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Background: Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common
underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis.
Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple
variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at
identifying a biomarker signature to predict particular sites of DM in TNBC.

Methods: A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to
develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis
to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox
univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable
analyses.

Results: Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk
of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting
site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status.

Conclusions: Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific
sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.

Breast cancer (BC) is the most common cancer and the second
leading cause of cancer-related deaths among North American
women (Group UCSW, 2016), and presents the largest overall
cancer threat for women worldwide (Jemal et al, 2011). The vast
majority of BC deaths result from dissemination of cancer to
distant metastatic sites (Weigelt et al, 2005). BC, unlike prostate or
sarcomas (Nguyen et al, 2009), shows significantly more organ
variation in metastasis (Lee, 1983), making it very challenging to
employ site-specific surveillance/preventative measures.

The molecular subtypes of BC have been shown to have very
different underlying biology and distinct metastasis patterns (Smid
et al, 2008). Triple negative BC (TNBC) is a subtype of BC
characterised by an absence of the oestrogen receptor (ER),
progesterone receptor (PR) and HER2 protein over-expression.
TNBCs account for around 16% of invasive BCs (Rakha et al,
2007b) and are considered one of the most clinically aggressive
subtypes, with over twice the risk of distant metastasis (DM)
relative to other molecular subtypes (Anders and Carey, 2009).
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Compared with the other subtypes, TNBCs also show much higher
frequencies of metastasis to the brain and lung—sites associated
with higher mortality compared with bone and other sites (Luck
et al, 2008; Kennecke et al, 2010). Predicting TNBC’s propensity
for metastasis to those specific sites may allow preventive therapy
and enable active surveillance to significantly improve outcomes.

The metastatic cascade is a multi-step process consisting of
growth, vascularisation, detachment, invasion, evasion of host
defenses and survival in circulation, extravasation and finally the
ability to grow in the new organs’ microenvironment (Fidler, 2003;
Gupta and Massagué, 2006). Few cells are successfully able to
accomplish all of the steps, and require specific biological
properties both for general metastasis (e.g., factors that trigger
EMT) and site-specific metastasis (e.g., breaching the blood–brain
barrier to colonise the brain; Luzzi et al, 1998; Gupta and
Massagué, 2006; Nguyen et al, 2009). The similarity of genetic
profiles between the primary and metastatic site tumours seems to
suggest that many of the properties required for successful
metastasis are developed early in the primary tumour cells well
prior to the onset of metastasis (Weigelt et al, 2003). Therefore, the
identification of the specific biomarker profile of a primary tumour
that is primed to metastasise to a specific site would enable the
development of preventative and surveillance strategies tailored
specifically to that particular site.

Being able to predict site of metastasis has very tangible
evidence of improving patient survival. For instance, Denosumab
(Smith et al, 2012), a RANKL antibody, and Bonefos (Powles et al,
2006), an oral bisphosphonate clodronate, have shown significant
effect in reducing bone-specific metastasis in clinical trials.
However, both are currently recommended only for patients who
already show evidence of bone metastasis (Hillner et al, 2003;
Coleman et al, 2014). For brain metastases, where the blood–brain
barrier makes targeting tumour areas very difficult (Steeg et al,
2011), there has been success pre-clinically, using Vorinostat
(Palmieri et al, 2009), a histone deactylase inhibitor, and in clinical
trials via sorafenib (Massard et al, 2010), a kinase inhibitor. For
lung metastasis, there has been success of inhibiting metastasis by
blocking-specific lung guiding molecules, S100A8 and S100A9
(Hiratsuka et al, 2006). Finally for liver, where COX-2 expression is
increased, using etodolac markedly decreased invasive properties
(Chen et al, 2001). Thus, if the site of metastasis could be identified
in advance, active surveillance and the use of preemptive therapies
could be implemented (Steeg et al, 2011).

