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Introduction

Gastric cancer (GC) is one of the most common types 
of cancer and a leading cause of cancer-related deaths 
worldwide (1). Despite the advances in early diagnosis, 
surgical resection and adjuvant chemotherapy in the last 
decade, GC is still notorious for dismal prognosis due to 

its significant heterogeneity and predisposition for invasion 
and distant metastasis. For advanced and metastatic GC, 
even though new therapeutic approaches, such as targeted 
therapies are currently being researched, clinical trials have 
been largely disappointing (2,3). Therefore, it is important 
to further elucidate the molecular pathogenesis involved 
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in GC in order to identify novel prognostic indicators and 
potential therapeutic strategies.

Autophagy, a highly conserved multi-step catabolic 
process, can not only promote cell survival and energy 
homeostas i s  under  metabol ic  s tress  through the 
maintenance of cellular synthetic pathways, but can also 
maintain long-period cellular integrity by inhibiting the 
accumulation of malfunctioning organelles and misfolded 
proteins (4). Growing findings have revealed the significance 
of autophagy in numerous physiopathological processes, 
such as vascular disorders, inflammation and cancer (5). 
Autophagy in cancer is an intensely debated concept in the 
field of translational research. Both pro-survival (tumor 
promotive) and anti-survival (tumor suppressive) properties 
of autophagy have been reported, of which the dual 
nature is mainly determined by specific tumor stage and 
genetic context (6). At early stages of tumor development, 
autophagy acts in an anti-tumorigenic manner by facilitating 
DNA damage repair and reducing reactive oxygen species, 
thus suppressing early tumorigenesis. On the other hand, 
during late stages of tumor development, autophagy 
increases the ability of tumor cells to handle endogenous 
stress and induces chemoresistance, thus promoting the 
development of existing tumors (7). The participation of 
autophagy in GC progression and chemoresistance has 
been previously reported (8-10). However, a number of 
studies only focused on investigating single pathway or 
limited genes of interest in GC, which only reflect partial 
functions of autophagy. Thus far, very few studies have 
investigated the clinical importance of autophagy in GC in 
a comprehensive manner. Therefore, an unbiased screening 
is urgently needed to characterize the gene signature of 
autophagy and address the association of autophagy with 
prognosis in GC.

Given that high-throughput expression data is 
now available, it has become feasible to utilize global 
gene expression data to examine the relationship 
between autophagy-related genes (ARGs) expression 
and the clinical outcomes of patients with cancer (11). 
Moreover, the establishment of The Cancer Genome 
Atlas (TCGA) database is helpful for the discovery and 
further understanding of gene profiles (12). Nevertheless, 
prognostic models based on ARGs expression profiles 
in GC have not yet been reported. To the best of our 
knowledge, no prognosis-related model composed of ARGs 
for GC has been constructed. The present study, for the 
first time, constructed a risk signature that contained seven 
ARGs and further developed a prognostic index (PI) model 

with a potential to independently and accurately predict 
the prognostic value for patients with GC. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://dx.doi.org/10.21037/
tcr-21-191).

Methods

Data and information extraction

A variety of ARGs were obtained through the Human 
Autophagy Database (HADb, http://www.autophagy.lu/
index.html). TCGA (https://tcga-data.nci.nih.gov/tcga/) 
provided 415 GC and 35 non-tumor cases with RNA-
sequencing and clinical data. A total of 409 patients with 
GC with intact follow-up and gene expression data were 
subsequently enrolled in the present study. Additionally, 
raw data from GSE15460 dataset was downloaded from 
the gene expression omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). A total of 248 cases with gene 
expression and survival data were enrolled from GSE15460 
dataset. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Identification of ARGs with differential expression in GC

To obtain the ARGs that were differentially expressed in 
GC compared with non-tumor cases, the edgeR package 
was utilized based on a standard fold-change >2 and P<0.05 
after correction. Subsequently, Gene ontology (GO) as well 
as Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations of these ARGs were conducted to further 
understand their biological functions. After the analysis of 
the enrichment of GO and KEGG pathways, the GO plot 
package was utilized in order to display high-dimensional 
results.

