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Abstract

The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected
retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3
genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes,
particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an
experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To
overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using
these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms:
A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged
and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus
engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the
interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins
use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions.
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Introduction

Retroviruses are enveloped RNA viruses that infect many

different species including humans. The constant ‘‘battle’’ between

retroviruses and mammalian cells has resulted in the evolution of

proteins that act as cellular restriction factors. These restriction

factors provide defense against retroviruses by blocking various

points of the retroviral life cycle within the cell [1,2].

One such family of restriction factors is the apolipoprotein B

editing complex 3 (A3) cellular cytidine deaminases (CDA). While

A3 genes are found in all mammals, their number differs from

species to species. For example, humans have 7 A3 genes (A3A to

A3H) while mice have only one gene. All proteins in this family

contain at least one CDA domain that deaminates carbon 4 of

cytidine in single-stranded DNA, resulting in a uracil that causes G

to A transitions in the opposing strand [3]. A3G was the first

member of the family shown to restrict retroviruses. A3G

expression is interferon-inducible and is packaged within HIV-1

virus particles. Packaged A3G leads to a substantial decrease in

viral infectivity by causing a high frequency of G to A mutations in

the coding strand due to deamination of minus strand reverse

transcripts [4,5]. The abundance of G to A mutations can lead to

degradation of the retroviral DNA or the creation of nonfunctional

proviruses [6]. A3G preferentially deaminates cytidines that are in

a CC motif [7,8]. Furthermore, A3G inhibits viral reverse

transcription and blocks viral cDNA accumulation [9,10]. This

inhibition may be achieved by physical interaction between A3G

and the viral reverse transcriptase [11].

Packaging of A3G into virions is counteracted by HIV Vif (viral

infectivity factor) protein. In virus-producer cells, Vif binds to A3G

as well other A3 family members, and recruits cellular E3

ubiquitin ligase complexes, leading to ubiquitination and subse-

quent proteasomal degradation, thereby preventing packaging of

A3G into budding virions [12–14]. Lentiviral Vif proteins show

strong species-specificity. For example, HIV-1 Vif counteracts

human A3G but only certain simian A3G homologues [15,16]; it

also does not interact with mouse A3 [17].

Other members of the A3 family are believed to affect other

exogenous viruses as well as endogenous retrovirus/retroelement

movement within the genome. In particular, human A3A is a

potent inhibitor of IAP and MusD and other retrotransposons

such as LINE-1 and this inhibition is CDA-independent, at least in

cultured cells [18–20]. A3A also inhibits adeno-associated virus

replication, a nuclear-replicating parvovirus, via CDA-indepen-

dent means [20]. In monocytes, A3A restricts HIV-1 infection and

the decrease in A3A levels that occurs during monocyte-to-

macrophage development is concomitant with increased suscep-

tibility to HIV-1 infection [21]. A3A is not packaged into HIV

virions and is thought to restrict infection by targeting incoming

virus [22–24]. In contrast, A3A is packaged in human
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T-lymphotropic virus type-I virions and restricts infection, at least

in transfected cells [25]. A3A preferentially deaminates cytidines

that are in a TC motif [26].

Different A3 family members block infection by diverse

retroviruses from different species, including HIV-2 [27], porcine

endogenous retrovirus [28,29], xenotropic, Friend (F-MLV) and

Moloney murine leukemia virus (M-MLV) [30–32] and mouse

mammary tumor virus (MMTV) [33]. Additionally, A3 proteins

may restrict other virus families, including parvoviruses [20,34],

hepatitis B virus [35–37], papillomaviruses [38] and herpes

simplex virus I [39]. Thus, it has been suggested that A3 proteins

exist, at least in part, to prevent zoonotic transmission of viruses

[40].

While much has been learned about A3 proteins and their roles

in virus restriction, little is known about how they function in vivo.

Only the murine A3 gene has been studied in vivo by our group and

others, using naturally occurring genetic variants of mouse A3 and

knockout mice infected with MMTV and MLV [31–33,41–45].

Interestingly, while the murine protein is packaged into virions

and has CDA activity, it restricts murine retrovirus infection

largely by inhibiting reverse transcription [33,46,47]. Here, we

show that transgenic mice expressing the human A3A or A3G

proteins restrict murine retrovirus infection in vivo in disparate

ways. A3G was packaged into virions in vivo, leading to the

deamination of both MLV and MMTV viral genomes. In

contrast, A3A was not packaged, and appeared to restrict infection

in a largely CDA-independent manner. Finally, we show that Vif/

A3G interactions can be studied in this in vivo model, thus

providing a potentially useful system for the analysis of small

molecule inhibitors of A3 proteins and Vif.

Results

Generation of mice expressing human A3A and A3G
One of the complications of studying different A3 proteins in

humans is that more than one of the 7 genes can be expressed in a

given cell type. In contrast, the mouse has only a single gene, and

knockout mice are viable [33]. To study the role(s) of individual

human A3 proteins in vivo, we used the chicken b-actin regulatory

region to drive expression of myc-tagged A3A and A3G and

created transgenic mice on a C57BL/6 background. Two

independent transgenic strains each that transmitted the A3G or

A3A transgene were obtained. Each of these strains was then back-

crossed onto the A3 knockout background (also C57BL/6) to

generate mice containing functional copies of only the human

genes.

To determine the level of transgene expression, we first isolated

RNA from different tissues, including peripheral blood mononu-

clear cells (PBMCs), and performed reverse-transcribed real-time

quantitative PCR (RT-qPCR). RNA from human H9 cultured

cells and human and C57BL/6 mouse PBMCs served as controls.

