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Abstract

The ongoing SARS-CoV-2 pandemic has seen an unprecedented amount of rapidly generated genome data. These data
have revealed the emergence of lineages with mutations associated to transmissibility and antigenicity, known as variants
of concern (VOCs). A striking aspect of VOCs is that many of them involve an unusually large number of defining
mutations. Current phylogenetic estimates of the substitution rate of SARS-CoV-2 suggest that its genome accrues
around two mutations per month. However, VOCs can have 15 or more defining mutations and it is hypothesized
that they emerged over the course of a few months, implying that they must have evolved faster for a period of time. We
analyzed genome sequence data from the GISAID database to assess whether the emergence of VOCs can be attributed to
changes in the substitution rate of the virus and whether this pattern can be detected at a phylogenetic level using
genome data. We fit a range of molecular clock models and assessed their statistical performance. Our analyses indicate
that the emergence of VOCs is driven by an episodic increase in the substitution rate of around 4-fold the background
phylogenetic rate estimate that may have lasted several weeks or months. These results underscore the importance of
monitoring the molecular evolution of the virus as a means of understanding the circumstances under which VOCs may

emerge.
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Introduction

The Molecular Clock of SARS-CoV-2
Genome sequence data of viruses have been extensively used
to track the evolution and spread of these pathogens. The
ongoing SARS-CoV-2 pandemic has seen an unprecedented
number of genomes generated that have been used to gain
rapid insight to understand epidemiological spread (Dellicour
et al. 2021), identify the time of origin (Pekar et al. 2021), and
track mutations of functional importance. Most concerning
mutations occur in the spike protein and may increase trans-
missibility (Kraemer et al. 2021), or disease severity (Harvey
et al. 2021), although vaccines are likely still effective against
them (Dearlove et al. 2020). Such lineages are known as var-
iants of concern (VOCs) and they are characterized at a ge-
nomic level by a number of fixed mutations in the S1 subunit
of the spike protein, the most common of which are muta-
tions N501Y and D614G (Eurosurveillance Editorial Team
2021), with the latter presenting evidence of increased trans-
missibilty and favored by selection (Martin et al. 2021; Volz
et al. 2021). For a lineage to be formally denominated as a
VOC, there must be evidence of an impact in transmissibility,
virulence, and/or immunity (Mascola et al. 2021).
SARS-CoV-2 lineages are classified using a dynamic no-
menclature system, known as PANGO (Rambaut et al.
2020). Recently the World Health Organization assigned

VOCs letters of the Greek alphabet (Konings et al. 2021). In
October 2021, the United States CDC recognizes four VOCs:
Alpha (PANGO lineage B.1.1.7) first identified in the United
Kingdom, Beta (PANGO lineage B.1.351) first identified in
South Africa, Gamma (PANGO lineage P.1) first identified
in Brazil, and Delta (PANGO lineage B.1.617.2) first identified
in India (CDC 2021). As of December 2021, a new VOC has
been detected and has rapidly spread globally (Viana et al.
2022), Omicron (PANGO lineages BA.1 and BA.2), not in-
cluded in this study.

The mechanisms under which VOCs have emerged is not
entirely clear, but their defining mutations are well character-
ized and their fixation has been attributed to the action of
natural selection (Martin et al. 2021). Variant Alpha has 14
protein-altering mutations and three deletions, with eight of
these being in the spike protein. One of the deletions AH69/
AV70 enhances infectivity in vitro and has been detected in
immunocompromised patients where immune escape oc-
curred (Kemp et al. 2021; Plante et al. 2021). Variant Beta
has nine protein-altering mutations with five altering the re-
ceptor binding domain. (Tegally et al. 2021). Variant Gamma
has 17 mutations, with 10 found in the spike protein and
including N501Y and E484K (Faria et al. 2021). Alpha, Beta,
and Gamma share several important mutations, including
N501Y and E404K, which likely enhance affinity to human
the ACE2 receptor (Nelson et al. 2021). Variant Delta is
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characterized by seven mutations in the spike protein, several
of which have been associated with altered immune response
and increased viral replication, viral load, and likely leading to
increased viral fitness (CDC 2021).