Establishment and evaluation of the ARGs-based PI model

Univariate Cox regression analyses were performed to 
examine the relationship between each differentially 
expressed ARG and the overall survival (OS) of patients 
with GC. Only those OS-related ARGs were subsequently 
analyzed using multivariate Cox regression analysis in order 
to discover the ARGs that act as independent indicators of 
poor prognosis. Finally, a PI model was constructed based 
on the combination of the regression coefficient, as well as 
the expression level of poor OS-related ARGs. A PI value 
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was subsequently calculated for every patient with GC to 
classify the patients into high- or low-risk groups with the 
median value as the cut-off value. Then, a Kaplan-Meier 
(K-M) survival curve was plotted to explore the OS of 
patients with GC from high-risk or low-risk groups, with 
the survival differences evaluated by the log-rank test.

Difference of various immune cell subtypes between groups 
classified by PI model in GC

A total of 22 different types of tumor-infiltrating immune 
cells were extracted from TCGA (13). The abundance of 
every type of immune cells was examined using a Wilcoxon 
test to investigate the difference between the prognostically 
stratified risk groups.

Statistical analysis

SPSS 18.0 (IBM Corp.) and GraphPad Prism 7 (GraphPad 
Software, Inc.) were utilized for the statistical analyses. 
Univariate Cox regression analyses were performed to 
investigate the relationship between OS and gene expression 
profiles. Multivariate Cox regression analysis was performed 
to further identify independent predictors of poor OS from 
the candidate prognostic ARGs, so as to construct the PI 
model. P<0.05 was considered to indicate a statistically 
significant difference.

Results

ARGs with differential expression in GC

A total of 5,298 differentially expressed genes (DEGs) were 
found in GC compared with non-tumor cases, with 2,434 
up-regulated and 2,864 down-regulated. Based on the 
cross reference with a total of 222 ARGs obtained from the 
HADb, 25 differentially expressed ARGs were identified 
(Figure 1A), including 19 up-regulated and 6 down-
regulated genes (Figure 1B,C). 

Functional annotations of the differentially expressed 
ARGs in GC

GO and KEGG analyses were performed for the 25 
differently expressed ARGs in GC. In terms of “Molecular 
Function” (MF), these genes were enriched in “enzyme 
regulator activity”, “identical protein binding” and “enzyme 
inhibitor activity” (Figure 2A). The top enriched “Biological 

Process” (BP) terms were “phosphorylation”, “apoptosis 
go” and “programmed cell death” (Figure 2B), while there 
was no enriched “Cellular Component” (CC) terms. 
Additionally, the enriched KEGG pathways were related to 
cancer progression (Figure 2C).

Identification of prognosis-related ARGs

The association of 25 differentially expressed ARGs with 
OS in GC was analyzed by univariate analyses, resulting in 
seven prognosis-related ARGs. Multivariate Cox regression 
analysis further demonstrated that all the seven prognosis-
related ARGs (HSPB8, NRG2, GABARAPL1, TMEM74, 
DLC1, MAP1LC3C and NRG3) were independent 
indicators of poor OS. The findings from K-M analyses 
showed that the up-regulation of seven prognosis-related 
ARGs was significantly related to poor outcomes for 
patients with GC (Figure 3A,B,C,D,E,F,G). 

Construction of the ARGs-based PI model

On the basis of the regression coefficients that represented 
the relative weight of genes in the multivariate Cox 
regression analysis, the PI model was constructed by the 
following formula: PI = [0.1472 × expression value (EV) 
of HSPB8] + (0. 1212 × EV of NRG2) + (0.2196 × EV of 
GABARAPL1) + (0.1410 × EV of TMEM74) + (0.2565 × 
EV of DLC1) + (0.1906 × EV of MAP1LC3C) + (0.1240 
× EV of NRG3). It was noted that all the coefficients 
were positive, suggesting the negative association of the 
seven ARGs with the OS of patients with GC. According 
to the median score of the PI signature, the patients with 
GC were sorted into high- or low-risk groups. Of note, 
the expression of all seven ARGs was observed to be up-
regulated in the high-risk group compared with the low-
risk group (Figure 4). 