For each transgene, there was one high- (A3Ghigh, A3Ahigh) and

one low- (A3Glow, A3Alow) expressing strain, defined by their

relative expression in lymphoid tissues. The A3Ghigh strain

expressed higher levels of the transgene than the endogenous

mouse gene in spleen and thymus, but similar A3G levels in mouse

and human PBMCs, while the A3Glow strain expressed approx-

imately 10-fold lower levels in these tissues (Figure 1A). In contrast,

the A3Ahigh strain expressed similar or lower levels than mouse

A3; there was also about 2-fold lower expression of A3A in mouse

PBMCs than in human PBMCs (Figure 1B). The A3Alow strain

had very low but detectable levels of expression in several tissues.

Since the b-actin regulatory region was used, transgene expression

was seen in many tissues and in several at levels higher than

endogenous mouse A3 (e.g. heart, brain and liver) (Figure 1A and

1B). We also performed western blots on different tissues from the

4 different mouse strains, using antiserum that detects both A3A

and A3G. The relative protein expression levels were similar to

that seen at the RNA level (Figure S1A and S1B).

We next determined if the in vivo-produced A3A and A3G

proteins were functionally active. Extracts were prepared from

primary splenocyte cultures and equal amounts (total protein

concentration/volume) were incubated with FAM-labeled sub-

strates containing the A3A- or A3G-preferred target sequence

(S50-TTC and S50-CCC, respectively). As controls, we also

performed these assays with extracts prepared from 293T cell lines

transfected with A3A or A3G. Activity could be readily detected in

transgenic mice expressing high levels of A3A or A3G. Further, in

accord with the known specificity of the cytidine deaminases,

extracts from the A3Ahigh mice deaminated the TTC- more

efficiently than CCC-containing substrates, while those from

A3Ghigh mice more efficiently deaminated the CCC substrate

(Figure 2). For both A3Alow and A3G low, trace amounts of activity

were detectable with the preferred substrates, while no activity was

detectable with either endogenous mA3 or from mA3 knockout

splenocytes. No deaminase activity was detected with WT mouse

extracts, perhaps because the mouse protein has lower overall

activity or expression. These data show that the transgenic

mice expressed catalytically active human deaminases in these

heterologous cells.

Human A3A and A3G restrict infection by murine
retroviruses

A number of studies have demonstrated in transfected tissue

culture cells that human A3G can restrict MLV and MMTV

infection when it is packaged into virions [33,48–50] whereas

A3A, which is not packaged, did not restrict MLV [22,51]. Both

MLV and MMTV initially infect dendritic and other sentinel cells

and then B and T lymphocytes during in vivo infection [32,52–57].

To determine if the target sentinel/lymphoid cells expressed the

transgenes, we sorted PBMCs from the transgenic mice into

different populations and tested each for transgene RNA. In

addition, we prepared bone marrow-derived dendritic cells

(BMDCs) and macrophages from these mice. B and T cells,

Author Summary

APOBEC3 genes are part of the host’s arsenal against virus
infections. Humans have 7 APOBEC3 genes and determin-
ing how each specifically functions to inhibit retroviruses
like HIV is complicated, because all 7 can be produced in a
given cell type or tissue. This is important, because some
viruses make their own factors, such as the HIV Vif protein,
that block the anti-viral activity of APOBEC3 proteins.
Moreover, there is interest in developing anti-viral thera-
peutics that enhance the action of APOBEC3 proteins. To
overcome this limitation, we made transgenic mice that
express two of the human proteins, APOBEC3A and
APOBEC3G in mice that do not express their own
APOBEC3. These mice were able to effectively block
infection by several mouse retroviruses. Moreover, we
found that APOBEC3A and APOBEC3G used different
mechanisms to block infection in vivo. These transgenic
mice have the potential to increase our understanding of
how the human proteins function to restrict virus infection
in vivo and should be useful for the development of
therapeutics that enhance APOBEC3 proteins’ antiviral
function.

Human APOBEC3A and 3G Transgenic Mice
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BMDCs and macrophages from the A3Ghigh and A3Ahigh strains

expressed the transgene RNA (Figure S2). The A3Glow strain

expressed the transgene in T and B cells and macrophages, but at

lower levels in BMDCs, while the A3Alow strain had very low

expression in all cell types. Interestingly, BMDCs showed the

highest levels of expression of endogenous mouse A3. Thus, the

transgenes were expressed in the appropriate MMTV and MLV

target cell types, sentinel cells and lymphocytes.

We next tested whether the human A3 proteins would function

as anti-viral restriction factors in vivo. Newborn pups from each of

the transgenic strains were infected with Moloney MLV (M-MLV)

at 1 day after birth, and 16 days later, virus titers were obtained

from splenocyte cultures of individual mice. The A3Ghigh mice

had on average 2 logs lower viral titers than knockout or wild type

mice while the A3Glow mice showed about 1 log lower infection

(Figure 3A). While the A3Ahigh mice also had lower levels of virus,

Figure 1. Expression of A3A and A3G transgenes. A) RT-qPCR analysis of RNA isolated from different tissues of the A3Ghigh and A3Glow strains.
B) RT-qPCR analysis of RNA isolated from different tissues of the A3Ahigh and A3Alow strains. Shown for comparison for both graphs are the
endogenous A3 levels in nontransgenic C57BL/6 mice (mA3), as well as A3A and A3G expression in human H9 cells and human PBMCs (average of 2
individuals). The mice used for this analysis were uninfected. Both panels are representative of 2 independent experiments with a different mouse of
each genotype. Error bars denote standard deviation of technical replicates.
doi:10.1371/journal.ppat.1004145.g001

Human APOBEC3A and 3G Transgenic Mice
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the A3Alow mice did not show statistically significant different

levels of infection compared to knockout mice. Similar results were

obtained with MMTV-infected mice inoculated with virus at 5

days and examined for infection at 21 days (Figure 3B). Thus, both

A3A and 3G restrict murine retrovirus infection in vivo, even when

expressed below the normal human endogenous levels.