The sheer number of mutations observed in these four
VOCGs is much higher than what would be expected under
phylogenetic estimates of the nucleotide evolutionary rate of
SARS-CoV-2, which range from around 7x10°* to
1.1 x 10~ subs/site/year (Duchene et al. 2020; Ghafari et al.
2022), meaning that only about two mutations along the
genome would accumulate per month along a lineage. In
these circumstances, the 14 mutations in Alpha would re-
quire a period of at least 6 months, a time that is inconsistent
with its first detection in September 2020, because it would
have had to evolve from around March 2020 with most de-
fining mutations undetected for many months.

We investigated whether the emergence of VOCs is asso-
ciated with an increase in the evolutionary rate that can be
detected using phylogenetic analyses of genome data and in
the absence of dense intrahost or transmission chain sam-
pling. The term “evolutionary rate” refers to the amount of
molecular change that can be measured using a phylogenetic
method and is thus the result of the instantaneous mutation
rate and the substitution rate (i.e. the rate at which such
mutations become fixed) (Ho et al. 2011). The latter is largely
determined by the action of natural selection, which is a
probable cause for the large number of mutations in VOCs
(Martin et al. 2021). Thus, here we use the term “substitution
rate”, which reflects our estimates more closely. We analyzed
publicly available nucleotide sequence data from GISAID
(Elbe and Buckland-Merrett 2017; Shu and McCauley 2017)
under a range of molecular clock models that describe the
substitution rate along branches in phylogenetic trees, shown
in the Supplementary Material online. We consider each
model as a hypothesis for which we can assess statistical
support using Bayesian model selection techniques.
Critically, our analyses do not intend to detect signatures of
natural selection, nor to identify genomic regions with higher
mutation rates, which have been described elsewhere
(Abdool Karim and de Oliveira 2021; Harvey et al. 2021;
Martin et al. 2021). Instead, our framework serves to charac-
terize the main patterns of substitution rate variation in the
genome of the virus that underpin the emergence of VOCs.

The simplest molecular clock model is known as the strict
molecular clock (SC; Zuckerkandl and Pauling 1962, 1965 )
that posits a single substitution rate for all branches in a
phylogenetic tree, and thus serves as a “null” model. A
more complex model is the uncorrelated relaxed clock that
assumes that branch rates are independent and identically
distributed draws from a statistical distribution (Drummond
et al. 2006), for which we considered either a lognormal ora I"
distribution (UCLN and UCG, respectively). We also consid-
ered a range of fixed local clock (FLC) models (Yoder and
Yang 2000). These models require an a priori definition of a
set of “background” branches and a set of branches with
different rates, known as “foreground.” For example, fore-
ground branches can be defined based on some biological
expectation (e.g, Worobey et al. 2014) and represent a formal
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evolutionary hypothesis. The substitution rate is constant for
a given group of branches, although there exist approaches
where branches can be assigned a set of relaxed molecular
clocks (Fourment and Darling 2018). These models differ in
their number of parameters and biological assumptions (sup-
plementary table S1, Supplementary Material online;
reviewed in Bromham et al. [2018] and Ho and Duchéne
[2014]).

We specified six configurations of the FLC model, where
the substitution rate could vary within VOC clades (FLC
clades model in supplementary fig. S1, Supplementary
Material online) or along the stem (FLC stems + clades),
only at stem branches (FLC stems), or where these rates could
be shared among all VOCs (FLC shared stems, FLC shared
clades, and FLC shared clades + stems in supplementary fig.
S1, Supplementary Material online).

