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ABSTRACT

كبيراً  صحياً  عبئاً   )NTDs( العصبي  الأنبوب  عيوب  تشكل 
ويظل  العالم(  أنحاء  جميع  في  حمل  حالة   0.5-2/1000(
المواليد المتوفين، ووفيات  السبب قابلًا للوقاية في كلا من ولادة 
الحياة.  الشديدة على مدى  والإعاقات  والرضع،  الولادة  حديثي 
خط  في  لتلتحم  العصبية  الطيات  فشل  من  التشوهات  تنتج 
والرابع  الثالث  الأسبوع  بين  العصبي  الأنبوب  ويتكون  الوسط 
ومظاهرها  تصنيفاتها،  المراجعة  هذه  تناقش  الجيني.  التطور  من 
متفرقة  العصبي  الأنبوب  عيوب  أكثر  الوراثة.  وعلم  السريرية، 
وتشترك كلا من العوامل الوراثية والبيئية في حدوثها. اقترح أن 
زواج الأقارب يساهم في ارتفاع حالات الإصابة بعيوب الأنبوب 
السعودية.  العربية  المملكة  ذلك  في  بما  دول  عدة  في  العصبي 
ترتبط المتلازمات في الغالب بالشذوذ الصبغي وتمثل %10< من 
العصبي وقد تم توثيق نسبة عالية بلغت  الأنبوب  جميع عيوب 
الوراثي  السعودية. كما أن الاستعداد  العربية  المملكة  %20 في 
يشكل عامل خطر مع إشارة قوية من الجينات التي تنظم استقلاب 

الفولات للكربون الأولي ومستوى قطبية الخلية.

Neural tube defects (NTDs) constitute a major health 
burden (0.5-2/1000 pregnancies worldwide), and 
remain a preventable cause of still birth, neonatal, 
and infant death, or significant lifelong handicaps. 
The malformations result from failure of the neural 
folds to fuse in the midline, and form the neural tube 
between the third and the fourth week of embryonic 
development. This review article discusses their 
classification, clinical features, and genetics. Most 
NTDs are sporadic and both genetic, and non-
genetic environmental factors are involved in its 
etiology. Consanguinity was suggested to contribute 
to the high incidence of NTDs in several countries, 
including Saudi Arabia. Syndromes, often associated 
with chromosomal anomalies, account for >10% of 
all NTDs; but a higher proportion (20%) has been 
documented in Saudi Arabia. Genetic predisposition 
constitutes the major underlying risk factor, with a 
strong implication of genes that regulate folate one-
carbon metabolism and planar cell polarity.  
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Neural tube defects (NTDs) constitute one of the 
most common malformations of human structure 

with a major public health burden whose prevalence has 
fallen over recent decades in high-income countries.1-3 
They occur very early in pregnancy between 21 and 
28 days after conception, and result from failure of 
the neural folds to fuse in the midline and form the 
neural tube.4,5 This leads to secondary abnormal 
development of the mesoderm responsible for forming 
the skeletal and muscular structures that cover the 
underlying neural structures. Affecting 0.5-2 per 1000 
pregnancies worldwide, they constitute a major cause 
of still birth, neonatal, and infant death, or significant 
lifelong handicaps.6,7 This review article discusses their 
classification, clinical features, and genetics.

Terminology, classification, and phenotypes. The 
term dysraphism indicates persistent continuity 
between the posterior neural ectoderm and cutaneous 
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ectoderm. Cranial dysraphism (failure of cranial neural 
tube closure) includes anencephaly and encephaloceles, 
whereas spinal dysraphism (due to failure of caudal 
neuropore closure) designates spina bifida cystica and 
occulta. Neural tube defects can be ventral, or dorsal 
midline defects. They can also be open (exposed to 
the environment through a congenital skin defect), 
or closed (covered by skin). A rare form of NTD is 
craniorachischisis, which results from failure of the 
neural tube closure over the entire body axis. 

Cranial dysraphism. This includes anencephaly 
and several types of midline skull defects. Anencephaly 
results from failure of the cephalic folds to fuse into 
a neural tube.8 Secondary absence of the mesodermal 
tissue dorsal to the neural elements leads to failure of 
bony skull development (Figure 1A). The brainstem, 
cerebellum, and spinal cord are present, and part of the 
diencephalon may be preserved. The condition is lethal 
within a few hours to weeks, and is easily diagnosed 
antenatally. 