Studies involving genomic data have attempted to identify
signatures for metastatic tropism. Multiple studies using micro-
array data have characterised gene expression profiles of BC that
preferentially metastasised to lung or bone in mice (Gupta et al,
2005; Minn et al, 2005). A retrospective study of transcriptomic
data enabled the identification of a 6-gene prognostic classifier,
which could significantly discriminate BC patients who developed
DM to lung (Landemaine et al, 2008). Although the benefit of
using genetic data is quite obvious, it also has pitfalls, the biggest of
which is the lack of strong correlation between (a) gene expression
and protein levels, and (b) protein levels and protein activity levels,
the latter of which can be extensively modified post-translationally.
In addition, although the price of sequencing a genome is
decreasing exponentially, the price may still be prohibitive in a
clinical setting (Caulfield et al, 2013).

To investigate protein signatures (in primary tumours) that are
predictive of potential metastasis to specific anatomical sites, we
evaluated a well-characterised cohort of clinically annotated TNBC
with a long-term follow-up, utilising the immunohistochemical
expression of 133 biomarkers with relevance to BC progression and
metastasis. By taking into account the protein localisation (nuclear
and/or cytoplasmic), the staining intensity, percentage of cells
expressing the biomarker and standard clinicopathologic variables,
we investigated over 400 variables to produce the most relevant

statistical models. In this paper, we describe a method for step-wise
filtering that yielded robust predictive models for four distinct sites
of TNBC metastasis: bones, liver, lung and brain.

MATERIALS AND METHODS

Study population. This study was based on a well-characterised
series of primary operable invasive breast carcinoma cases (TNM
stage I–IIIA) diagnosed in Nottingham between 1989 and 1998
(N¼ 1944), of which 322 were classified as TNBC (i.e., 0% IHC
staining of PR, ER and HER2 0/1þ IHC staining or 2þ FISH
non-amplified) (Supplementary Table S1). Patients’ clinical history
and tumour characteristics, information on therapy, tumour
recurrence and survival are described in previous publications
(Abd El-Rehim et al, 2004, 2005; Rakha et al, 2006, 2007a, 2009;
Luck et al, 2008). Data related to outcome including information
on the development, site and time of DM and mortality were
collected prospectively. Patients were treated according to a
uniform protocol based on the Nottingham Prognostic Index
(NPI) groups (Galea et al, 1992), ER and menopausal status. A
systemic cyclophosphamide-methotrexate-5-fluorouracil (CMF)
chemotherapy regimen was used if the patient was ER-negative,
provided the patient was considered fit enough to withstand this
regimen. None of the patients received neoadjuvant or anti-HER2-
targeted therapy.

Antibody preparation and details for selected biomarkers is
available in the online Supplementary Data. This study included
133 IHC-based biomarkers (Supplementary Table S2) of clinical
and biological relevance to BC (Abd El-Rehim et al, 2004, 2005;
Rakha et al, 2006, 2007a, 2009; Elsheikh et al, 2008; Luck et al,
2008; Rakha et al, 2009; Habashy et al, 2011; Mahmoud et al, 2011;
Abduljabbar et al, 2015; Alshareeda et al, 2015; Jerjees et al, 2015).
During the follow-up period (243 months), 197 patients (61.2%)
remained disease-free, whereas 111 (34.5%) developed DM. Ethical
approval was granted by Nottingham Research Ethics Committee 2
under the title ‘Development of a molecular genetic classification of
breast cancer’ (C202313) and by The North West 7 Research Ethics
Committee- Greater Manchester Central (10/H1008/72).

Statistical analysis. Statistical analysis was carried out with SAS
9.4 software (Cary, NC, USA) and Matlab version 9.2.0.556344
(R2017a, Natick, MA, USA). Patients were first grouped according
to the site of DM or to a ‘no metastasis’ group. If a patient had
multiple metastases, that patient would be included in all the
relevant groups based on the sites of their multiple metastases.
Differences between clinicopathological proportions were deter-
mined using the w2 test. Differences between continuous
clinicopatholgical variables were evaluated via a two-tailed t-test.