Models in which the rate only changes along the stem
branches of VOCs represent a situation where the substitu-
tion rate may increase for a short period of time before
returning to the background rate. In contrast, models where
the clade also undergoes a rate change would imply that
VOCs have a rate that is statistically different from the
background.

An alternative approach to the FLC is the random local
clock (RLG; Drummond and Suchard 2010). The substitution
rate can change at particular nodes in the tree and the loca-
tion of such changes and actual rates are inferred. The RLC is a
general form of all local clock models, where the simplest
form is the SC, as a case of no rate changes (Ho and
Duchéne 2014; Bromham et al. 2018).

Bayesian Hypothesis Testing

We conducted Bayesian model testing by calculating the log
marginal likelihood, a measure of statistical fit, and ranking
the models accordingly. The difference in log marginal like-
lihoods between two models is known as the log Bayes factor
(BF; Sinsheimer et al. 1996) and measures the relative support
for two models given the data. In general, a log BF of at least
1.1 is considered as “substantial evidence” in favor of a model,
with 2.3 being “strong” and 4.6 “decisive” (Kass and Raftery
1995). We considered two marginal likelihood estimators,
path sampling and stepping-stone sampling (Gelman and
Meng 1998; Lartillot and Philippe 2006; Xie et al. 2011).

Results

Model Selection

The FLC-shared stems model had the highest statistical fit,
with a log BF of at least 1.92 compared with the next best-
fitting model (230 with path sampling and 192 with
stepping-stone sampling; table 1). The next model with high-
est mean log marginal likelihood was the UCG, followed by
the FLC stems and UCLN. Note, however, that there is some
overlap in replicate log marginal likelihoods for these four
models (fig. 1). The top two FLC models assume that the
stem branches of VOC have a rate that differs from the back-
ground and they only differ in that the FLC stems model
allows each VOC stem branch to have its own rate.
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Table 1. Model Selection Results for Complete SARS-CoV-2 Genomes.

Model ps logML ss logML ps Rank ss Rank ps BF ss BF
FLC shared stems —55430.85 —55431.49 1 1 0 0
UCG —55433.15 —55433.41 2 2 —2.30 —1.92
FLC stems —55434.05 —55434.51 3 3 —3.2 —3.02
UCLN —55435.83 —55435.81 4 4 —4.98 —4.32
SC —55444.05 —55444.59 5 5 —13.20 —13.10
FLC shared clades + stems —55444.77 —55445.31 6 6 —-13.92 —13.82
FLC shared clades —55449.82 —55450.29 7 7 —18.97 —18.80
FLC clades + stems —55453.62 —55454.09 8 8 —22.77 —22.60
FLC clades —55458.51 —55459.06 9 9 —27.66 —27.57

Note.—Mean estimates of log marginal likelihoods using path sampling and stepping-stone (ps logML and ss logML, respectively), over ten replicates. Log BFs are shown for the

best-fitting model, relative to all others (increasingly negative numbers mean lower statistical fit), and thus they are 0.0 for the top model.

The uncorrelated relaxed clocks had very similar perfor-
mance, although both had at least “substantial evidence”
against them with respect to the FLC-shared stems model
(i.e. log BF > —1.1). The log BFs for the remaining models
were at least —13, implying “decisive” evidence against them,
relative to the FLC-shared stems.

Interestingly, FLC models where VOC clades were defined
as foreground had decisively lower statistical performance
than those where only stem branches were labeled as fore-
ground (table 1, fig. 1). In fact, even the SC model, which is
generally considered unrealistic for empirical data, had a log
BF of at least 4 with respect to FLC shared clades and the FLC
clades + stems (table 1).

Rates of Evolution of Variants of Concern

The FLC shared stems model had a mean background sub-
stitution rate of 0.58 x 10> subs/site/year (95% Cl: 0.51—
0.65x 10>), whereas that for the VOC stems was
2.45 X 1072 subs/site/year (95% Cl: 1.15-4.72 x 10" >). The
corresponding mean values in units of substitutions per
month across the entire genome (subs/month) are 1.24 for
the background and 6.11 for the foreground. As such, the
VOC stems rate was around 4-fold higher than the back-
ground (mean 4.25, 95% Cl: 2.61-8.19) (fig. 2).