The midline skull defects are classified under the 
term cranium bifida, and the most benign form of 
cranium bifidum occultum is the persistent wide 
fontanelle, or persistent parietal foramina, which 
often close over time. A more serious type of cranium 

bifidum is encephalocele, which results from failure 
of the anterior neuropore to close during days 26-28 
of gestation. They are 3-16 times less common than 
spina bifida cystica.9,10 In Western countries, 85% of 
encephaloceles are found on the dorsal surface of the 
skull, whereas in Asia (for example, the Philippines and 
other Pacific Rim countries) anterior encephaloceles 
are more common (Figures 1B, 1C, & 1D). Posterior 
encephaloceles (Figure 1E) may contain infratentorial, 
or supratentorial brain structures or both,10,11 and 
have poor prognosis. The overall prognosis of anterior 
encephaloceles is considerably better compared with the 
posterior anomalies.12

Encephaloceles are uncommonly found in defined 
syndromes, the most frequent of these is Meckel-
Gruber syndrome (MKS, OMIM 249000).13-16 

This syndrome, also known as Gruber syndrome 
or dysencephalia splanchnocystica, is an autosomal 
recessive ciliary dysfunction disorder characterized 
by an occipital encephalocele, and is associated with 
holoprosencephaly, polydactyly, polycystic kidneys, 
micrognathia, and cardiac anomalies (Figure 2A). Other 
associated malformations include microcephaly with 
a sloping forehead, cerebral and cerebellar hypoplasia, 
anencephaly, and hydrocephaly, with or without Chiari 

Figure 1 - Images showing cranial neural tube defects: A) a newborn with anencephaly. B, C & D) Anterior encephalocele. Sequential coronal MRI scan 
showing brain herniation through the right nasal bone (arrows in C & D); and E) large posterior encephalocele.
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malformation.17,18 The worldwide incidence varies from 
one in 13,250 to one in 140,000 live births, but is high 
in the Finnish population (one in 9000).19 The incidence 
is also high among Belgians and Bedouins in Kuwait 
(1 in 3,500).20 The highest incidence of one per 1,300 
live births was reported in the Gujarati community, 
originating from the Gujarat State in Western India.21 
A relatively high incidence of 1:17,134 was reported 
in Saudi Arabia, and was attributed to the high rate of 
consanguinity.16 At least 10 genes have been found to be 
responsible for MKS,22-25 including  a novel pathogenic 
mutation: c.1506_2A>G in TCTN2 (NM_024809.3) 
in a Saudi patient.24,25 

Another malformation associated with encephalocele 
is Joubert syndrome, which is also an autosomal recessive 
ciliary dysfunction disorder.22,23,26-28 It is characterized by 
hypoplasia of the cerebellar vermis with the characteristic 
brainstem malformation and neuroradiologic “molar 
tooth sign” (Figures 2B, 2C & 2D).29 Joubert syndrome 
has an incidence of one in 100,000 births, and can be 

associated with posterior encephalocele, Dandy-Walker 
malformation, hypoplasia of the corpus callosum, renal 
polycystic disease, hepatic disease, polydactyly, and 
retinitis pigmentosa.27,30 It is genetically heterogeneous 
with more than 20 genes identified to date in several 
studies including a large comprehensive molecular 
series from Saudi Arabia.30,31

Encephaloceles are frequently associated with other 
birth defects including cleft palate, microphthalmia, 
cerebellar defects, agenesis of the corpus callosum, and 
holoprosencephaly (Figures 2E & 2F).32

Spinal dysraphisms. Spinal dysraphisms constitute 
a heterogeneous group of congenital disorders of the 
spine and spinal cord due to aberrant formation of the 
midline mesenchymal, bony, and neural structures. 
They are thought to affect 300,000 persons worldwide, 
are usually diagnosed at birth or in early infancy, but 
may sometimes be discovered in older children and 
adults.32,33 They originate from abnormalities occurring 
during one of 3 embryonic periods. The first of these is 