A3G but not A3A extensively deaminates MLV and MMTV
DNA

It is well-recognized that A3G restricts HIV and other

retroviruses by cytidine deamination, although it has been shown

to also restrict infection by deaminase-independent means [15]. In

contrast, mouse A3 restricts both MLV and MMTV by cytidine-

deaminase-independent means, most likely by inhibiting reverse

transcription [33,46,47,58]. The role of A3A in restricting HIV

infection is less clear. A3A is not packaged into HIV virions, and it

has been suggested that it inhibits incoming virus in target myeloid

cells [23,24]. It is, however, believed to restrict endogenous

retroelement retrotransposition and parvovirus replication by

cytidine-deaminase-independent means [19,20].

To determine the mechanism by which the human A3 proteins

restricted MLV and MMTV infection in vivo, we isolated DNA

from M-MLV- and MMTV-infected splenocytes, as well as RNA

from M-MLV virions and sequenced a portion of the env gene of

M-MLV and the sag gene of MMTV. These genes were chosen

because of the ease of designing primers that did not amplify

endogenous M-MLVs or MMTVs. Viral DNA isolated from both

A3G transgenic mice showed evidence of heavy deamination and

the extent of deamination was dependent on the level of transgene

expression (Figure 4 and Figure S3; Table 1). While M-MLV viral

RNA also showed evidence of deamination, particularly in the

A3Ghigh strain, the level was much less than that seen in genomic

DNA. This was mostly likely due to the selection of functional

circulating viruses, in contrast to the integrated viral DNA, which

when translated, demonstrated evidence of non-conserved amino

acid changes and stop codons (not shown). Interestingly, both the

viral DNA and RNA showed evidence of deamination hotspots

(arrows in Figure 4; Table S1). These deamination hotspots were

all in GG motifs.

The results were similar for MMTV proviral DNA in spleen

(Figure S3 and Table 1). MMTV proviral DNA was most heavily

deaminated in the A3Ghigh strain, followed by the A3Glow strain

although to a lesser extent than that seen in M-MLV; in both cases

deamination preferentially occurred in GG motifs and there were

also deamination hotspots (Table S1). Interestingly, in contrast to

what was seen with M-MLV, there was very low but detectable

deamination in the A3Ahigh strain (Table 1) at the GA consensus

motif.

A3G but not A3A is packaged in murine retroviruses
Several studies, including our own, have shown that A3 proteins

inhibit infection by cytidine deaminase-independent means,

including inhibiting reverse transcription [47,58–61]. Indeed, we

saw no evidence of deamination of either M-MLV or MMTV by

endogenous mouse A3 (Table 1) and instead have found that the

mouse restriction factor works by inhibiting an early step of reverse

transcription [47,58]. To determine if the A3A or A3G proteins

were inhibiting murine retrovirus infection by this mechanism in

vivo, we isolated virions from M-MLV infected spleens and

performed endogenous reverse transcription (enRT) assays.

Virions isolated from either of the A3G strains showed diminished

RT activity, and the level of activity was proportional to the

amount of packaged protein (Figure 5A and 5C). In contrast,

virions isolated from either the A3Ahigh or A3Alow strains showed

RT activity similar to those isolate from A3 knockout mice

(Figure 5B). When we examined these particles for the presence of

A3A protein, we found that there was none packaged into the

virions (Figure 5C). We were unable to perform similar assays with

in vivo produced MMTV, because the only cell-free virus in mice

is found in milk and mammary tumors and we have not yet

established breeding colonies of virus-infected human A3

transgenic mice.

Target cell A3A and A3G restrict infection by incoming
viruses

Another means by which both mouse and human A3 proteins

restrict infection is by targeting incoming virus, particularly in

sentinel cells of the immune system [22–24,32,42]. To determine if

this mechanism was in effect in the transgenic mice, particularly

the A3A transgenic mice which restricted infection without virion

incorporation, we isolated BMDCs from the different transgenic

mice and infected them with M-MLV or MMTV. Infection of the

A3Ahigh and A3Ghigh strains was dramatically reduced to levels

seen in wild type C57BL/6 BMDCs at 24 hr post-infection, while

infection of BMDCs from the low-expressing A3A and A3G

strains was not significantly different than knockout cells (Figure 6A

and 6B). The lack of target cell restriction in the A3Glow strain

may reflect the low level of transgene expression in BMDCs

(Figure S2). BMDCs are terminally differentiated cells and

therefore are non-replicating; both MLV and MMTV require

active cell division for productive infection and thus the effect of

A3A was likely on initial infection and not virus spread [62,63].

Thus, A3A seems to function as a target cell restriction factor,

while A3G has the potential to inhibit infection both through

virion incorporation and in the target cell.

Vif overcomes A3G-mediated restriction in vivo
Since A3G is packaged into MLV particles and restricted

infection in the same manner as is seen with HIV, we next tested

Figure 2. Cellular lysates from splenocytes derived from
uninfected transgenic, wild type (BL/6) or mA3 knockout (KO)
mice or from 293T cell lines over-expressing A3A or A3G were
incubated with a 39-fluorophore labeled 50-mer single-strand-
ed oligonucleotide (S50) containing cytosine in the sequence
context preferred by A3G (S50-CCC) or A3A (S50-TTC).
Deamination was detected by uracil excision by UDG followed by
fragmentation of the resulting abasic site by NaOH and heat, resulting
in a 35-mer product (P35). High levels of activity in the 293/A3A samples
result in deamination at multiple potential cytosines in the S50-CCC
substrate (P37). This experiment was performed several times with the
same lysates, with similar results.
doi:10.1371/journal.ppat.1004145.g002

Human APOBEC3A and 3G Transgenic Mice
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whether the HIV Vif protein would counteract it in the A3G

transgenic mice. We introduced the picornavirus 2A peptide into a

replication-competent molecular clone of Friend-MLV down-

stream from env (F-MLV-2A) and then engineered vif into this

construct (F-MLV-2A-vif) (Figure S4) [64]. After transduction of

these constructs into NIH3T3 cells, virus was isolated and used to

infect 293FT cells (expressing the MLV receptor MCAT-1)

transiently transfected with an A3G expression vector. While

replication of the parental virus F-MLV-2A was restricted by more

than 3 logs in A3G-expressing cells, the F-MLV-2A-vif virus was

inhibited by less than 1 log (Figure S4).