Although the FLC stems model that assigned each VOC
stem branch a different rate had very high uncertainty, it also
suggested much higher rates for these branches. The mean
background rate under this model was 0.55 x 10> subs/site/
year (95% Cl: 0.49-0.62 x 10 >). The corresponding values for
VOC were 847 x 107> subs/site/year (95% Cl: 1.93-
8237x 10 %) for Alpha, 171x 10> (95% Cl: 0.34—
3320x 103 for Beta, 276X 10> (95% CI 121-
1323 x 102) for Gamma, and 1.54 x 10> (95% Cl: 0.62—
735 x 10" ?) for Delta. Clearly, these estimates were several
fold higher than that of the background branches, and in spite
of their high uncertainty least 0.90 of the posterior density
was higher than the mean background rate (fig. 2).

A key consideration is that the high uncertainty in the FLC
stems model means that the actual values of rate estimates
for VOC stem branches should be interpreted cautiously. The
prior on all clock rates here is a continuous-time Markov
chain (CTMC) reference prior, which consists of a I distribu-
tion with =05 and § = T, where T is the tree length

(Ferreira and Suchard 2008; Wang and Yang 2014). Because
the mean of a I' distribution is o/f, under this prior the
expectation is that the average substitution rate is 0.5/T.
Our estimate of T under this model had a mean of 85.6
(95% Cl: 78.37-92.98), which results in a relatively wide dis-
tribution with an expected mean of around 5 x 10> subs/
site/year. A comparison of this prior, the posterior for VOC
stem branch rates, and the background rate illustrates that
VOC branch rates deviate much less from the prior than the
background rate does. Thus, VOC branch rate estimates un-
der this model may be sensitive to the choice of prior (see
supplementary figs. S2 and S3, Supplementary Material on-
line). That is, the data may not be sufficiently informative to
produce meaningful estimates of these parameters under this
model.

The coefficient of rate variation for both relaxed clock
models, UCG and UCLN, was indicative of departure from
clocklike evolution in the data. To investigate whether VOC
stem branch rates differed from the rest, we extracted indi-
vidual branch rates and compared the VOC stem branch
rates to the mean of all other branches. We found evidence
that VOC stem branch rates were higher than the mean of
other branches, with higher means values, but with very high
uncertainty and 95% credible intervals that overlapped with
the mean of other branches (fig. 3).

The mean substitution rate of branches other than the
VOC stems was 0.65 X 10> subs/site/year (95% Cl: 0.58—
0.77 x 107%) in the UCLN and 0.69 x 10> subs/site/year
(95% Cl: 0.60-0.80 x 10 >) for the UCG. In contrast, the
VOC stem mean substitution rates for the UCLN were:
129 X 1072 subs/site/year (95% credible interval, Cl: 0.76—
256x 1072 for Alpha, 064x 107> (95% Cl: 032-
157 x 10°) for Beta, 1.29 x 107> (0.82-2.40 x 10" >) for
Gamma, and 1.06 x 10> (95% Cl: 0.50-2.38 x 10 °) for
Delta, and with comparable values for the UCG. The quantile
where VOC stems rates fell with respect to other branches
also supported the finding that their rates were particularly
high in most cases. In the UCLN, for Alpha 0.96 of posterior
density had the stem rate in the top 75% of fastest evolving
branches, with the corresponding numbers for the other
VOCs being 0.25, 0.98, and 0.81 Beta, Gamma, and Delta,
respectively, and with comparable values in the UCG (0.92,
0.45, 0.96, and 0.97; fig. 3).
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Fic. 1. Calculations of log marginal likelihoods for all molecular clock models using path sampling and stepping-stone. The hollow circles represent
individual estimates, with ten replicates per model, and solid circles denote the mean value over replicates. The vertical lines represent the range of
values in each case. The horizontal dashed line corresponds to a log BF of 1.1 (“substantial evidence”) relative to the mean log marginal likelihood of
the best model (FLC shared stems), whereas the dotted line is the same value relative to the lowest log marginal likelihood of the best model.