Figure 2 - Images showing: A) posterior encephalocele (arrow) seen in an x-ray carried out on a newborn who had Meckel-Gruber syndrome. The 
abdomen is distended due to associated polycystic kidneys. Polydactyly of the right foot is also shown; B, C, & D) MRI features of a child 
who had Joubert syndrome associated with posterior encephalocele. Note the osseous defect of the cranium (arrow, B); C) axial image at 
the level of midbrain shows the classic “molar tooth sign” with the roots of the tooth formed by the thick and horizontally oriented superior 
cerebellar peduncles (arrows); D) parasagittal image demonstrating a thick and horizontally oriented superior cerebellar peduncle (arrow); E & 
F) holoprosencephaly; E) sagittal MRI image showing an associated encephalocele (arrow); and F) coronal image revealed fusion of the cerebral 
hemispheres, associated with band heterotopias (arrows).
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gastrulation (at weeks 2-3), which involves the function 
of the intervening mesoderm in the initially bilaminar 
embryonic disk. The second is primary neurulation (at 
weeks 3-4) during which the neural ectoderm bends, 
and folds along the midline to form the neural tube. The 
third is secondary neurulation (during weeks 5-6) when 
an additional part of the neural tube is produced caudal 
to the posterior neuropore resulting in the formation of 
the tip of the conus medullaris and the filum terminale.

Open spinal dysraphisms include myelomeningocele, 
myelocele, hemi myelocele, and hemi myelomeningocele 
(Figure 3). In each of these, the nervous structures are 
exposed without skin covering. Myelomeningocele 
and myelocele constitute approximately 95% of overt 
spinal dysraphism, and originate from defective closure 
of the primary neural tube, with persistence of a 
segment of incompletely fused plaque of neural tissue, 
referred to as the neural placode.34 They are basically 
identical apart from the fact that myelomeningocele is 
bulging, whereas myelocele is flat (Figure 4A). Lumbar 
or thoracolumbar lesions include more than half of the 
cases of myeloceles, lumbosacral lesion occurs in over 
25%, whereas cervical and thoracic locations together 
account for approximately 11% of cases.35 

At birth, the appearance of myelomeningocele is 
that of a sac-like structure covered by a thin membrane 
that is often ruptured, with cerebrospinal fluid (CSF) 
leak (Figures 4A & 4B). The arachnoid surrounding skin 
is often angiomatous. The spinal roots pass forward 
into the sac. The CNS anomalies associated with 
myelomeningocele include Chiari II malformation and 
hydrocephalus in 80-90% of cases.36,37 Hydrocephalus 
may already be present at birth, but usually appears 
within 2 to 3 days after surgical myelomeningocele 
repair.33 Chiari II malformation is a congenital 
hindbrain anomaly characterized by a small posterior 
fossa associated with downward displacement of 
the cerebellar vermis, fourth ventricle, and brain 
stem below the foramen magnum (Figure 4C).38,39 

The pathophysiology of Chiari II malformation was 
highlighted by McLone and Knepper40 who attributed 
its causation due to CSF leak from the ventricles through 
the central canal into the amniotic fluid. This causes 
chronic CSF hypotension within the developing neural 
tube and failure of the ventricular system to increase 
in size, leading to lack of induction of the perineural 
mesenchyme of the posterior cranial fossa. Both the 
cerebellum and brain stem become destined to develop 
within a smaller than normal posterior fossa leading to 
both upward and downward herniation through the 

Figure 3 - Classification of spinal dysraphisms.

Figure 4 - Images showing: A) newborn with thoracic myelomeningocele. 
The diaphanous sac is filled with CSF and contains fragile 
vessels in its membrane. A placode-containing remnants of the 
nervous system can be seen in the lower half of the lesion; B) 
a one-day-old neonate with myelomeningocele at the lumbar 
region. A T2-weighted MRI image with fat saturation showing 
low-lying spinal cord tethered to the upper end of spina 
bifida (arrow); C) sagittal brain MRI image shows features of 
Chiari II malformation. There is small-sized posterior fossa, 
downward herniation of the cerebellar tonsils, through the 
foramen magnum (4), deformed shape of the fourth ventricle 
(3), tectal beaking (2); and prominent massa intermedia (1). 
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tentorial groove and the foramen magnum.41 Also, the 
neuroblasts do not migrate outward from the ventricles 
into the cortex at a normal rate. Other CNS anomalies 
associated with myelomeningocele include cerebral 
ventricle abnormalities in >90%, syringomyelia (88%), 
brainstem malformations (75%), cerebral heterotopias 
(40%), polymicrogyria (15-30%), and agenesis of the 
corpus callosum (12%).42 

The third category of open spinal dysraphism is hemi 
myelocele, which results from failure of one hemicord 
to neurulate. When there is meningeal expansion, the 
malformation is called hemi myelomeningocele.

