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Abstract: While a complex network of cellular and molecular events is known to be involved in
the pathophysiological mechanism of chronic kidney disease (CKD), the divergence point between
reversal and progression and the event that triggers CKD progression are still unknown. To understand
the different mechanisms between reversible and irreversible kidney disease and to search for urinary
biomarkers that can predict prognosis, a metabolomic analysis was applied to compare acute and
chronic experimental glomerulonephritis (GN) models. Four metabolites, namely, epoxyoctadecenoic
acid (EpOME), epoxyeicosatetraenoic acid (EpETE), α-linolenic acid (ALA), and hydroxyretinoic
acid, were identified as predictive markers after comparing the chronic nephritis model with acute
nephritis and control groups (false discovery rate adjusted p-value (q-value) < 0.05). Renal mRNA
expression of cytochrome P450 and epoxide hydrolase was also identified as being involved in the
production of epoxide metabolites from these polyunsaturated fatty acids (p < 0.05). These results
suggested that the progression of chronic kidney disease is associated with abnormally activated
epoxide hydrolase, leading to an increase in EpOME and EpETE as pro-inflammatory eicosanoids.

Keywords: untargeted metabolomics; chronic glomerulonephritis; chronic kidney disease;
experimental

1. Introduction

Chronic kidney disease (CKD) has a high worldwide prevalence, with drastically increased cases
of end-stage renal disease [1]. CKD patients are clinically asymptomatic; hence, its clinical management
is based on biomarkers of renal function and damage [2]. However, biomarkers that help predict a
high risk of progression towards renal failure are lacking. Certain studies have reported advancements
in the early detection and therapeutic intervention to decelerate CKD progression [3]. Edwards and
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Whyte (1959) reported a method involving the measurement of serum creatinine levels, thus providing
a better indicator of renal function than methods based on the measurement of serum urea levels [4].
Cockcroft and Gault (1976) reported a method of estimating the glomerular filtration rate from serum
creatinine levels [5]. Apart from creatinine, cystatin C is a well-known biomarker of renal function
and CKD progression [6]. Creatinine and cystatin C are endogenous substrates and are commonly
estimated in plasma and considered in the determination of the estimated glomerular filtration rate [7].
Moreover, albuminuria formation precedes the decline in renal function, hence serving as a marker of
renal damage and is strongly associated with CKD progression [2]. Recent studies on biomarkers for
the early detection of acute kidney injury (AKI) [8] have reported several biomarkers in experimental
ischemic renal injury and clinical AKI, such as cystatin C [9], interleukin-18 [10], and neutrophil
gelatinase-associated lipocalin [11], which result in a 50% increase in serum creatinine levels [12].

The kidney metabolizes numerous substrates. Glomerular filtration, tubular reabsorption, and
secretion are involved in urine formation. Therefore, urine can provide important information
regarding kidney function during certain pathologic conditions associated with the urinary system
and normal physiologic changes [13,14]. Gao proposed a road map of urinary biomarkers in the early
stages of kidney disease through a series of studies [15,16].

Recently, metabolomics has emerged as an important technology to measure small-molecule
metabolites in tissues and biofluids [17]. The metabolome refers to the evolution of the genome,
transcriptome, and proteome, reflecting real-time processes in living organisms [16]. Metabolomics is
the study of chemical processes involved in the production of metabolites as downstream products
derived from the genome [15]. Serum oxylipin profiles and metabolites associated with polyunsaturated
fatty acids (PUFAs) based on metabolomics reflect alterations in renal function in patients with IgA
nephropathy [18]. Moreover, 5-methoxytryptophan, levels of which are markedly associated with
clinical CKD markers, has been identified through untargeted metabolomics among patients with
Stage 1–5 CKD [19]. However, in most cases, metabolomics has been widely used to investigate the
pathophysiology of renal fibrosis using only different animal models of CKD, such as 5/6 nephrectomized
rats, adenine-induced CKD, and other drug-induced CKD [20–24]. However, these models do not
reflect clinical conditions underlying the gradual progression of glomerular disease to CKD.

Commonly used animal models of anti-Thy1 nephritis present with reversible mesangial
proliferative glomerulonephritis, facilitating the assessment of the acute phase of glomerular
disease. In this model, anti-Thy1 antibody immediately binds to mesangial cell receptor, causing
mesangiolysis associated with transient complement activation and immune complex formation, which
are immediately obliterated through mesangial proliferation to repair the glomerular damage due to
mesangiolysis [25]. However, heminephrectomy can induce irreversible progressive glomerulosclerosis
with crescent formation in anti-Thy1 nephritis [26].