The RLC model produced less clear results than the other
molecular clock models. The maximum a posteriori number
of rate changes was 4, with the 95% Cl ranging between 2 and
5. However, the posterior probability of rate changes in VOC
stem branches or clades was 0.0. Instead, rate changes were
not consistently found on particular branches. It is conceiv-
able that this model poses a heavy penalty on rate changes. In
particular, there is a very large number of local clock config-
urations in these data, which may be impossible to visit under
a standard Markov chain Monte Carlo analyses and may re-
sult in low statistical power to assess support for our hypoth-
eses. This model had a substitution rate estimate that was
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comparable with that of other models (mean 0.60 x 10>
subs/site/year; 95% Cl: 0.49-0.72 x 10 2).

Emergence Time and Expected Genome Substitutions
We estimated the duration of time along VOC stem branches
and the inferred total number of nucleotide substitutions
along the complete genome. We focus on the best fitting
model (FLC shared stems), with similar results for other mod-
els (supplementary fig. S4, Supplementary Material online).
The duration of time along these branches represents the
time required before VOCs started to diversify, but it is im-
portant to note that they are contingent on sampling bias,
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Fic. 2. Violin plots for posterior statistics of FLC. (A) is for a model where the stem branches of VOCs share a substitution rate that is different to
that of the background (model “FLC shared stems” in supplementary table S1and fig. S1, Supplementary Material online). The substitution rate for
VOCs stem branches is shown in orange and the background in gray. The dashed line represents the mean background rate and the dotted lines are
the 95% credible interval. (B) is the ratio of the substitution rate for VOC stem branches and the background under the same model and the dashed
line represents a value of 1.0 where the background and VOC stem rate would be the same. (C) and (D) show the corresponding statistics for the
FLC stems model, where the stem branch of every VOC has a different rate. Abbreviation “B” stands for background.

and could therefore be shorter than estimated here. Under
the FLC-shared stems model, the stem branch leading up to
VOs were: 14 weeks (95% Cl: 6-24) for Alpha, 4 (95% Cl. 2-8)
for Beta, 17 (95% Cl: 8—28) for Gamma, and 6 (3—11) for Delta
(supplementary fig. S4, Supplementary Material online).

The expected number of substitutions along the complete
genome were: 21 (95% Cl: 14-32) for Alpha, 6 (95% Cl: 3—-11)
for Beta, 26 (95% Cl: 18-35) for Gamma, and 9 (95% Cl: 6-16)
for Delta. Although, these numbers are loosely associated
with the number of defining mutations, they are not directly
comparable because they involve substitutions along the en-
tire genome and they correspond to the inference from a
standard phylogenetic substitution model (the GTR+I" in
this case).