Biomarker feature selection. Owing to the variation of the
number of biomarkers, which each patient in our data set was
stained for (coefficient of variation¼ 0.36, not shown), and the
difference in number of cases with informative data for each
stained biomarker, we chose to select two biomarkers for each DM
model. This allowed us to preserve substantial n numbers and to
keep the models clinically facile. Biomarker selection (Figure 1A)
was done using three progressive significance tests for each site.
First, two-tailed t-tests were performed between patients in whom
DM occurred to that site vs patients who remained DM-free. This
is to test for significant baseline differences between all biomarkers.
Significantly different (P-value o0.05) biomarkers were displayed
as waterfall plots, with the height of each bar representing the
average difference between expression of that biomarker in the
‘site-specific metastasis’ group vs the ‘metastasis-free’ group.
Further selection was done through logistic regression, with ‘yes
vs no’ binary responses using all the biomarkers, one by one, as
predictors. This selection appeared to be more stringent, as much
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fewer biomarkers were shown to be significant. Variables that were
selected both by the t-test and the logistic regression are
represented by asterisks on the waterfall plots. Finally, the selected
biomarkers were run through a univariate Cox proportional hazard
models for prognostic filtering, with Wald P-values o0.05
indicating significant variables (unless no biomarkers were found
using this criterion, in which case it was relaxed to 0.1). Time to
site-specific metastasis was considered as the time interval from
date of surgery to date of DM to that particular site. Significant
prognostic biomarkers were represented via arrows on the
aforementioned waterfall plots.

Model building. Models were built by combining all previously
selected prognostic biomarkers (in pairs), with the patient’s NPI.

Each model used the Cox parameter of the respective biomarkers
as weights, combined into a score, and was thresholded (Figure 1B)
by using Contal’s and O’Quigley’s approach (Mandrekar et al,
2003). The model chosen, for each distant site studied, was the one
that minimised the Cox and Wald’s P-values (Figure 1C). The NPI
threshold for testing risk of metastasis to each site using our
models, was determined by finding the highest NPI value, which
would, regardless of the values for the IHC biomarkers in the
relevant risk model, not allow the patient to have a score above the
risk threshold (i.e., not allow the patient to fall into the high-risk
group for that particular anatomical site). To evaluate whether
their ability to predict risk of site-specific metastasis was robust
regardless of the nature of model used, the selected biomarkers
were also evaluated using two different machine learning
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Figure 1. Schematic depicting sequence of steps leading to development of a model that predicts site-specific metastasis in TNBC. Briefly, a
two-tailed t-test was used to compare the biomarker profile for each patient who developed a site-specific metastasis vs every patient who did not
have any metastasis. The biomarkers that showed significant differences in expression were then compared prognostically, with a continuous
univariate Cox model, for site-specific metastasis hazard. Those significant variables that had a P-value o0.1 were then all tested with each other to
identify the best combination, alongside NPI.
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algorithms: a support vector machine (SVM) and an Ensemble
tree-based method. Hyperparameters for both types of
models were found using the Bayesian optimisation, through
maximisation of the ‘expected-improvement-plus’ (Bull, 2011;
Gelbart et al, 2014) over 60 iterations (Supplementary Tables S3
and S4). The following parameters were optimised for the SVM
algorithm: Box Constraint, Kernel Scale, Kernel type, Polynomial
order (if polynomial kernel) and feature standardisation. For the
Ensemble tree algorithm, the following hyperparameters were
optimised: Ensemble method (Bagging, GentleBoost, LogitBoost,
AdaBoost, RUSBoost’), maximum number of branch nodes,
minimum number of leaf nodes and the split criteria. Both
methods were also built with/without empirical prior data set
probabilities for site-specific metastasis. The optimised hyperpara-
meters for each model are detailed in the online Supplementary
Data.