Marked proteinuria of >1.0 g/d and severe histologic changes are associated with renal outcomes
in IgA nephropathy in humans [27,28]. Moreover, the cumulative excretion of urinary podocytes differs
between acute and chronic IgA nephropathy and Henoch–Schönlein purpura nephritis, thus reflecting
disease progression [29]. Therefore, we conducted a non-targeted metabolomics animal study using
urine specimens, assuming that the excreted urinary metabolites reflect differences in the underlying
mechanism. Therefore, this study aimed to investigate the differences in the pathogenesis of acute and
chronic nephritis and identify urinary metabolites predicting the progression or regression of kidney
injuries through an untargeted metabolomics approach, using an experimental anti-Thy1.1-initiated
model of mesangioproliferative glomerulonephritis with or without heminephrectomy in rats. We
hypothesized that there is a quantitative difference of proteinuria between acute and chronic nephritis,
and that qualitative differences in proteinuria cause pathological differences between acute and chronic
nephritis. In other words, the metabolites of urine, which cause these pathological consequences,
reflect the difference between acute and chronic nephritis, and thus these substances can be considered
as a risk factor for CKD progression.
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2. Material and Methods

2.1. Definition

Acute nephritis (AN) is a sudden inflammation of the kidneys that affects renal function. When
treated early, AN is usually temporary and reversible, leading to clinical improvement in about
one month. AN can have a progressive tendency to chronic nephritis (CN). CN is characterized by
irreversible pathologic findings, including interstitial fibrosis (IF), and if it lasts longer than three
months, it leads to permanent loss of renal function; that is, CKD (Figure 1) [30,31].
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Figure 1. Schematic illustration of the definition of acute and chronic nephritis.

2.2. Animals

Female Sprague Dawley rats (weight, 160–260 g) were provided by OrientBio, Seongnam-si, Korea.
All experiments were approved by the Institutional Animal Care and Use Committee of the Seoul
National University Hospital and animals were maintained in a facility accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International)
(#001169) in accordance with the guide for the care and use of laboratory animals [32]. The animals
were housed at the animal center (temperature: 20–26 ◦C; humidity: 50% ± 20%) and fed with Pico5053
(Pico Lab-Rodent 20-IRR, OrientBio, Seongnam-si, Korea) with free access to drinking water.

2.3. Experimental Design

Acute anti-Thy 1.1 nephritis as a rat model of mesangial proliferative glomerulonephritis has been
described previously [33]. Briefly, 8-week-old female rats were injected with an intravenous injection
of anti-Thy1.1 antibody (Young in Frontier, Seoul, Korea). The development of progressive nephritis
following a single injection anti-Thy1.1 antibody Ox-7 after unilateral nephrectomy in rats has been
reported previously [26,34,35].

The experimental design is outlined in Figure 2. Forty specific pathogen-free Sprague Dawley
rats were randomly divided into four groups as follows: AN (n = 12), CN (n = 12), control group for
AN (AN-C, n = 8), and control group for CN (CN-C, n = 8). The AN group received a sham operation
2 weeks before the intravenous injection of 5 mg/kg of a mouse anti-Thy1.1 antibody via the tail vein
on day 0. The CN group received heminephrectomy 2 weeks before intravenous injection of 5 mg/kg of
the mouse anti-Thy1.1 antibody on day 0. The AN-C group received a sham operation 2 weeks before
the intravenous injection of 5 mL/kg of PBS, whereas the CN-C group received heminephrectomy
2 weeks before the injection of 5 mL/kg of PBS on day 0.

Half of the rats were sacrificed at the end of 2 weeks (2W) and the other half were sacrificed at the
end of 12 weeks (12W). Twenty-four-hour urine was obtained on Day 0, and at the end of Week 1, 2, 4,
8, and 12; thus, until sacrifice. All animals were anesthetized with a single intraperitoneal injection of
5 mg/kg xylazine and an intramuscular injection of 10 mg/kg zoletil before sacrifice [36–38].
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2.4. Measurement of Proteinuria

Urinary protein concentrations were measured by the pyrogallol red–molybdate method
(Randox Laboratories Ltd., Crumlin, UK). Creatinine levels were determined by an IDMS reference
measurement procedure (Jaffe method) [39]. Proteinuria was expressed as the urine protein-to-creatinine
ratio (mg/mg).