Discussion

Our mean rate estimates over all lineages are somewhat lower
than earlier estimates (Duchene et al. 2020), which is consis-
tent with the notion that the virus has had time to evolve and
to remove transient deleterious mutations since its emer-
gence (Ghafari et al. 2022). Clearly, the molecular substitution
rate of SARS-CoV-2 displays substantial variation among lin-
eages, a pattern that has been apparent since early phyloge-
netic analyses of the virus (Duchene et al. 2020).
Substitution rate variation is sometimes stochastic in na-
ture and pinpointing its causes is often difficult in empirical
data. Our explicit hypothesis testing framework suggests that
the emergence of VOCs explains much of the substitution
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Fic. 3. Violin plots of posterior statistics for the uncorrelated relaxed clocks with lognormal (UCLN) and gamma (UCG) distributions (see
Supplementary Material online). The top row, (A) through (C), is for the UCLN and the bottom row, (D) through (F), is for the UCG. (A) and
(D) show the coefficient of rate variation, which is the standard deviation of branch rates divided by the mean rate, and indicates clock-like
behavior when it is abutting zero (Drummond et al. 2006; Ho et al. 2015). In (B) and (E), the substitution rate is shown for the stem branches of
VOCs and for the mean of background branches (i.e., those that are not the stems of VOCs), abbreviated as “B.” The dashed line denotes the mean
background rate, whereas the dotted lines represent the upper and lower 95% credible interval. (C) and (F) show the percentile in which stem
branches for VOCs fall with respect to other branches. Note that the densities have been smoothed, but the maximum values are 100.

rate variation in the virus. This model testing framework has
been previously used to understand viral evolution among
host species in influenza (Worobey et al. 2014), and the host
range SARS-CoV-2 and closely related viruses (MacLean et al.
2021). Here we used marginal likelihood estimators that have
shown high accuracy (Fourment et al. 2020), but recent devel-
opments, including those based in sequential Monte Carlo
(Wang et al. 2020), may improve statistical power for differ-
entiating clock models. We suggest that model testing may be
preferable to using highly parametric models, such as relaxed
molecular clock models, for this purpose because they tend to
have very high variance in substitution rates of particular
branches. Recent advances in fitting relaxed and RLC models

may provide increased sensitivity and precision in branch
specific rate estimates (Douglas et al. 2021; Fisher et al. 2021).

We find compelling evidence that episodic, instead of long
term, increases in the substitution rate underpin the emer-
gence of VOGs, a process that is probably driven the action of
natural selection. All models where VOC clades were assigned
a different rate to the background had poor statistical fit, even
when compared with the SC “null” model, providing further
support for such rate increases to occur over a short period of
time. The increase in substitution rate required to give rise to
the four VOCs examined was estimated to be around 4-fold
compared with the background, although such estimates
may carry high uncertainty when estimated for individual
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stem branches. Under these circumstances, the number of
mutations required to give rise to a VOC, such as Alpha,
would have accumulated in about 3 months, with some
variants requiring a few weeks, such as Beta and Delta.
These timescales appear plausible in chronic infections of
SARS-CoV-2 (Harvey et al. 2021; Kemp et al. 2021), but other
circumstances are also likely, for example, if transmission is
infrequent and selection favors mutations that increase trans-
missibility between hosts.

Our genomic analyses demonstrate that signatures of in-
creased substitution rates are detectable using phylogenetic
methods and genome surveillance data. A recent study of
reported increased evolutionary rates within sublineages of
Gamma (Graf et al. 2021), which prompts further investiga-
tion of within lineage evolution. However, the precise mech-
anism (ecological or intrahost) of how VOCs have emerged is
still unclear. Elucidating these processes will require dense
sampling between transmission chains, specifically in settings
where transmission is unlikely and intra-host sequence data
are available. Another important area that is currently under
intense investigation is how natural selection shapes the
emergence and persistence of VOCs (Martin et al. 2021;
Tegally et al. 2021). Such studies may benefit from using ex-
plicit models where the substitution rate is treated as a func-
tion of environmental or ecological variables (Streicker et al.
2012). We recommend that further research focuses on early
detection and understanding of the circumstances under
which viral lineages with epidemiological impacts, such as
VOCs, emerge.