To determine the value of the PI model in predicting the 
outcome of patients with GC, K-M analyses were performed 
to compare the OS of the high-risk group with that of 
the low-risk group, which demonstrated worse outcomes 
in the high-risk group (HR=2.01, P<0.0001; Figure 5A).  
Figure 5B,C,D,E show the heatmap of expression profiles for 
the seven ARGs, the PI distribution and OS of patients, and 
the number of censor patients in TCGA. Furthermore, the 
value of the PI model was further evaluated in an external 
GEO validation cohort GSE15460. A total of 248 patients 
in the GSE15460 dataset were stratified into low- (n=124) 
or high-risk group (n=124). In accordance, the high-risk 
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Figure 1 The 25 differentially expressed ARGs in GC. (A) Venn diagram of DEGs in GC from TCGA and ARGs from HADb database. 
(B) The volcano plot of the ARGs differentially expressed in GC. The red and green dots indicate up-regulation and down-regulation 
respectively. (C) Clustering analysis of the 25 differentially expressed ARGs in 409 GC cases. ARGs, autophagy-related genes; GC, gastric 
cancer; DEGs, differentially expressed genes; TCGA, The Cancer Genome Atlas; HADb, Human Autophagy Database.

group showed a poor outcome compared with the low-risk 
group (P=0.0079; Figure 6).

Association of PI model with immune cell infiltration 
estimates in GC

To investigate the association of the PI model with immune 

microenvironment, information on 22 different types 
of tumor-infiltrating immune cells was obtained from 
TCGA (13), which was calculated using the CIBERSORT 
algorithm. After a cross reference with our dataset, 385 
samples were completely retracted and further classified 
into low- (n=189) or high-risk group (n=196). There was 
a difference between low- and high-risk groups regarding 
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Figure 2 Functional annotations for the 25 differentially expressed ARGs. (A) Molecular function. (B) Biological process. (C) KEGG. 
ARGs, autophagy-related genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.

the infiltration ratio of different types of immune cells 
(Table 1). The amounts of “Eosinophils”, “B cells naive”, “T 
cells CD4 memory resting”, “Dendritic cells resting”, and 
“Mast cells resting” were significantly increased in the high-

risk group, while those of “Macrophages M0”, “T cells 
follicular helper”, “T cells CD4 memory activated”, “Mast 
cells activated”, and “Macrophages M1” were significantly 
decreased (Figure 7A,B).
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Figure 3 K-M survival curves of the seven prognostic ARGs for GC in TCGA dataset. (A,B,C,D,E,F,G) The seven ARGs (HSPB8, NRG2, 
GABARAPL1, TMEM74, DLC1, MAP1LC3C and NRG3) were identified to be prognosis-related for patients with GC (n=409), all of 
which were unfavorable factors. K-M, Kaplan-Meier; ARGs, autophagy-related genes; GC, gastric cancer; TCGA, The Cancer Genome 
Atlas.

Figure 4 The expression levels of all the seven prognostic ARGs 
were up-regulated in PI-based high-risk group for patients 
with GC in TGCA dataset. ARGs, autophagy-related genes; 
PI, prognostic index; GC, gastric cancer; TCGA, The Cancer 
Genome Atlas.

Discussion

GC is still among one of the most aggressive malignancies 
with high morbidity and mortality, therefore, discovering 
reliable biomarkers for novel diagnostic, therapeutic and 
preventive approaches for this disease is a necessity. In terms 
of cellular processes, autophagy is the primary regulator of 
homeostasis, the dysregulation of which contributes to the 
progression of GC. The present study highlighted the high-
throughput comprehensive analyses of ARGs in patients 
with GC.