2.5. Evaluation of Renal Histology

Kidney sections were processed and examined by light microscopy (Leica DF280, Leica
Microsystems, Wetzlar, Germany), as described previously [40]. Kidneys were perfused with cold
PBS before nephrectomy. A piece of renal cortical tissue was fixed in 10% buffered formaldehyde and
embedded in paraffin. Two-micrometer sections were stained with Masson trichrome. All sections
were coded and analyzed in a blinded manner by two individuals, including a pathologist. The mean
of both scores was used for further analysis.

The severity of glomerular extracellular matrix expansion was quantitated based on the glomerular
matrix score using a previously published method [41]. Briefly, the glomerular matrix score was
measured by mean score of 30 glomeruli cut at almost full diameter based on the percentage of
glomerular area occupied by the extracellular matrix and hyalinosis as follows: 0 = no lesion; 1 = <10%;
2 = 10–25%; 3 = 25–50%; and 4 = >50%. The extent of IF was scored at a 250×magnification using a
previously published method [41]. Briefly, the IF score was determined by the mean score of 20 cortical
areas based on the percentage of areas with fibrosis as follows: 0 = no lesion; 1 = <25%; 2 = 25–50%;
and 3 = >50%.

2.6. Metabolomic Analysis

Urine samples were thawed on ice and 100 µL of rat urine was added to 200 µL of chilled
acetonitrile. After vortexing for 10 min, the mixture was centrifuged at 13,000× g for 20 min at 4
◦C to remove particles. The supernatant was transferred to injection vials. To obtain consistent
differential variables, a pooled urine sample (QC) was prepared by mixing aliquots of individual
samples. The prepared QC sample was acquired through a series of injections, and data were obtained
by random injection. Then, 2 µL of the prepared sample was injected onto a reverse-phase 2.1 mm × 50
mm ACQUITY 1.7 µm BEH C18 column (Waters, Milford, MA, USA) using a Waters ultra-performance
liquid chromatography (UPLC) system. The column was maintained at 35 ◦C using the ACQUITY
UPLC system (Waters, Milford, Massachusetts, USA) and the gradient was eluted with a mobile phase
of 0.1% formic acid (A) and 0.1% formic acid acetonitrile (B). From the start to 0.5 min, B was held



Metabolites 2020, 10, 169 5 of 18

at 5%, then linearly increased to 50% in 10 min, linearly increased to 95% in 10.75 min, and kept
invariable for 12.25 min. After that, B was returned to 5% in 12.5 min and maintained for a further
2.5 min. The mass profile of both the positive and negative ion electrospray ionization mode was
achieved using a Waters Xevo G2 time-of-flight mass spectrometer (TOF–MS). The metabolomics
raw data were imported, deconvoluted, normalized, and reviewed using Progenesis QI (version 2.3,
Nonlinear Dynamics Newcastle, UK). The most suitable QC sample with the highest similarity to all
other samples was chosen as the alignment reference. The retention times of all other samples aligned
to the reference with sensitivity (10 ppm) and retention time limits. The abundance of each entity was
normalized for all compounds. Then, we filtered out the low-quality ions with a %CV of abundance
>30 in the QC. Significant differential expression was defined as a false discovery rate (FDR) adjusted
p-value (q-value) < 0.05. The FDR was obtained by adjusting the raw p-values of the t-test using
the method of Benjamini and Hochberg [42]. The metabolomics data set was imported into EZinfo
software (Umetrics) for multivariate analysis (pareto-scaled). Principal components analysis (PCA),
an unsupervised multivariate statistical analysis, was performed to examine the intrinsic variations
within a group and to assess the clustering behavior between groups. Clustering of the QC samples
in the PCA was assessed to reveal the stability and reproducibility of the data generated during the
analytical platform.