Materials and Methods

Data Set Construction

We downloaded 100 randomly selected sequences in the
global NextStrain SARS-CoV-2 build of August 2021
(Hadfield et al. 2018), from the GISAID database (Elbe and
Buckland-Merrett 2017; Shu and McCauley 2017). This set of
sequences did not include any of those belonging to the four
VOCs (Alpha, Beta, Gamma, or Delta) and we also excluded
samples drawn from nonhuman hosts. We then downloaded
20 randomly selected sequences from the four VOCs to gen-
erate a data set of 180 genomes, which we aligned using
MAFFT (Katoh and Standley 2013). We ensured that the
sequences consisted of complete genomes, with no stretches
of more than 10 Ns and excluding those with low coverage
(see supplementary material, Supplementary Material on-
line). To verify that samples classified as VOCs were correctly
assigned as such, we estimated a phylogenetic tree using
maximum likelihood as implemented in IQ-TREE2 (Minh
et al. 2020), using the GTR+ I substitution model and
with approximate Bayes branch support (Anisimova et al.
2011). We ensured that all VOCs were monophyletic with
an approximate Bayes support of at least <0.95.

Bayesian Phylogenetic Analyses

Our Bayesian analyses require specifying a substitution model,
a tree prior and priors for all parameters in BEAST 1.10
(Suchard et al. 2018). We chose the GTR+14 substitution

model and a coalescent exponential tree prior. Although the
tree prior is not necessarily realistic here, it is expected to have
little impact in molecular clock estimates (Ritchie et al. 2017).
Moreover, it can accommodate changes in population size via
the exponential growth function and it is fully parametric,
meaning that setting proper priors for all parameters is pos-
sible. To calibrate the molecular clock, we specified the se-
quence sampling times. The FLC models require constraining
monophyly of VOCs, which we also did for other clock mod-
els to ensure that the prior on tree topology was the same.
We used the default priors for the substitution model. The
coalescent exponential tree prior has two parameters, the
scaled population size, ®, and the growth rate r. The scaled
population size is proportional to the number of infected
individuals at present divided by twice the coalescent rate,

/e, @ = %), and the growth rate is inversely proportional
to the doubling time by a factor of log(2)
(doubling time = M) (Volz et al. 2009; Boskova et al.

p
2014). We used priors with relatively low information content
for these two parameters. For @, we used an exponential
distribution with mean 10° whereas for r, we used a
Laplace distribution with location 0 and scale 100. For all
molecular clock rates, we used a CTMC reference prior
(Ferreira and Suchard 2008; Wang and Yang 2014). The
UCLN and UCG models have an additional parameter; the
standard deviation of the lognormal distribution, and the
shape of the I" distribution. For these parameters, we speci-
fied an exponential prior with mean 0.33. We ran our analyses
for using a Markov chain Monte Carlo of length 5 x 107,
sampling every 5 x 10 and discarding 10% of the chain as
burn-in. We repeated the analyses once to verify convergence
of independent chains and we ensured that the effective
sample size of all parameters was at least 200.

Marginal Likelihood Estimation

We used two techniques to infer the log marginal likelihood:
path sampling and stepping-stone (Gelman and Meng 1998;
Lartillot and Philippe 2006; Xie et al. 2011), which have been
found to have high performance in differentiating models in
phylogenetics (Baele et al. 2012, 2013; Fourment et al. 2020),
reviewed by Baele and Lemey (2014) and Oaks et al. (2019).
We chose these estimators over the more recently developed
and highly accurate generalized stepping-stone because the
latter requires a working genealogical distribution (Baele et al.
2016), which is not trivial here due to the monophyletic
constraints in our models. Our estimation setup had 200
path steps distributed according to quantiles from a f§ distri-
bution with parameter o = 0.3, with each of the resulting 201
power posterior inferences running for 10° iterations. We
repeated these analyses ten times to assess variation in these
calculations and used the log BFs of the mean values. Our
model testing approach considered the UCLN, SC, and all FLC
models in table 1 and supplementary material,
Supplementary Material online. We did not calculate log mar-
ginal likelihoods for the RLC because this is a model averaging
method, where the number of parameters is less tractable
than in other models and thus it is difficult to conceive proper
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priors for all parameters, a fundamental aspect of Bayesian
model selection.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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