To determine if the F-MLV-encoded Vif would also counteract

A3G-mediated restriction in vivo, we infected newborn pups from

the A3Ghigh and A3Glow strains with the two viruses and examined

in vivo expression of Vif, packaging of A3G protein into virions and

virus levels in spleen at 16 days post-infection. Vif was readily

detected in splenic lysates of F-MLV-2A-vif-infected mice and

A3G protein in these lysates was reduced compared to those

prepared from F-MLV-2A-infected mice (Figure 7A). Viral RNA

from F-MLV-2A and F-MLV-2A-vif virions was normalized by

RT-qPCR and equal amount of virus were analyzed by Western

blots to determine A3G incorporation. While A3G was efficiently

packaged in the parental F-MLV-2A virions, no packaged protein

was detected in the F-MLV-2A-vif virus (Figure 7A). Similar to

what was seen with M-MLV, replication of the parental F-MLV-

2A virus was inhibited by about 3 logs and 1 log in A3Ghigh and

A3Glow mice, respectively. Indeed, the lower level of CA protein

seen in splenic extracts from F-MLV-2A-infected A3Ghigh mice

reflects the low titers (Figure 7A). The F-MLV-2A-vif virus was

inhibited by less than a log in the A3Ghigh strain, while in the

A3Glow strain, Vif completely abrogated A3G’s inhibition of

infection (Figure 7B). In addition, F-MLV-2A was extensively

deaminated in the A3G transgenic mice, while deamination of F-

MLV-2A-vif was dramatically reduced (Table 1). This was likely

due to Vif-mediated inhibition of A3G packaging into virions.

Discussion

A3 family members play important roles in the host’s defense

against viral infections, in particular against retroviruses. While

much is known about the function of human A3 proteins in vitro,

less is known about their function in vivo. In contrast, studies in A3

knock-out mice infected with various murine retroviruses have

begun to elucidate the role of these proteins during in vivo infection

[32,33,41]. Here we took advantage of mA3 knockout mice and

generated transgenic mice that express human A3G and A3A in

the absence of mouse A3, with the goal of developing a system

with which to study the in vivo effects of individual human proteins.

Primates express 7 A3 proteins, many with overlapping target

motif sites. Due to the common target motif sites, it is difficult to

fully discriminate the contribution of each A3 protein to inhibiting

retrovirus infection in vivo or in primary cells. The development of

Figure 3. A3A and A3G restrict murine retrovirus infection in vivo. A) Newborn mice were infected with M-MLV and 16 days post-infection,
virus titers in spleens were measured. Each point represents the titer obtained from an individual mouse; the average for each group is shown by a
horizontal bar. The transgenic mice were derived from 2–3 litters each; the knockout mice are the littermates of the transgenic mice. N = 12 A3Ghigh, 6
A3Glow, 10 A3Ahigh, 7 A3Alow, 42 KO and 6 WT mice. B) Five day old mice were infected with MMTV and 3 weeks post-infection, DNA was isolated from
spleens and subjected to RT-qPCR with MMTV-specific primers. Each point represents the proviral DNA levels measured in splenic DNA from an
individual mouse; the average for each group is shown by a horizontal bar. The transgenic mice were derived from 2–3 litters each; the knockout
mice are the littermates of the transgenic mice. N = 5 A3Ghigh, 10 A3Glow, 12 A3Ahigh, 6 A3Alow and 24 KO mice. *, p#0.0001, **, p#.001, ***, p#.01,
NS, not significant (Mann-Whitney t test).
doi:10.1371/journal.ppat.1004145.g003

Human APOBEC3A and 3G Transgenic Mice
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transgenic mice that express only one A3 protein allows us to

delineate the function of each A3 protein in vivo without the

interference of the other A3 proteins.

An additional limitation of previous studies done on human A3

proteins is the reliance on transfecting constructs expressing A3

proteins, which may not reflect the endogenous levels of a protein

expression found in vivo. The transgenic mice described here

express A3A or A3G proteins at levels similar to those seen in

human cell in the absence of other A3 proteins, thus providing a

model for better understanding their individual action in the

context of virus infection.

We initiated these studies by creating transgenic mice with

human A3 genes with very different properties: A3G, which is a

potent inhibitor of HIV-Vif infection, has two CDA domains and

is cytoplasmic, and A3A, whose role in HIV inhibition is less-well

characterized, has a single CDA domain, is not degraded by Vif

and is believed to be both nuclear and cytoplasmic. Additionally,

A3A preferentially deaminates TC motifs [26], while A3G

preferentially deaminates at CC motifs [7,8]. We used a b-actin

promoter to drive these transgenes, to give us the ability to

compare the function of the A3 proteins in different tissues and cell

types. Two A3A and A3G mouse strains each were generated,

expressing levels of these proteins within the range or at levels

lower than that seen in human cells. This likely has relevance to

what occurs in individual humans, where non-coding region

polymorphisms in A3 genes alter expression levels and may

influence progression to HIV-induced disease [65–67]. We were

thus able to functionally demonstrate the dose-dependent effects of

both A3A and A3G on infection by two different murine

retroviruses, MLV and MMTV, in an in vivo model.