2.7. mRNA Analysis

Total RNA was extracted from rat kidney tissue with the NucleoSpin RNA/Protein kit
(Macherey-Nagel, Bethlehem, PA, USA). RNA later-stored kidney tissue was disrupted by a BioMasher
II disposable homogenizer (Nippi, Tokyo, Japan). First-strand complementary DNA was synthesized
via the reverse transcription of 1 µg of total RNA using the GoScript Reverse Transcription Oligo(dT)
mix (Promega, Madison, WI, USA). A 20-µL reaction mixture was prepared with 4 µL of GoScript
reaction buffer, 2 µL of random primers, 2 µL of GoScript Enzyme mix, and 12 µL comprising 1 µg
RNA and nuclease-free water. The mixture was incubated for 5 min at 25 ◦C followed by 60 min
at 4 ◦C, and the reverse transcriptase was inactivated for 5 min at 95 ◦C. To dilute the cDNA, 20 µL
of nuclease-free water was added. A 20-µL PCR reaction mixture was prepared with 10 µL of the
2X GoQaq qPCR master mix (Promega), 2 µL QuantiTect Primer Assay (Qiagen, Hilden, Germany),
6 µL of nuclease-free water, and 2 µL of cDNA. Real-time PCR was performed using a CFX Connect
Real-Time PCR instrument (Bio-Rad, Hercules, CA, USA) with the following cycling conditions: initial
denaturation at 95 ◦C for 2 min, and 45 cycles of denaturation at 95 ◦C for 15 s and annealing/extension
at 60 ◦C for 30 s. GAPDH expression was used to normalize mRNA expression.

2.8. Statistical Analysis

All statistical analyses were performed using SPSS for Windows version 21 (IBM SPSS Statistics,
Chicago, IL, USA). Statistical significance was considered at p < 0.05. Differences among groups for
continuous variables were assessed using non-parametric statistics with the Mann–Whitney U test or
Kruskal–Wallis test. Paired t-tests were used to compare the time points at Week 2 and Week 12.

3. Results

3.1. Proteinuria

The CN groups showed significantly different proteinuria than the CN-C or AN-C groups after
one week. Moreover, there was a marked increase of proteinuria in the CN groups compared to that in
the AN groups from Week 4 to Week 12 (Figure 3). These results support the hypothesis of quantitative
difference of proteinuria between AN and CN groups from Week 4 to Week 12.
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Figure 3. The 24-h urine protein-to-creatinine ratio in experimental glomerulonephritis rat groups.
There was a marked increase in proteinuria in the CN groups compared to the AN groups from Week 4
to 12. * p < 0.05 vs. AN; # p < 0.05 vs. AN-C/CN-C. AN, acute nephritis; AN-C, control group for acute
nephritis; CN, chronic nephritis; CN-C, control group for chronic nephritis.

3.2. Renal Histology

Figure 4 shows the glomerular matrix and IF scores among the four groups at both the 2W and
12W time points. The Kruskal–Wallis test showed a significant difference of both the glomerular matrix
and IF scores among the four groups in both time points (p < 0.05). The glomerular matrix score of the
CN group was significantly higher than that of the CN-C and AN-C groups at Weeks 2 (p = 0.016 and
p = 0.009, respectively) and 12 (p = 0.011 and p = 0.017, respectively). The glomerular matrix score of
the AN group was significantly higher than that of the AN-C and CN-C groups at Weeks 2 (p = 0.017
and p = 0.026, respectively) and 12 (p = 0.047 and p = 0.012, respectively). The IF score of the CN group
was significantly higher than that of the AN-C, CN-C, and AN groups at both time points (p < 0.05).
However, the IF score of the AN group was not significantly different from that of the AN-C or CN-C
group at both time points. In other words, the pathological features of the AN and CN groups were
significantly determined by comparisons with the AN-C and CN-C groups at Week 2, respectively.
Moreover, the IF score of the CN group was persistently distinct for up to 12 weeks, unlike that of the
AN group. Based on Figures 3 and 4, we hypothesized that metabolic substances should differ between
the AN and CN groups from one week to two weeks before the pathologic finding was confirmed.
Moreover, these should also have been clearly different from those of the CN-C group from Week 2 to
12 (Figure 5).
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significant differences in both the glomerular matrix and IF scores among the four groups at both the
2W and 12W time points. AN, acute nephritis; AN-C, control group for acute nephritis; CN, chronic
nephritis; CN-C, control group for chronic nephritis. * p < 0.05 vs. CN, # p < 0.05 vs. AN.
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Figure 5. Scheme of the untargeted metabolomics strategy to determine urinary biomarkers predictive
of the progression of nephritis. The predictive criterion were as follows: (1) q-value < 0.05 when the
CN group was compared to the AN animal at Week 1 or 2, representing early-stage nephritis, even
if there was no significant difference in proteinuria between the AN and CN groups; and (2) q-value
< 0.05 when the CN group was compared to the CN-C animal between Week 2 and 12. AN, acute
nephritis; AN-C, control group for acute nephritis; CN, chronic nephritis; CN-C, control group for
chronic nephritis.