Model validation. All models (namely, our combined and then
thresholded model, the optimised SVM, and the optimised
Ensemble) to each site, were five-fold cross-validated for
survival-risk evaluation. Kaplan–Meier survival curves were
created by combining the five testing sets and then used to
confirm significance and rank models. The comparison
metric used to compare the cross validated models was
the Akaike Information Criterion (AIC), a measure of fit. The
model that granted the lowest AIC per site, was considered the
optimal model for that site. Multivariate analysis was also
performed to control for the effects of chemotherapy, tumour size
and age.

RESULTS

The ability of clinical variables to predict DM (Park et al, 2015a)
and specifically in TNBCs (Pogoda et al, 2013) is well documented,
with common features, as for instance tumour size and nodal stage
providing significant prognostic ability. Our data corroborate these
findings by showing tumour size (HR¼ 0.002), age (Po0.048) and
NPI (Po0.0001) as having significant univariate impact on DM-
free survival. However, a comparison of the distribution of
these clinical factors for specific metastasis sites (Supplementary
Table S5) showed no difference in mean values of these variables
or in the proportions of patients in each group. We also
observed that chemotherapy did not affect recurrence patterns
(Supplementary Table S6). This led us to investigate whether any
of our biomarker models could provide the required specificity
of being both prognostically relevant and unique to specific DM
sites.

Bone metastasis. Among the protein biomarkers available in our
TNBC data set, those whose expression was significantly different
in patients who developed bone metastasis (Supplementary
Figure S7A and B), included several that were overexpressed
(blue lines) or highly underexpressed (red lines) in the primary
tumour. The eight biomarkers that are eligible for inclusion into
the final model, based on univariate prognostic significance, are
indicated. S7B shows the results of the parameter selection, with
the lowest P-value (Po0.0001) obtained combining the MTA1
nuclear H-score, KNPA2 nuclear percentage, in addition to NPI.
NPI was included in all our models as a stand-in for a ‘generalised
risk of metastasis’ as high-NPI patients have a higher risk of DM
compared with low-NPI (metastasis HR¼ 1.6, Po0.001). This
model, detailed below, enables us to identify patients who have a
five times higher risk of developing metastasis to bones
(Figure 2A) and stayed significant after cross validation
(Supplementary Figure S8A). Multivariate analysis (Table 1)
confirmed the prognostic value of our model by having it
independently associated with bone metastasis risk (Po0.0001)

following adjustment for age, chemotherapy status, and tumour
size.

Bone metastasis score ¼ 0:27ð Þ �MTA1 nuclear Hscore

� 1:26ð Þ � KPNA2 nuclear %

þ 43:49ð Þ � NPI

If bone metastasis scoreX196;

then high risk of bone metastasis

We also compared the performance of this model in the patient
subgroup that received adjuvant CMF chemotherapy vs the
subgroup that received no adjuvant chemotherapy, to determine
whether the model’s prognostic value was affected by therapy.
Results showed that the model for predicting bone-specific
metastasis maintained significance regardless of whether che-
motherapy was administered or not (Supplementary Table S9).
Interestingly, the cross-validated AICs showed that this survival-
based model slightly outperformed the SVM and Ensemble-based
models (Supplementary Table S10). Notably, all models tested
yielded statistically significant stratification.

Liver metastasis. For patients with liver metastases, we observed
that the majority of differentially expressed biomarkers (Po0.05;
29 vs 9) were underexpressed in the patient subgroup with liver
metastases compared with metastasis-free patients (Supplementary
Figure S11A). Furthermore, we found that the underexpression of
majority of these biomarkers (7 vs 1), was statistically significant in
univariate analyses. The combination that yielded the lowest P-
value (P o0.0001) involved N-cadherin H score, the cytoplasmic
intensity of xeroderma pigmentosum complementation group D
(XPD) and NPI (Supplementary Figure S11B). The model shown
below can stratify patients into a high-risk group that shows B8�
higher risk of liver metastasis (Figure 2B), and retained significance
after cross validation (Supplementary Figure S8B). Multivariate
analysis indicated that this model is contributing predictive
information for liver-specific metastasis independently of other
factors (Table 1).