A number of studies have suggested that A3G and A3A inhibit

retrovirus infection by different means. A3G largely functions as a

CDA during reverse transcription after packaging into virions,

while A3A seems to work in target cells to block incoming virus

infection, either via deaminase-dependent or –independent means

[15,23,24]. We were able to examine the mode of restriction used

by A3A and A3G in restricting murine retroviruses in vivo, in a

system where only a single human A3 gene was expressed. Our

findings showed that A3G was packaged inside MLV virions in vivo

and that it inhibited infection by MMTV and MLV primarily by

cytidine deamination of viral DNA. On the other hand, A3A was

not packaged inside MLV virions, did not hypermutate the MLV

genome and had no effect on viral reverse transcription in

particles. However, both A3A and A3G expressed in BMDCs

derived from the transgenic mice inhibited early reverse

transcription by both incoming MLV and MMTV. These data

Figure 4. Deamination of M-MLV viral DNA and RNA in A3G transgenic mice. Splenic DNA or RNA from virions was isolated from the
infected mice described in Figure 3 and cloned and sequenced. In most cases . 10 sequences from 4 different mice were analyzed, as indicated in
the figure. For the viral RNA samples, the viruses from 5 animals were pooled for sequencing. Shown are the G to A changes in the sequences; other
mutations are indicated in Table 1. Red = GG . AG, cyan = GA . AA, green = GC . AC and magenta = GT . AT transitions. Red arrows denote
mutation hotspots seen in viruses isolated from A3Ghigh and A3Glow mice; black arrows denote hotspots identified only in A3Ghigh mice.
doi:10.1371/journal.ppat.1004145.g004

Human APOBEC3A and 3G Transgenic Mice
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support previous in vitro studies suggesting that A3A predominantly

functions in target cells to inhibit infection by both deamination-

dependent and –independent means [23,24].

Interestingly, while we saw no evidence of deamination of MLV

by A3A, MMTV showed a low level of deamination of proviral

DNA at the signature deamination motif used by A3A and

MMTV infection was reduced to a greater extent than M-MLV in

the A3Ahigh mouse strain. Indeed, unlike M-MLV, MMTV

infection was inhibited similarly in the A3Ahigh and A3Ghigh

strains (Figure 3B). The discrepancy in deamination between

MLV and MMTV could be due to the fact that MLV has fewer

target motif sites for A3A compared to MMTV (33 GA motifs in

M-MLV vs. 56 GA motifs MMTV in the sequenced regions). It is

also possible that A3A is packaged into MMTV virions or that

A3A interacts differently with the MMTV reverse transcription

complex. Finally, these viruses may use different target cells of

infection in vivo that express different levels of A3A. Nonetheless,

the extent of MMTV deamination in the A3Ahigh vs. A3Ghigh

mice, which have equivalent transgene expression in lymphoid

tissues, was significantly lower (6/52 genomes vs. 32/56 genomes,

respectively; p#0.0001 Fisher’s test), suggesting that both CDA-

dependent and –independent mechanisms are important for

MMTV restriction.

It has been suggested that a major role of A3 proteins is to

prevent zoonoses [28,30,40]. Several human A3 proteins have

been shown previously to restrict murine retroviruses in vitro, at

least in human cell lines [68,69]. Here we show that indeed A3A

and A3G potently restrict the infection of the murine retroviruses

MLV and MMTV when they are the only human proteins

expressed in vivo. Indeed, although we previously demonstrated

that endogenous mouse A3 restricts M-MLV and MMTV in vivo

[32,33], in the short-term in vivo infection assay used here, both the

A3A and A3G transgenes were more effective at inhibiting

infection than the mouse protein, even when expressed at much

lower levels (Figure 3). Our findings thus support the in vitro studies

suggesting that A3 proteins may act as means of prevention of

zoonoses.

We also showed that Vif can effectively counteract A3G in this

in vivo model, demonstrating that the machinery needed for Vif-

mediated A3G degradation does not show species-specificity.

While much is known about A3G-Vif interactions from in vitro

studies [70,71], our F-MLV-Vif/A3G model has the potential to

greatly increase our understanding of Vif-A3G functions in vivo.

Previous studies using humanized mouse models have also studied

A3-Vif interactions in vivo and shown that HIV proviral DNA is

deaminated, even in viruses containing vif [72]. We also found that

the presence of vif in F-MLV diminished A3G deamination and

that this was proportional to the level of transgene expression

(Table 1). The advantage of our model is that different A3 proteins

can be studied in isolation in the mice and thus, the interaction of

Vif with individual A3 proteins can be distinguished. This model

could also be used to test small molecule inhibitors of A3G/Vif

interactions in vivo.

Other viruses that are thought to be inhibited by human A3

proteins such as parvoviruses, herpes simplex I virus, and hepatitis

B virus could also be studied in these mice [20,34,36,39,73]. In

Figure 5. A3G but not A3A is packaged into M-MLV and inhibits reverse transcription. A) and B) Virions were isolated from the spleens of
A3G (A), A3A (B), wild type and KO mice and EnRT assays were performed. Shown is the average of 3 independent experiments using different virus
preparations; error bars show standard deviation. C) Western blot analysis of M-MLV virions from the transgenic mice, using anti-myc antisera (top
panel). The blots were stripped and reprobed with anti-MLV antisera (bottom panel). Abbreviations: CA, capsid; +, extracts from 293T cells transfected
with the A3A or A3G transgenes.
doi:10.1371/journal.ppat.1004145.g005
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addition, A3 proteins have been linked to DNA damage and

genomic mutations and it has been suggested that A3A deaminates

viral, nuclear, and mitochondrial DNA [74,75]. However, most of

this work has been done using immortalized cell lines or tissue

samples from patients and thus cannot fully recapitulate the role of

A3 proteins in DNA damage and genomic mutations. These newly

developed animal models allow for a closer study of the role the A3

proteins on genomic integrity.

In summary, our A3 transgenic models have the potential to

increase our understanding of how the human proteins function to

restrict virus infection in vivo. These mice should be useful for the

development of therapeutics that enhance A3 proteins’ antiviral

function and to better define the deleterious effects these proteins

might have on the host.

Materials and Methods

Ethical statement
All mice were housed according to the policies of the

Institutional Animal Care and Use Committee of the University

of Pennsylvania and all studies were performed in accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

experiments performed with mice in this study were approved by

this committee (IACUC protocol #801594). Human studies were

approved by the Institutional Research Board of the University of

Pennsylvania (IRB protocol #81703). Informed consent was not

obtained as all human samples were decoded and analyzed

anonymously.