Closed spinal dysraphisms associated with 
subcutaneous mass include lipomas with dural defect 
and meningocele (Figure 3). The former consists of 
lipomyelomeningocele and lipomyelocele, which are 
characterized by a subcutaneous fatty mass located 
above the gluteal crease.41 The lipomatous mass herniates 
through the bony defect and attaches to the spinal cord, 
tethering the cord, and often the associated nerve roots 
(Figure 5). Meningocele results from herniation of 
the meninges through the bony defect (spina bifida) 
without an associated herniation of the spinal cord or 
nerve roots into the dural sac. Terminal myelocystocele 

Figure 5 - An image showing lipomyelomeningocele:  A) a newborn with 
subcutaneous mass above the gluteal crease; B) sagittal T1-
weighted MRI image (taken at the age of 26 months) shows 
large subcutaneous lipoma with fatty tissue extending through 
a wide posterior spina bifida into the spinal canal (arrow) to 
connect with the placode (P); C) sagittal T2-weighted MRI 
image (with fat saturation) showing the lipoma attached 
(arrow) to the placode (P). Note the distended urinary bladder 
(asterix) with irregularity of the posterior wall suggesting the 
presence of neurogenic bladder.

Figure 6 - Images showing: A & B) thoracic and cervicocephalic intramedullary lipoma: A) the affected 9-month-old presented as floppy infant syndrome. 
Spinal CT scans showed an expanded cervicothoracic spinal cord filled by a large low-density mass (image not shown); B) cranial CT revealed 
extension of the low-density mass (lipoma) in the posterior fossa (arrow); C & D) Caudal agenesis. C) sagittal T1-weighted (T1W) MRI image 
showing the less severe form, with blunted appearance of the distal cord (arrow) and dysplastic sacrum; and D) sagittal T1W MRI revealing 
severe caudal agenesis. There is also blunted appearance of the distal spinal cord (arrow).
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the lumbosacral level, and usually present with tethered 
cord syndrome. On the other hand, cervicocephalic 
lipomas43 generally produce insidious signs of spinal 
cord compression (Figures 6A & 6B). A fibrolipomatous 
thickening of the filum terminale due to an anomaly 
of the secondary neurulation constitutes filar lipoma. 
A short hypertrophic filum terminale, which produces 
tethering and impaired ascent of the conus medullaris 
produces the entity of tight filum terminale, which is 
usually associated with other malformations including 
diastematomyelia and dermal sinuses.33,44,45 A dermal 
sinus is formed by an epithelium-lined fistula that 
connects the skin surface to the CNS and its meningeal 
coating. Finally, a small ependymal-lined cavity within 
the conus medullaris constitutes a persistent terminal 
ventricle, which results from incomplete regression of 
the terminal ventricle during secondary neurulation.

Complex dysraphic states are disorders characterized 
by aberrant formation or integration of the notochord 
that constitutes the foundation of the axial skeleton and 
is the inductor of the neural ectoderm. These disorders 
of notochordal formation include caudal agenesis, 
which ranges from agenesis of the coccyx to absence of 
the sacral, lumbar, and lower thoracic vertebrae (Figures 
6C & 6D).46 They can be syndromic such as VACTERL 
syndrome (vertebral abnormality, anal imperforation, 
cardiac malformation, tracheoesophageal fistula, renal 
abnormalities, limb deformities, OMIM no. 192350) 
and Currarino syndrome (CS), which is a peculiar 
form of caudal regression syndrome (also known as 
autosomal dominant sacral agenesis [OMIM no. 
176450]) characterized by partial absence of the sacrum 
with intact first sacral vertebra, a pre-sacral mass, and 
anorectal anomalies (Currarino triad).47,48 Nevertheless, 
approximately 15-25% of mothers of children with 
caudal dysgenesis have insulin-dependent diabetes 
mellitus.48 Caudal agenesis is either high and abrupt, 
or low with less severe vertebral dysgenesis and up to 
S4 present as the last vertebra. The latter form typically 
presents with tethered cord syndrome. On the other 
hand, segmental spinal dysgenesis is characterized 
by segmental agenesis or dysgenesis of the lumbar 
or thoracolumbar spine, associated with segmental 
abnormality of the corresponding spinal cord and nerve 
roots.49

Disorders of midline notochordal integration include 
dorsal enteric fistula, which is formed by an abnormal 
canal connecting the skin surface with the bowel 
(neurenteric canal) across the intervening space between 
a duplicated spine.39 Localised forms of dorsal enteric 
fistulae constitute neuroenteric cysts, which are lined by 