3.3. Metabolomics Analysis

Urine samples from AN-C, CN-C, AN, and CN were analyzed by UPLC–QTOF operated in
positive and negative ionization modes (Figure S1). Figure 6 shows the selection procedure of
biomarkers to predict the progression of nephritis. A total of 7555 metabolic features were detected in
positive and negative modes using Progenesis QI. Unsupervised PCA analysis showed a difference
between the AN and CN groups over time (Figure S1). In chronological order, the CN group proceeds
in one direction, while the AN group returns in the direction of Week 0. The QC samples clustered
in the middle of the PCA plot, confirming the stability and the reproducibility of the data obtained
in both the positive and negative modes. We then selected metabolites that satisfied the following
criteria in Figure 5: (1) q-value < 0.05 when the CN group was compared to the AN group at Week
1 or 2, representing early-stage nephritis, even if there was no significant difference in proteinuria
between the AN and CN groups; and (2) q-value < 0.05 when the CN group was compared to the
CN-C group between Week 2 and 12. In total, 504 metabolites met the marker selection criteria (Table
S1). Five metabolites were identified as epoxyoctadecenoic acid (EpOME), epoxyeicosatetraenoic acid
(EpETE), α-linolenic acid (ALA), hydroxyretinoic acid, and dihydroxyoctadecenoic acid (DiHOME)
by comparing MS/MS spectra with those of the authentic compounds (Figure 6). The metabolite of
EpOME, dihydroxyoctadecenoic acid (DiHOME), was further identified. DiHOME met Criterion 1,
but the q-value was 0.0674 when the CN group was compared to the CN-C group at Week 8.

3.4. Renal mRNA Expression of CYP2J4, CYP2C23, CYP2E1, Ephx2, and Ephx3.

The production of the epoxide metabolites from PUFAs has been attributed to members of the
cytochrome (CYP) 2C [43], CYP2E [44], and CYP2J [45,46] families, and subsequent hydroxylation to
generate their corresponding diols is catalyzed by epoxide hydrolase 2 (Ephx2) and epoxide hydrolase 3
(Ephx3) [47]. To confirm the involvement of CYP2 and Ephx in metabolic changes to PUFA metabolism,
renal mRNA expression of CYP2 and Ephx was evaluated. CYP2J4 expression was higher in the CN
group than the CN-C group (p < 0.05) at Week 12, whereas CYP2C23 and CYP2E1 were lower in the
CN group than in the AN or CN-C group. Ephx3 expression was higher in the CN group than in the
AN or CN-C group, whereas no differences in Ephx2 expression were observed (Figure 7).
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Figure 6. Relative intensity of the five identified urinary biomarkers predictive of the progression
of nephritis. (a) EpOME, (b) EpETE, (c) α-linolenic acid, (d) hydroxyretinoic acid, and (e) DiHOME.
Data are shown as mean values ± SEM. * q < 0.05 vs. AN; # q < 0.05 vs. CN-C. AN, acute
nephritis; AN-C, control group for acute nephritis; CN, chronic nephritis; CN-C, control group for
chronic nephritis; DiHOME, dihydroxyoctadecenoic acid; EpETE, epoxyeicosatetraenoic acid; EpOME,
epoxyoctadecenoic acid.
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Figure 7. Renal mRNA expression of (a) CYP2J4, (b) CYP2C23, (c) CYP2E1, (d) Ephx2, and (e) Ephx3 at
the Week 2 and 12 time points. CYP2C23 and CYP2E1 were lower in the CN group than in AN or CN-C
animals. Ephx3 expression was higher with CN than in AN or CN-C groups. The Mann–Whitney U
test was used to calculate statistical significance. * p < 0.05 vs. AN; # p < 0.05 vs. CN-C. AN, acute
nephritis; AN-C, control group for acute nephritis; CN, chronic nephritis; CN-C, control group for
chronic nephritis; Ephx2, epoxide hydrolase 2; Ephx3, epoxide hydrolase 3.
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4. Discussion

This study investigated the differences in the pathogenesis of acute and chronic nephritis and
identify urinary metabolites predicting the progression or regression of kidney injuries through
an untargeted metabolomics approach, using an experimental anti-Thy1.1-initiated model of
mesangioproliferative glomerulonephritis with or without heminephrectomy in rats. Figure 8 shows
the metabolic pathway, affected by CYP2J4 and Ephx3 changes, on CKD progression. Decreased mRNA
expression of CYP2C23 and CYP2E1 prevents the production of epoxyeicosatrienoic acids (EETs) as a
vasodilator derived from arachidonic acid (AA). Increased mRNA expression of CYP2J4 induces the
generation of EpOME as a protoxin, which is metabolized to DiHOME and involved in inflammation
via the upregulation of Ephx3 as a soluble epoxide hydrolase (sEH). These are thought to cause IF in
the CN group unlike the AN group, leading to the CKD progression.