Transgene construction
The A3A and A3G constructs were kindly given to us by Matija

Peterlin [22]. The A3A and A3G fragments from these constructs

were subcloned into pcDNA3.1(2) myc/his (Invitrogen) and then

into the pCAGGs vector (courtesy of Yongwon Choi). Construc-

tion details are available upon request. All clones were sequenced

to verify the inserts.

Generation of mice
The pCAGGs vector carrying myc-tagged A3A or A3G genes

was cut with SalI and HindIII to remove vector sequences and the

insert was gel-purified prior to micro-injection. Fertilized eggs of

C57BL/6 mice were injected with purified DNA fragments by the

Transgenic and Chimeric Mouse Facility of the University of

Pennsylvania. The transgenic mice were then backcrossed with

mouse A3 knockout mice to generate animals containing

functional copies of only the human genes. All transgenic lines

were maintained by breeding with mA3 knockout mice, so the

transgenes were carried in heterozygotes. This allowed us to

generate non-transgenic, matched controls for infection studies.

Mice were genotyped for A3A using primers 59-ATGGCATTG-

GAAGGCATAAG-39/59-CAAAGAAGGAACCAGGTCCA-39

and A3G using primers 59-GGGACCCAGATTACCAGGAG-

39/59-GCAGATTATTCCAAGGCTCAA-39, and for the mouse

A3 gene, as previously described [33].

Transgene RNA analysis
Tissues were harvested from 3 month old mice and RNA was

isolated with the use of Trizol� (Invitrogen). RNA was further

processed for the elimination of any residual phenol according to

the RNA cleanup method per the manufacturer’s recommenda-

tion (Qiagen) and then treated with DNaseI to eliminate any

contaminating genomic DNA (Qiagen). cDNA was produced from

the purified RNA using the SuperScript III First Strand Synthesis

System for RT-PCR (Invitrogen). RT-PCR was performed using

the Power SYBR Green PCR master mix kit (Applied Biosystems)

with the same A3A and A3G primers described above. For the

transcriptional profile, a standard curve was made using known

quantities of plasmid DNA and used to calculate the absolute copy

numbers for A3A, A3G and GAPDH. The copy number for A3A

and A3G were then normalized according to the levels of

GAPDH.

Western blots
Cells and whole tissues were lysed for 30 min. on ice in protein

lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA,

1% Triton-X-100, 1% deoxycholate, 0.1% SDS and protease

inhibitor cocktail) and then were sonicated and centrifuged at

10000 g for 10 minutes. To quantify the levels of the A3A and

A3G transgene expression, 250 mg and 100 mg of each tissue

extract, respectively, were analyzed on 10% SDS polyacrylamide

gels. The following antibodies were used: polyclonal goat anti-

MLV antibody (NCI Repository), mouse anti-b-actin antibody

(Sigma Aldrich), rabbit anti-GAPDH (Cell Signaling Technology),

rabbit anti-vif (NIH AIDS Reference and Reagent Program),

rabbit anti-myc (Roche) and rabbit anti-A3G (cem15 c29; NIH

AIDS Reference and Reagent Program) which recognizes both

A3G and A3A. HRP-conjugated anti-rabbit (Cell Signaling

Technology), anti-goat and anti-mouse antibodies (Sigma Aldrich)

were used for detection, using either ECL kits (GE Healthcare Life

Figure 6. Expression of A3A and A3G in BMDCs restrict
incoming murine retroviruses. A) Infection of BMDCs with M-MLV.
RT-qPCR analysis of genomic DNA with M-MLV-specific primers,
normalized to GAPDH. B) MMTV infection of BMDCs with MMTV. RT-
qPCR analysis of genomic DNA with MMTV-specific primers, normalized
to GAPDH. Shown are the results of 2 independent experiments (open
bars, expt.1; closed bars, expt. 2) with 3 technical replicates in each
experiment. Error bars (standard deviation) and p values were
calculated for each experiment. *, p#.01 based on one-way ANOVA.
doi:10.1371/journal.ppat.1004145.g006
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Sciences) or the Supersignal West Femto Chemiluminescent

substrate (Thermo Scientific). For western blot analysis of virions,

viral RNA was quantified by RT-qPCR, as previously described

[58] and equal amounts were loaded on gels.

Deamination assay
Splenocytes were isolated from the transgenic mice and stored

at -80uC until use. As controls, 293T cells transfected with A3A- or

A3G- expressing [22] were also used. Cytoplasmic extracts were

prepared in lysis buffer (10 mM Hepes pH 7.3, 10 mM NaCl,

1.5 mM MgCl2, 0.5 mM PMSF, 1 mM DTT and 10 mM ZnCl2)

using 200 mL lysis buffer/107 cells, incubated on ice for 15 min

and then repeatedly passed through a 29 gauge needle. The

supernatants after centrifugation (800xg for 5 min) were dialyzed

(20 mM HEPES-OH, 100 mM NaCl, 2 mM EDTA, 1 mM

DTT, 0.5 mM PMSF and 5% glycerol pH 7.3 @4uC) and

subsequently quantified by Bradford assay. The assay was

performed with 39-fluorescein labeled 50-mer DNA substrates

(S50-XXC; ATT ATT ATT ATT XXC ATT TAT TTA TTT

ATT TAT GGT GTT TGG TGT GGT T –FAM; IDT) that

contained a cytosine at position 15 in different sequence context,

S50-TTC, S50-CCC, S50-AGC. OnemM of substrate was

incubated with extract (37.5 mg/mL final, 5% dialysis buffer),

0.05 units/mL UDG (NEB) and 0.1 mg/mL RNaseA in 20 mM

Figure 7. Vif counteracts A3G in transgenic mice. Newborn mice were infected with F-MLV-2A or F-MLV-2A-vif. A) Splenic extracts and isolated
virions were analyzed by western blot. A3G was detected with anti-A3G antisera. Shown is a representative western blot from individual mice (KO and
A3Ghigh) infected with F-MLV-2A and F-MLV-2A-vif. This experiment was repeated twice with 1 additional mouse of each genotype and gave similar
results. B) Virus titers in spleens were measured. Each point represents the titer obtained from an individual mouse; the average for each group is
shown by a horizontal bar. The transgenic mice were derived from 1–3 litters each; the knockout mice are the littermates of the transgenic mice.
N = 11 KO, 4 A3Ghigh and 5 A3Glow mice infected with F-MLV-2A-vif and 12 KO, 4 A3Ghigh and 4 A3Glow mice infected with FMLV-2A. *, p#0.02; **, p#

