaminergic cells in the substantia nigra [38]. In
subtype classification studies using both motor and non-motor features of PD, non-motor
symptoms, including depression and anxiety, were more often observed in patients with
cerebellar gray matter atrophy [45]. Patients with severe motor symptoms, prominent
non-psychiatric disorders [43], and a diffuse/malignant subtype showed rapid disease
progression [4,43], reduced survival [46], atrophy in PD-specific brain networks, and an
AD-like CSF profile [4]. Taken together, the PD subtype with severe motor and non-motor
symptoms tended to have a poor prognosis.

Research has been ongoing to find neuroimaging-based biomarkers for the early
diagnosis and monitoring of the progression of PD (Table 2). Dopaminergic PET and
SPECT techniques can track the development of motor and non-motor symptoms in PD.
MRI and diffusion tensor imaging techniques are advantageous in the differential diagnosis
and classification of PD because they can detect the structural and functional changes in the
brain. Structural MRI confirms the difference between non-PIGD and PIGD subtypes, and
functional MRI confirms the underlying pathophysiological mechanisms through brain
network connectivity patterns. Identifying the pathological substrate responsible for motor
symptoms through neuroimaging may play an important role in clinical trials, especially
in those evaluating therapeutic efficacy. In addition, there is limited evidence on cortical
pathway degeneration in PD subtypes during walking. However, fNIRS has apparent
benefits in clinical brain imaging as it allows observation of cortical activity during gait.

Based on various pathobiological studies exploring genetic mutations, different treat-
ment strategies have been developed depending on the genetic background of patients with
PD. Clinical trials targeting the subgroups of patients harboring LRRK2 or GBA mutations
are underway. There is still a lack of evidence on whether PD subtypes based on genetic
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mutations differ from those based on clinical symptoms. Most biochemical studies have
attempted to correlate concentration levels of serum or CSF markers between subtypes of
PD. The levels of total tau, p-tau, apolipoprotein A1, CRP, and amyloid-β in CSF correlated
well with subtypes categorized based on the clinical symptoms. Moreover, the levels of
cytokines and inflammatory molecules in the blood revealed an association with clinical
symptoms. Some biochemical molecules were also related to neuroimaging features, such
as the functional connectivity of fMRI data. While the molecular subtyping of PD using
transcriptomic signatures is still in its nascent stage, the peripheral blood from patients
with PD showed a distinct transcriptome profile compared to HCs, and the expression
levels of specific genes showed an association with clinical symptoms.

Additionally, we identified three subtypes via preliminary clustering by clinical phe-
notype based on gait parameters in 26 participants at the baseline before acupuncture
treatment. Therefore, this review and the results of the preliminary clustering study
identify PD subtypes and encourage precision medicine therapeutic strategies for vari-
ous neurodegenerative disorders. Furthermore, this study may be helpful in developing
personalized medicine for incurable disorders.

Author Contributions: Conceptualization: J.-H.J., J.Y.J., S.H.L. and S.-M.P.; Data curation: J.-H.J., J.Y.J.,
O.K. and H.Y.; Formal analysis: J.Y.J. and O.K.; Funding acquisition: J.-H.J. and J.Y.J.; Investigation:
J.-H.J., J.Y.J., S.H.L., S.-M.P., S.S.Y., E.K.A. and M.-K.L.; Methodology: J.-H.J., J.Y.J., S.H.L., S.-M.P. and
S.S.Y.; Project administration: J.-H.J. and J.Y.J.; Supervision: J.-H.J. and J.Y.J.; Writing—original draft:
S.H.L. and S.-M.P.; Writing—review and editing: J.-H.J. and J.Y.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was supported by the National Research Council of Science & Technology
(NST) grant by the Korean government (MSIT) (No. CCL-20-16-KBSI). This research was also
funded by the National Research Foundation of Korea (NRF) grant by the Korean government (NRF-
2021R1I1A2048890 and NRF-2019R1C1C1011408). This paper was supported by the new professor
research program of KOREATECH in 2021.

Institutional Review Board Statement: This study was approved by the Clinical Trial Center of
Daejeon Korean Medicine Hospital, Daejeon University repository (IRB number DJDSKH-17-BM-20),
and registered at the Clinical Research Information Service (registry number KCT0002603).

Informed Consent Statement: The participants were enrolled in this study after providing signed
written informed consent to participate.

Data Availability Statement: The source document data used to support the findings of the present
study have been deposited in the Clinical Trial Center of Daejeon Korean Medicine Hospital, Daejeon
University repository (IRB number DJDSKH-17-BM-20).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
123(I)-FP-CIT SPECT iodine I 123–radiolabeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-

(3-fluoropropyl) nortropane single-photon emission computed tomography
AD Alzheimer’s disease
aPD anxious but not depressive
ApoA1 apolipoprotein A1
coPD comorbid depressive and anxious
CRP C-reactive protein
CSF cerebrospinal fluid
DaT dopamine transporter
dPD depressive but not anxious
DTI diffusion tensor imaging
EPPD early progressive PD
fMRI functional magnetic resonance imaging
fNIRS functional near-infrared spectroscopy
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FOG freezing of gait
GCO global composite outcome
GMV gray matter volume
H&Y progression between V0 and V04
HC healthy control
HVLT-R Hopkins verbal learning test—revised
IBIL indirect bilirubin
IGF1 insulin-like growth factor 1
IMU inertial measurement unit
LSTM long short-term memory
MCI mild cognitive impairment
MD mean diffusivity
MIPD minimally improving PD
MMSE Mini Mental State Examination
MRI magnetic resonance imaging
NC normal controls
nPD without depressive or anxious symptoms
NPPD non-progressive PD—no H&Y progression
PD Parkinson’s disease
PD-aMCI Parkinson’s disease—amnestic MCI
PD-naMCI Parkinson’s disease—non-amnestic MCI
PET positron emission tomography
PFC prefrontal cortex
PIGD postural instability and gait difficulty
QOL quality of life
RBD rapid eye movement sleep behavior disorder
ReHo regional homogeneity
RFOG responsive freezing of gait
ROM range of motion
SBR striatal binding ratio
SFT serum insulin-like growth factor-1
SPECT single-photon emission computed tomography
SPPD secondarily progressive PD
TD tremor-dominant
UPDRS unified Parkinson’s disease rating scale
URFOG unresponsive freezing of gait
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