Proteinuria is the abnormal transglomerular passage of urine proteins owing to increased
permeability of the glomerular basement membrane and their subsequent impaired tubular reabsorption
in the proximal tubule [48]. In healthy individuals, the urinary protein content ranges between 0
and 0.1 g/m2/d. Heavy proteinuria exceeds 1 g/m2/day as in primary glomerular disease and CKD.
Proteinuria may reflect a specific pathophysiological condition in the kidney resulting in damage to the
glomerular filtration barrier in diseases that cause the glomerular or renal tubular injuries. Therefore,
metabolomics approaches have actively been used in studies on kidney diseases [49].

Herein, changes were observed in metabolite levels associated with PUFA metabolism. Conversion
of PUFAs to bioactive lipid mediators via CYP isoforms is associated with cardiovascular function [50].
ALA and linoleic acid (LA) are omega-3 and omega-6 PUFAs, respectively, and are essential fatty
acids in food. Certain CYP 450 enzymes, the CYP epoxygenases, metabolize LA to EpOME, which
is further metabolized to DiHOME by the sEH. DiHOME contributes to the detrimental effects
of ischemia–reperfusion injury with the massive production of reactive oxygen species in isolated
mouse hearts [51]. EpOME is considered a leukotoxin or protoxin because it causes significant
adverse cardiac effects in animal models in the presence of sEH [52–54]. In previous animal studies,
the pharmacological inhibition of sEH activity reduced pro-inflammatory eicosanoid levels, leading
to a reduction in blood pressure [55–57]. Furthermore, LA can also be converted to arachidonic acid
(AA), which is converted to pro-inflammatory eicosanoids, including prostaglandin E2, leukotriene B4,
lipoxins, and hydroxyeicosatetraenoic acid (HETE) by cyclooxygenase (COX), lipoxygenase (LOX), and
CYP hydroxylases. These pro-inflammatory eicosanoids result in cardiac dysfunction, thus promoting
inflammation, vasoconstriction, and apoptosis [58].

ALA is converted to the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA), or
docosahexaenoic acid (DHA) [59]. A meta-analysis of observational studies reported that higher ALA
intake leads to cardioprotective effects [60]. Moreover, higher EPA and DHA intake also protects against
cardiovascular disease [61]. These omega-3 PUFAs are converted to eicosanoids by COX, LOX, and CYP
450 enzymes. Eicosanoids derived from omega-3 PUFAs include resolvins or protectins, which play an
anti-inflammatory role [61]. Stephanie et al. reported that the anti-hypertensive effects of flaxseed
ingestion are induced via the ALA-mediated inhibition of sEH in patients with hypertension [62].
In contrast, ALA levels in patients with nephrotic syndrome were higher than those in the control
groups, suggesting that nephrotic syndrome potentially disrupts PUFA metabolism [63]. Significant
dyslipidemia occurs in nephrotic syndrome because albuminuria accelerates a compensatory increase
in hepatic lipoprotein synthesis [64]. Furthermore, dyslipidemia has renal lipotoxicity indirectly
through systemic inflammation and oxidative stress [65–67]. Therefore, higher levels of ALA in the
CN groups could be triggered through proteinuria leading to further renal histologic injury through
the disturbance of PUFA metabolism.
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Figure 8. Potential mechanism of cytochrome P450 (CYP450)-dependent metabolism of polyunsaturated omega-6 and omega-3 fatty acids involved in CKD
progression. (a) omega-6 PUFA pathway, (b) omega-3 PUFA pathway. Decreased mRNA expression of CYP2C23 and CYP2E1 prevent the production of EETs, as a
vasodilator, from arachidonic acid. Increased mRNA expression of CYP2J4 induces the generation of EpOME and the corresponding DiHOME as a protoxin via the
soluble epoxide hydrolase, leading to the progression of CKD. Metabolites in the red colored squares are increased. mRNA is increased in the red line circle and
decreased in the blue line circle. CKD, chronic kidney disease; COX, cyclooxygenase; DHET, dihydroxyeicosatrienoic acid; DiHETE, dihydroxyeicosatetraenoic acid;
DiHOME, dihydroxyoctadecenoic acid; EETs, epoxyeicosatrienoic acids; EPA, eicosapentaenoic acid; Ephx2, epoxide hydrolase 2; Ephx3, epoxide hydrolase 3; EpOME,
epoxyoctadecenoic acid; EpETE, epoxyeicosatetraenoic acid; HETE, hydroxyeicosatetraenoic acid; LOX, lipoxygenase; PUFA, polyunsaturated fatty acid.
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Further, AA can be also transformed into EETs by CYP epoxygenases. EET promotes vasodilation,
angiogenesis, and thrombolysis, as well as inhibits inflammation and apoptosis, which can preserve
cardiac function [58]. Renal epithelial cells are one of the major sites for the production of EETs,
the substrate of AA and CYP epoxygenase [68]. EETs play a role in vasodilation to increase blood
flow to organs, leading to decreased peripheral vascular resistance through the inhibition of epithelial
sodium channels in the kidney. The association between vascular inflammation and hypertensive
renal injury based on a transgenic mouse model of sEH demonstrated the associated pathogenesis,
in which increased sEH activity or decreased levels of EETs contribute to hypertension and CKD [69–71].
The association between diols, via CYP epoxygenases, and chronic histology in the current study is
consistent with the hypothesis presented.