The present study screened 25 ARGs with differential 
expression in GC. It should be noted that not all the 25 
differentially expressed ARGs were up-regulated, and 
there were 6 down-regulated genes in GC, which to a 
certain degree supports the notion that autophagy may play 
promotive and suppressive roles in tumor development. 
A total of seven OS-related ARGs (HSPB8, NRG2, 
GABARAPL1, TMEM74, DLC1, MAP1LC3C and NRG3) 
were determined and used to construct an OS-related PI 
model, which was demonstrated to be an independent 
predictor of poor prognosis for patients with GC. Notably, 
the seven ARGs in the PI model were upregulated in GC, 
indicating that autophagy may promote GC progression as 
a whole (14), through epithelial-to-mesenchymal transition, 
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extracellular matrix degradation, tumor angiogenesis and 
through shaping the tumor microenvironment (15).

Among the genes in the PI signature, the most well-
known function of HSPB8 is acting as a chaperone in the 
regulation of autophagy (16). HSPB8 has been reported 
to be indicative of poor prognosis and can promote tumor 
growth via ERK-CREB pathway activation in patients 
with GC (17), consistent with the present results. Besides 
HSPB8, NRG2, a member of neuregulin family, has been 
reported to be incorporated in disease free survival-related 

prognostic model for prostate cancer (18), and NRG2 is 
among the DEGs that can potentially predict biochemical 
recurrence after curative surgery in prostate cancer (19). 
Neuregulins have an EGF-like domain located in its 
extracellular portion, which is responsible for binding and 
activation of the ErbB receptors (20). In comparison with 
NRG2, little is known about NRG3, most likely due to its 
low affinity for receptors and poor signaling activity (21). 
At present, as NRG3 is exclusively expressed in the nervous 
system, most research concerning NRG3 is related to the 
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nervous system (22). The present results indicated that 
NRG3 might be involved in cancer progression. 

GABARAPL1 belongs to the ATG8 family and is 
associated with autophagic vesicles and acts with other 
GABARAP family members to regulate autophagosome 
maturation (23). GABARAPL1 participates in a variety of 
cancers, and has a promotive as well as suppressive function 
in breast (24,25) and prostate cancer (26,27). The other 
subfamily of ATG8 is MAP1LC3, one isoform of which is 
MAP1LC3C (28). It was recently found that cancer cells 
with low MAP1LC3C expression possessed enhanced Met 
stability, signaling and cell invasion (29). Furthermore, 
MAP1LC3C could mediate selective autophagy of 
the MET receptor tyrosine kinase, thus leading to the 
inhibition of tumor invasion (30). Therefore, the promotive 
or suppressive role of GABARAPL1 and MAP1LC3C in 
cancer progression may depend on different tumor stages 
and microenvironment. The present study showed the 
potential involvement of GABARAPL1 and MAP1LC3C in 
GC progression.

As a transmembrane protein, TMEM74 is reported to 
enhance proliferation by inducing autophagy. Furthermore, 
TMEM74 itself may become down-regulated through 
autophagic process, indicating the existence of a potential 
self-regulatory loop in order to sustain a suitable 
autophagic level, which prevents tumor cells from death 
caused by excessive autophagy (31). The overexpression 
of TMEM74 not only leads to accelerated proliferation of 

liver and lung cancer cells, but also correlates with reduced 
survival rates (32). TMEM74 could associate with BIK and 
inhibit the induction of apoptosis, providing an interaction 
or crosstalk between autophagy and apoptosis (33). At 
present, the role of TMEM74 in tumor development has 
not been widely studied, hence the underlying mechanism 
of TMEM74 in GC progression still needs further 
investigation. DLC1, a GTPase-activating protein for Rho 
family members, acts as a potential tumor suppressor and 
is frequently down-regulated or inactivated in numerous 

Table 1 The infiltration ratio of 22 patterns of immune cells in PI-
based high-risk and low-risk groups for patients with GC in TGCA 
dataset