0.004; NS, not significant (Mann-Whitney T test).
doi:10.1371/journal.ppat.1004145.g007
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Tris, pH 8, 1 mM DTT, 1 mM EDTA. After 2.5 hrs the reaction

was quenched with SDS (1% final) and frozen. The reactions were

extracted with phenol/chloroform/isoamyl alcohol and then

chloroform. Abasic sites were cleaved with NaOH (150 mM final)

and heating to 95uC for 10 min. Samples were mixed with equal

volume of formamide and loading dye, run on 20% 1XTBE/7M

Urea polyacrylamide gel, and imaged using a Typhoon variable

model imager.

Primary cell isolation
BMDCs were generated from the A3A, A3G transgenic mice as

well as the wild type and mA3 knockout mice as previously

described [76]. The cells were differentiated with recombinant

murine granulocyte-macrophage colony-stimulating factor

(20 ng/ml; Invitrogen). Macrophages, B and T cells were obtained

from the peripheral blood of A3A and A3G transgenic, C57BL/6

and A3 knockout mice of similar ages. The blood was treated with

ACK (Ammonium-Chloride-Potassium) lysis buffer to remove red

blood cells. After washing with PBS/2% FCS, the cells were

incubated with anti-CD3-APC, anti-CD19-PE and anti-CD11b-

PercP for 30 minutes on ice. Stained cells were washed 2 times

with PBS/2% FBS and sorted using a BD FACSCalibur cell sorter

and CellQuest Pro software. The sorted cells were lysed for

RNA isolation using the RNeasy kit (Qiagen) according to the

manufacturer’s instructions.

Virus isolation
M-MLV was isolated from NIH 3T3 fibroblasts stably infected

with virus as previously described [77]. F-MLV-2A and F-MLV-

2A-vif were isolated from Mus Dunni cells. M-MLV and F-MLV

were titered as described in the next section. F-MLV-2A was

constructed from an F-MLV vector (pLRB302) provided by Mario

Santiago into which the 2A peptide sequence designed for the

construction of multicistronic vectors was inserted [64,78] (Figure

S4 legend). For virus isolation from spleen, splenocytes were

collected and incubated in RPMI 1640, 10% FCS, nonessential

amino acids, and penicillin/streptomycin for 48 h. The media was

passed through a 0.4-mm filter, treated with 20 U/ml DNase I

(Roche) at 37uC for 30 min, and pelleted through a 30% sucrose

cushion. After resuspension, M-MLV was titered on NIH 3T3

cells and F-MLV on Mus Dunni cells, as well as quantified by

reverse-transcribed RT-qPCR and analyzed on Western blots with

anti-MLV antisera. The primers used for virus quantification were

located in the env genes; (M-MLV: 59-CCTACTACGAAGGG-

GTTG-39/59-CACATGGTACCTGTAGGGGC-39; F-MLV 59-

TACAGGGAGCTTACCAGGCA-39/59-GTTCCTATGCAG-

AGTCCCCG-39). MMTV(RIII) virus was isolated as previously

described from tumors of A3 knockout mice [79]. Real-time

PCR was used to calculate approximate MMTV virion RNA

levels in the preparation, as previously described [47].

Infectivity assays
M-MLV infection levels in the spleens of the infected mice

were determined by infectious center (IC) assays using a focal

immunofluorescence assay, as previously described [32]. F-MLV-

2A and FMLV-2Avif titers were performed as follows: Mus Dunni

cells were seeded on a 12-well plate at a concentration of 105 cells

per well. The cells were co-cultured the next day with splenocytes

from infected mice at 10-fold dilutions. At 2 hours post-infection

2 ml of media was added in each well and the cells were incubated

at 37uC with 5% CO2 for 48 hrs. The cells were fixed with 100%

ice-cold methanol for 10 minutes and then incubated with an anti-

FMLV env antibody for 1hr at 4uC followed by anti-mouse

Alexafluor488 antibody (Invitrogen) for 1hr at 4uC. ICs were

counted using a Nikon Diaphot 300 fluorescence microscope.

In vivo infections
For all experiments, newborn mice were generated by crossing

mice heterozygous for the transgene, homozygous for mouse A3

knockout with A3 knockout mice, generating both transgenic and

nontransgenic mouse A3 knockout controls. Infections were done

without genotyping the mice; genotyping was performed at 10

days post-infection. C57BL/6 mice were bred separately for these

experiments. For MLV infections, two day old mice were infected

by IP injection of 105 ICs M-MLV or 103 ICs FMLV-2A and

FMLV-2A-vif, and harvested 16 days post-infection, as previously

described [58]. For MMTV(RIII) infections, 1x106 virions were

injected IP into 5 day old mice. Infected mouse spleens were

harvested 3 weeks post-infection. To measure the amounts of viral

DNA in the spleens of the infected mice, splenic DNA was isolated

using the DNeasy Blood and Tissue Kit (Qiagen). RT-PCR was

performed using the Power SYBR Green PCR master mix kit

(Applied Biosystems). For MLV, the env primers described in the

Virus Isolation section were used. The primers used for MMTV

detection were 59-CGTGAAAGACTCGCCAGAGCTA-39/59-

GAAGATGATCTTCAAGGGCAATGCCT-39. GAPDH prim-

ers were used in both cases for normalization 59-CCCCTTCATT-

GACCTCAACTACA-3/59-CGCTCCTGGAGGATGGTGAT-39.

eNRT assays
Equal amounts of virus (normalized by RNA levels as

described in the preceding section) isolated from the spleno-

cytes of M-MLV infected A3A, A3G, A3 knockout and BL/6

mice were incubated in EnRT buffer (16 PBS, 2.5 mM

MgCl2, 0.01% Nonidet P-40, 1 mM dNTPs) at 37 uC.