Epoxyeicosatetraenoic acids (EpETEs) are metabolized from EPA, omega 3 fatty acid by CYP
epoxygenase. The activation of EET-forming CYP epoxygenases is known to be determined by the
enzyme substrate preference and the endogenous omega 3/omega 6 PUFA ratio. The differences in
preference of CYP epoxygenases often induce the metabolization of EPA to EpETEs at rates exceeding
their rates in metabolizing AA to EETs [72]. Increased EpETEs are considered a metabolite of the
EET-inactivating pathway from AA, owing to the opposite activation of CYP2E1 and CYP2J2 in
our study.

The CYP 2 family comprises the predominant epoxygenase isoform abundantly expressed in
the endothelium, myocardium, and kidney of humans. Numerous studies have demonstrated the
cardioprotective effects of CYP epoxygenases and EETs, including vasodilation, antihypertensive,
proangiogenic, anti-atherosclerotic, and cardioprotective effects [68,73]. The role of the CYP2 family
and its metabolites in inflammation and cancer have recently attracted increasing attention. CYP2C23
is expressed as an AA epoxygenase in rat kidneys [74]. Increased vascular tone caused by the
down-regulation of CYP2C23 and decreased levels of EETs, as a vasodilator, were identified in
androgen-induced hypertension [75]. Moreover, high potassium intake induces AA and 11,12-EET
inhibition in the epithelial sodium channel in the cortical collecting duct by increasing CYP2C23 activity
and decreasing sEH activity, respectively [76]. In our study, CYP2C23 expression was suppressed in CN
animals compared to that in the AN group in Figure 7. This suggests that CYP2C23 downregulation is
associated with renal disease progression.

CYP2E1 is known to act as a monooxygenase to metabolize AA to 19-HETE and as an epoxygenase
to metabolize EPA to EpETEs [44,77]. In our study, decreased mRNA expression of CYP2E1
was confirmed in the CN group compared to that in AN. This suggests that, as with CYP2C23,
the downregulation of CYP2E1 activity induce the production of EpOME, leading to the progression
of CKD.

CYP2J4 in rats is an ortholog of human CYP2J2 and mouse CYP2J6 [78]. Human CYP2J2
epoxygenase metabolizes AA to EETs and EPA to EpETEs [79]. However, this situation is complicated
because although cardioprotective effects producing EETs and EpETEs were observed in young mice,
protective effects were lost in aged mice with the cardiomyocyte-specific overexpression of CYP2J2,
which might be attributed to increased levels of DiHOME as a leukotoxin diol [53]. In our study,
CYP2J4 expression was increased in the CN group compared to that in CN-C animals. The difference
in CYP2J4 between the AN and CN groups was not significant. Therefore, the activation of CYP2J4
was thought to be related to aging.

Ephx2 is a member of the epoxide hydrolase family as a sEH in humans. Ephx2 is upregulated in
the liver and also in the renal proximal tubule [80]. The well-known role of Ephx2 is the regulation of
hypertension in the kidney. In the presence of Ephx2, EETs as a vasodilator are rapidly metabolized
into a less inactive molecule of dihydroxyeicosatrienoic acids (DHETs), leading to the elimination of
the vasodilatory signal [81]. Our results suggest that the Ephx2 pathway of EET metabolism from AA
is not activated.