Patterns
Mean of high 

risk
Mean of low 

risk
P value

B.Cells.Memory 6.89% 5.26% 0.084

B.Cells.Naive 7.76% 5.98% 0.001*

Dendritic.Cells.Activated 1.53% 2.24% 0.168

Dendritic.Cells.Resting 2.12% 1.52% 0.011*

Eosinophils 2.56% 0.76% 0.001*

Macrophages.M0 6.53% 8.84% 0.001*

Macrophages.M1 5.42% 6.45% 0.014*

Macrophages.M2 19.42% 18.13% 0.090

Mast.Cells.Activated 6.72% 7.78% 0.013*

Mast.Cells.Resting 5.65% 4.16% 0.036*

Monocytes 2.56% 2.33% 0.469

Neutrophils 2.66% 2.73% 0.071

NK.Cells.Activated 4.07% 4.79% 0.279

NK.Cells.Resting 2.79% 3.70% 0.094

Plasma.Cells 4.61% 4.30% 0.917

T.Cells.CD4.Memory.
Activated

3.57% 4.86% 0.010*

T.Cells.CD4.Memory.
Resting

16.88% 15.09% 0.009*

T.Cells.CD4.Naive 4.56% 10.76% 0.800

T.Cells.CD8 11.77% 12.23% 0.759

T.Cells.Follicular.Helper 5.94% 7.25% 0.002*

T.Cells.gamma.delta 2.80% 0.76% 0.267

T.Cells.Regulatory.Tregs 4.92% 4.77% 0.345

* statistically significant. PI, prognostic index; GC, gastric 
cancer; TCGA, The Cancer Genome Atlas.
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Figure 6 The K-M survival curve validated the prognostic value of 
the seven ARGs-based PI in an external GEO cohort GSE15460. 
K-M, Kaplan-Meier; ARGs, autophagy-related genes; PI, 
prognostic index; GEO, Gene Expression Omnibus; OS, overall 
survival.
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Figure 7 The association of PI model with immune cell infiltration estimates in GC. (A) The infiltration ratio of 22 different patterns of 
immune cells in PI-based high or low-risk groups for GC patients in TGCA dataset. (B) The differentially infiltrated immune cells in high-
risk group of GC cases. The red dots indicate significant difference while blue dots indicate no significance. PI, prognostic index; GC, 
gastric cancer; TCGA, The Cancer Genome Atlas.
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types of cancer, which facilitates tumor cells to proliferate 
and disseminate (34). DLC1 can promote senescence via 
the FoxO3a/NF-κB signaling pathway mediated by SIRT1 
following treatment of breast cancer with resveratrol (35),  
whereas deficiency of DLC1 can drive cell contact 
inhibition via YAP signaling (36). However, recent studies 
have discovered the oncogenic role of DLC1 and that its 
expression is up-regulated in melanoma tissues, where 
nuclear DLC1 acts as an oncogene through association 
with FOXK1 to co-activate the expression of MMP9 (37).  
Furthermore, as a direct target of activated YAP/
TAZ, DLC1 could drive sprouting angiogenesis and 
collective migration (38), suggesting that the role and 
function of DLC1 is highly dependent on the cellular 
microenvironment. Thus far, few studies have examined 
the role of DLC1 in autophagy, and DLC1 was reported 
to inhibit cancer progression and oncogenic autophagy in 
hepatocellular carcinoma (39). The present study indicated 
that DLC1 may be involved in autophagy-mediated tumor 
promotion in GC, therefore, further investigations are still 
needed to validate the role of DLC1 in GC autophagy. 

The present study also investigated the association 
of the PI model with infiltrating immune cells in GC. 
The number of eosinophils and resting mast cells was 
significantly increased in the PI high-risk group, whereas 
the number of M1 macrophages decreased, suggesting the 
heterogeneity of immune infiltration in GC. Increased 

numbers of eosinophils and decreased anti-tumorigenic 
M1 macrophages are associated with poor prognosis of 
patients with colorectal cancer (40) and hepatocellular  
carcinoma (41). In addition, resting mast cells were related 
to the PI high-risk group based on ARG signature in 
pancreatic adenocarcinoma (42). Meanwhile, it should be 
noted that the present study did not find any association 
between the PI model and regulatory T cells, neutrophils 
or CD8+ T cells, which suggested that future studies are 
required to discover whether the ARGs have an effect on 
the infiltration of immune cells in GC.

In conclusion, the present study identified 25 ARGs 
that were differentially expressed in GC tissue samples 
through an unbiased and comprehensive method. A PI 
model was built that included seven prognostic ARGs, 
which could robustly estimate survival in patients with GC 
and was further validated in an external GEO validation 
cohort.
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