Figure 7 - Images showing: A) a 9-year-old girl presenting with a 
remarkable hair tuft at the back above the gluteal fold; B) 
the left foot was smaller, had equinus posture, and showed 
spontaneously upgoing big toe; C) sagittal T2-weighted 
MRI showed features of diastematomyelia with thinning of 
the spinal cord (large arrow) resulting from the intervening 
subarachnoid space between the 2 hemicords. There is also 
remarkable widening of the spinal canal with tethering of 
the cord (small arrow). D-F) serial axial T-2 weighted images 
revealed that the spinal cord started to divide at the level of L2 
(E) into 2 halves (F).

constitutes the third entity of closed spinal dysraphisms 
with subcutaneous mass, and is characterized by a large 
terminal cystic dilatation of the spinal cord resulting 
from hydromyelia.

Closed spinal dysraphisms without subcutaneous 
mass encompass simple and complex dysraphic states 
(Figure 3). The subset of simple dysraphic states includes 
intradural and intramedullary lipomas, which are similar 
embryologically and pathologically to lipomas with 
dural defects. Intradural lipomas are commonly found at 
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mucus-secreting cells resembling the alimentary tract.39 
Conversely, diastematomyelia refers to the separation of 
the spinal cord in 2 usually asymmetric halves, and a 
hairy tuft at the child’s back above the gluteal fold is 
a reliable clinical marker of this condition (Figure 7).45 
Patients with diastematomyelia usually present with 
scoliosis and the neurological consequences of tethered 
cord syndrome.

Genetics and consanguinity. Most NTDs are sporadic, 
and both genetic and non-genetic environmental 
factors are involved in its etiology. However, recurrence 
risk for a second affected child is increased by 3-5 
folds for couples with one affected infant, and by 10 
fold for siblings of affected individuals, as compared 
with the general population.50,51 This recurrence fits a 
multifactorial polygenic or oligogenic pattern, rather 
than single dominant or recessive gene mode of 
inheritance; with reduced penetrance.52 Syndromes, 
often associated with chromosomal anomalies account 
for >10% of all NTDs cases.53-56 Nevertheless, a higher 
proportion (20%) has been documented in Saudi 
Arabia, reflecting the high prevalence of autosomal 
recessive diseases.16 These include, among others, 
Waardenburg syndrome, amniotic band sequence, 
Currarino syndrome, Joubert syndrome, and 
MKS.16,22,57,58 Chromosomal abnormalities associated 
with NTDs include trisomy 13, trisomy 18, triploidy, 
as well as partial aneuploidy.55,56 The paucity of large 
families with multiple affected members has hampered 
the strategy of genetic analysis based on positional 
cloning. Nevertheless, using smaller multiple families, 
genome-wide association studies (GWAS) implicated 
candidate NTDs loci in chromosomes 2, 7, and 10.59-61 
The recent genomic revolution will indeed give the 
opportunity to conduct large-scale NTDs-focused 
genomic discovery projects utilizing the power of 
GWAS and exome sequencing.1,2

The reduction of 60-70% of NTDs following 
periconceptional folic acid administration initiated a 
series of clinical studies that showed an increased risk of 
NTDs in association with reduced maternal folate state 
and elevated homocysteine.62,63 This suggested that genes 
correlated with folate and methionine metabolism can 
be involved in the etiology of NTDs.62 Genes encoding 
5,10 methylenetetrahydrofolate reductase (MTHFR), 
methionine synthase reductase (MTRR), cystathionine 
beta-synthase, and folate receptor genes might play 
a critical role in the formation of the neural tube.64 
However, most research centered on MTHFR following 
the observation of Frosst and associates65 that persons 
with a thermolabile form of MTHFR have reduced 