Fractions of the reactions were removed at 0, 30 min, 1 h, 2

h, and 4 h and added to 40 mg of sonicated salmon sperm

DNA. DNA was isolated from fractions using the Qiagen

DNeasy Blood and Tissue Kit (Qiagen). PCR was performed

using MLV strong stop primers to measure the level of early

reverse transcripts: F primer, 59-59-CCTCCGATTGACT-

GAGTCGCCCC-39; R primer, 59-ATGAAAGACCCCCGCT-

GACGG-39.

Sequencing
DNA from the spleens of MLV- and MMTV-infected A3A,

A3G, BL/6 and A3 knockout mice was isolated as described

above. RNA was also isolated from M-MLV virions produced by

the infected splenocytes of the A3G transgenic mice using the

Rneasy Mini kit (Qiagen) and cDNA was then produced using the

SuperScript III First Strand Synthesis System for RT-PCR

(Invitrogen). A 549bp region from the M-MLV envelope was

amplified using the primers 59-CCAATGGAGATCGGGA-

GACG-39/59-GTGGTCCAGGAAGTAACCCG-39, a 586bp re-

gion from the F-MLV envelope was amplified using the primers

59-AGCCCTCACCAGGTCTACAA-39/59-ATGAGGTGACC-

TGTTTCCCG-39 and a 673bp region from the MMTV(RIII)

LTR was amplified by nested PCR using primers 59-GAA-

GATCTTCCCGAGAGTGTCCTACAC-39/59-GAAGATGA-

TCTTCAAGGGCAATGCCT-39 for the 1st round and a second

forward primer 59-AATTCGGAGAACTCGACCTTCC-39 with

the same reverse primer for the 2nd round of amplification. Bands

were excised and the fragments were cloned into pCR2.1-TOPO

vector as specified by the manufacturer (Invitrogen). Sequences

were aligned using the ClustalW program, and G-to-A mutations

were annotated by Hypermut (www.hiv.lanl.gov/content/

sequence/HYPERMUT/hypermut.html).
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Target cell assays
BMDCs were infected by the spinoculation method as

previously described [56]. Briefly, BMDCs were plated in a 96-

well plate at a cell density of 105/100 ml. MMTV RIII (36107

virions/105 cells) or M-MLV (MOI = 1) was added to the cells and

the plates were centrifuged at 1,200 6 g for 120 min at room

temperature. After centrifugation, the cells were incubated for

24hrs at 37uC. DNA was extracted using the Dneasy kit (Qiagen)

according to the manufacturer’s instructions. RT-qPCR was

performed to examine the infection levels, as described above (In

vivo infections).

Statistical analysis
Statistical analysis was performed using GraphPad/PRIZM

software. Tests used to determine significance are described in the

figure legends.

Supporting Information

Figure S1 A) Western blots of tissues from A3Ghigh and A3Glow

strains, probed with anti-A3G and anti-GAPDH antibodies. B)

Western blots of tissues from A3Ahigh and A3Alow strains, probed

with anti-A3G antibody that also recognizes A3A (cem15 C-29)

and anti-GAPDH antibodies. The mice used in this analysis were

uninfected.

(PDF)

Figure S2 Transgene expression in hematopoietic lineage cells.

T cells, B cells, macrophages (M) and bone marrow-derived

dendritic cells (DC) were purified from the mice of each genotype

as described in the text and RNA isolated from the purified cells

was analyzed by RT-qPCR for transgene expression. Shown are

the averages for 3 (T cells, B cells and macrophages) or 2 (BMDCs)

different mice. This experiment was performed twice with similar

results; shown is a representative experiment. Error bars denote

standard deviation.

(PDF)

Figure S3 Deamination of MMTV viral DNA in A3A and A3G

transgenic mice. A) Splenic DNA was isolated from the MMTV-

infected mice described in Fig. 4 and cloned and sequenced. In

most cases . 10 sequences from 3-4 different mice were analyzed,

as indicated in the figure. Shown are the G to A changes in the

sequences; other mutations are indicated in Table 1. Red = GG

. AG, cyan = GA . AA, green = GC . AC and magenta = GT

. AT transitions. Red arrows denote mutation hotspots seen in

viruses isolated from A3Ghigh and A3Glow mice; black arrows

denote hotspots identified only in A3Ghigh mice.

(PDF)

Figure S4 Construction of FMLV-2A-vif. Upper panel: A

plasmid encoding a full-length replication-competent clone of B-

tropic F-MLV was modified by adding a 2A peptide sequence

from picornavirus (P2A) in frame with the C terminus of the

envelope gene, followed by a Not1 restriction site and a stop

codon. The resulting plasmid is named FMLV-2A. The vif gene

from NL4-3 was then amplified by PCR and clone in frame into

the Not1 site to generate FMLV-2A-vif. Lower panel: 293FT

cells were transfected with 1ug of FMLV-2A or FMLV-2A-vif

alone or in combination with 50ng hA3G or empty vector

(pcDNA). At two days post transfection, the supernatant was

harvested and assayed for the presence of infectious FMLV by

plating on Mus dunni cells by an IC assay. The data are

representative of two independent experiments.

(PDF)

Table S1 Deamination hotspots in A3G transgenic mice. Each

of the hotspots appeared once in the sequenced region. Shown is

the fraction of sequences containing the G to A change. There

were no deamination hotspots for either virus in the A3A

transgenic mice.

(PDF)
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