Ephx3 is the third identified isozyme in a set of epoxide hydrolases. Ephx3 exhibits epoxide
hydrolase activity with a substrate preference for 9,10-EpOME and 11,12-EET in vitro [47]. However,
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its endogenous function is not well known. In our study, the progression of renal disease was consistent
with the association between CN and activated Ephx3, leading to an increase in EpOME as a protoxin
and an increase in its metabolite, DiHOME.

The cardioprotective effects of sEH inhibitors are gradually expanding therapeutically toward
renal diseases, including hypertension, diabetic nephropathy, drug-induced nephrotoxicity, and renal
fibrotic disease [73]. Renal fibrosis is prevented by a sEH inhibitor in a mouse model of unilateral
ureteral obstruction [82]. Diabetic nephropathy is also attenuated by sEH inhibitors, which have
anti-diabetic and anti-inflammatory effects [83]. Based on this, omega-3 PUFA is emerging as an
alternative for the treatment of IgA nephropathy [84]. Moreover, it has been reported that fish oil
can be used to treat patients with Henoch–Schönlein purpura [85,86]. Further studies are required to
investigate whether inhibition of sEH or PUFA prevents renal interstitial fibrosis and inflammation.

Retinal is converted to their corresponding retinols, in which the reverse reaction is possible with
alcohol dehydrogenases. Retinal is further oxidized to retinoic acid, which promotes cell differentiation.
Retinoic acid is metabolized by CYP hydroxylase to form hydroxyretinoic acid, thus diminishing the
effect of cell differentiation [87].

In humans, conjugated LA and the related conjugated linolenic acids are synthesized from
LA and ALA, respectively, by ruminal bacteria. Conjugated LAs are obtained from the diet [88].
While conjugated LAs increase tissue levels of retinol (vitamin A), the precise interactions between
vitamin A and conjugated LA in kidney disease have remained unclear [89]. However, combined
up-regulated retinol metabolism and PUFA metabolism were observed in catalase-knockout mice
fed on a high-fat diet, thus contributing to liver inflammation [90]. Further studies are required
to determine whether dysregulation of retinol metabolism and PUFA metabolism promote chronic
inflammation in the kidneys.

One of the limitations was the results of the metabolic analysis obtained with plasma before
urine testing. The plasma concentration of the metabolites was very low and therefore the plasma
metabolites could not be compared with the urine metabolites. In other words, our findings indicate
that metabolites in urine are associated with nephritis, independent of those in the plasma. However,
further studies are required in this regard to validate our findings.

5. Conclusions

This article is noteworthy because it is an experimental study comparing acute and chronic
nephritis to investigate the mechanism of disease progression. Our results suggest that the progression
of renal disease is associated with abnormally activated epoxide hydrolase and CYP450 in the
metabolism of omega-6 PUFA, leading to an increase in EpOME as pro-inflammatory eicosanoids
based on the metabolomic analysis using experimental mesangial proliferative glomerulonephritis
with or without heminephrectomy. Further study is necessary to estimate the causal relationship
between the conversion of PUFA to pro-inflammatory eicosanoids by the epoxide hydrolase and
CYP450 in terms of CKD and disease progression in humans with reversible and irreversible mesangial
proliferative glomerulonephritis.
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animals at Week 1 or 2; and 2) when the CN group was compared to the CN-C or AN animals between Week 4
and 12.
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Abbreviations

AA Arachidonic Acid

AAALAC International
Association for Assessment and Accreditation of Laboratory Animal Care
International

AKI acute kidney injury
ALA α-linolenic acid
AN acute nephritis
CKD chronic kidney disease
CN chronic nephritis
COX cyclooxygenase
CYP cytochrome
DHA docosahexaenoic acid
DHET dihydroxyeicosatrienoic acid
DiHETE dihydroxyeicosatetraenoic acid
DiHOME dihydroxyoctadecenoic acid
EET epoxyeicosatrienoic acid
EPA eicosapentaenoic acid
EpETE epoxyeicosatetraenoic acid
Ephx2 epoxide hydrolase 2
Ephx3 epoxide hydrolase 3
EpOME epoxyoctadecenoic acid
FDR false discovery rate
HETE hydroxyeicosatetraenoic acid
LA linoleic acid
LOX lipoxygenase
PBS phosphate-buffered saline
PCA principal components analysis
PUFA polyunsaturated fatty acid
sEH soluble epoxide hydrolase
TOF/MS time-of-flight mass spectrometer
UPLC ultra-performance liquid chromatography
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