enzyme activity and increased plasma homocysteine 
levels, which can be lowered by supplemental folic acid. 
These individuals have a 677C>T polymorphism in the 
MTHFR gene. A year later, Ou et al66 demonstrated that 
677C>T homozygosity was associated with a 7.2-fold 
increased risk of NTD (p=0.001). To determine the 
contribution of polymorphic variation in genes involved 
in the folate-dependent homocysteine pathway, Relton 
et al67 conducted a case-control association study in 
families affected by NTDs. Both gene-gene interaction 
and independent genetic effects were found in relation 
to NTDs risk. Meta-analysis studies68,69 strongly 
implicate the MTHFR 677TT genotype as a risk factor 
for NTDs in mothers (50-70% increase) and fetuses 
(80-90% increase). Maternal-fetal interaction was also 
observed when offspring carried the MTHFR 677C>T 
variant and mothers carried the MTRR 66A>G 
variant. The distribution of the 677C>T allele (T 
allele) of the MTHFR gene showed marked ethnic and 
geographic variation.70 The homozygous TT genotype 
was particularly common in Mexico (32%), Southern 
Italy (26%), and Northern China (20%).70 The TT 
genotype was low among newborns of African ancestry, 
intermediate among those of European origin, and high 
among newborns of American Hispanic ancestry.70 The 
relative frequency of the TT genotype had geographical 
gradients in Europe (north to south increase) and 
China (north to south decrease).70 On the other hand, 
a variant of MTRR gene (c.66A > G) is considered to 
be a risk factor, and a meta-analysis study implicates 
the maternal MTRR 66GG genotype as a risk factor 
for developing NTDs.71,72 Apart from MTHFR, very 
few other consistent findings have resulted from the 
candidate gene approach related to folate metabolism.73  
Zhang et al74 surveyed the literature (1996-2011) and 
investigated the effects of 5 genetic variants pertaining 
to folate metabolism from 47 study populations. In this 
study,74 meta-analysis strongly suggested a significant 
association of the variant MTHFR C677T and a 
suggestive association of reduced folate carrier (RFC-1 
A80G) with increased risk of NTDs. Other variants 
involved in the folate pathway did not demonstrate 
any evidence for a significant marginal association on 
susceptibility to NTDs. 

Liu et al75 explored the interactions between single 
nucleotide polymorphisms (SNPs) in folate metabolism 
pathway genes and environmental risk factors to 
the etiology of NTDs in 602 Chinese families. The 
genotype MTHFR 677C>T was significantly associated 
with NTDs with synergistic effects when there was 
no folate supplementation and also in the presence 
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of gestational diabetes mellitus (GDM). On the 
other hand, 5-Methyltetrahydrofolate-homocysteine 
methyltransferase (MTHM) 501A>G genotype was 
significantly associated with NTDs in case of GDM, 
and betaine-homocysteine methyltransferase (BHMT) 
716G>A in case of no folate supplementation. The 2 
genotypes alone did not significantly associate with 
NTDs (both p>0.05).

Studies on the human homologue of mouse NTDs 
genes have contributed only limited positive findings, 
although recently, specific signaling pathways that are 
essential for neural tube closure could be identified.73,76 

Nevertheless, the more recent advances in animal models 
have significantly contributed to unveil the interaction 
between genes and environmental factors in human 
NTDs.1,2 Recently, the possible role of the planar cell 
polarity (PCP) signaling pathway (which governs a 
wide array of polarized cell behaviors) in human NTDs 
was highlighted following the discovery that genes in 
the pathway underlie severe NTDs in several mouse 
mutants.1,2 This was followed by identifying  mutations 
in several PCP genes in patients with NTDs.77-79 

Familial cases and role of consanguinity. 
Intrafamilial unions collectively account for 20 to 
>50% of all marriages in most communities of North 
Africa, the Middle East, and West Asia.80 Families in 
which multiple members were affected with a broad 
spectrum of NTDs, suggesting the possibility of a 
common genetic etiology have been reported.81 An 
unusually high incidence (3.7 - 6.96/1000) of NTDs 
was observed among Egyptians, and has been attributed 
to the high coefficient of inbreeding.82 Nine percent of 
NTDs cases have a family history of a close relative 
with a similar condition, 16% had other associated 
abnormalities as part of a malformation pattern, or an 
identifiable syndrome. Most of the components of these 
syndromes were also present in other family members. 
Consanguinity was found to be remarkably high (69%) 
among 42 Palestinian Arab families with open NTDs.83 
This was significantly higher than the consanguinity 
rate of 44.3% observed in the general population. In 
Oman84 much higher consanguinity rates were noted 
in families with NTDs and congenital hydrocephalus 
than in the general population, whereas in Algeria,85 
Iraq,86 and Saudi Arabia,16,87 similar high prevalence of 
consanguinity was suggested to contribute to the high 
incidence of NTDs.

In conclusion, most NTDs are sporadic, and both 
genetic and non-genetic environmental factors are 
involved in its etiology. Consanguinity was suggested 
to contribute to the high incidence of NTDs in several 

countries, including Saudi Arabia. Syndromes, often 
associated with chromosomal anomalies, account for a 
higher proportion of NTDs in Saudi Arabia. Genetic 
predisposition constitutes the major underlying risk 
factor, with a strong implication of genes that regulate 
folate one-carbon metabolism, and PCP. 
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