Liver metastasis score ¼ 0:61ð Þ � ðNcadherin HscoreÞ
� 108ð Þ � XPD cytoplasmic intensity

þ 90ð Þ � NPI;

If liver metastasis scoreX436;

then high risk of liver metastasis

As with the bone model, the survival-based model for lung retained
significance regardless of chemotherapy (Supplementary Table S9)
and performed marginally better than machine learning
approaches (Supplementary Table S10).

Lung metastasis. Unlike for liver, multiple IHC biomarkers, such
as Fascin-1, Id1 and Id3 have been reported to mediate lung
colonisation in invasive BC including TNBCs (Gupta et al, 2007;
Ruiz de Garibay et al, 2015). Unlike the previously mentioned
proteins (where overexpression was correlated with lung metas-
tasis), our model filtering (Supplementary Figures S12A and B) led
to the selection of two biomarkers that accorded a favourable
prognosis when expressed at a high level. Combining TFF1 and
RARa, as shown below, produced a high-risk group, which had
over a seven times higher risk of developing lung metastasis
(Figure 2C). In addition, this model retained its significance in
cross validation (Supplementary Figure S8C) and multivariable
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Figure 2. Model derived comparisons of high versus low risk patients for site specific metastasis. Kaplan–Meier survival curves showing patient
stratification via our survival-based models for (A) bone (BMF¼breast metastasis free), (B) liver (LMF¼ liver metastasis free), (C) lung (LuMF¼ lung
metastasis free), and (D) brain sites (BrMF¼brain metastasis free). All significances are measured via the log-rank test. Light grey lines represent
baseline survival for the patients before stratification by the respective site-specific metastasis predictive models.

Table 1. Univariate and multivariate Cox regression analysis of common clinicopathological variables and IHC models affecting
distant metastasis risk

Univariate analysis Multivariate analysis

Variables
Hazard
ratio

95% Confidence
interval

P-value
Hazard
ratio

95% Confidence
interval

P-value

Bone
Age of diagnosis 1.022 0.997–1.048 0.0813 0.998 0.959–1.038 0.9028
Chemotherapy CMF vs none 0.801 0.452–1.419 0.4471 0.741 0.301–1.824 0.5148
Tumour size Per CM 1.397 1.001–1.951 0.0496* 1.355 0.862–2.132 0.188
Risk model High vs low 5.123 2.572–10.201 o0.0001* 4.939 2.281–10.692 o0.0001*

Liver
Age of diagnosis 1.002 0.971–1.034 0.9042 0.969 0.925–1.016 0.1957
Chemotherapy None vs CMF 1.202 0.570–2.536 0.6294 0.57 0.185–1.757 0.3275
Tumour size Per CM 1.688 1.171–2.432 0.005* 1.134 0.592–2.172 0.7047
Risk model High vs low 8.039 3.230–20.005 o0.0001* 9.156 3.376–24.837 o0.0001*

Lung
Age of diagnosis 1.004 0.973–1.037 0.7878 0.972 0.902–1.047 0.4486
Chemotherapy None vs CMF 0.808 0.402–1.626 0.5507 0.686 0.156–3.016 0.618
Tumour size Per CM 1.761 1.221–2.540 0.0025* 1.735 0.712–4.226 0.225
Risk model High vs low 7.661 2.491–23.564 0.0004* 6.306 1.567–25.374 0.0095*

Brain
Age of diagnosis 1.005 0.971–1.040 0.7718 0.943 0.867–1.026 0.1721
Chemotherapy None vs CMF 1.261 0.572–2.778 0.565 0.035 0.003–0.390 0.0064*
Tumour size Per CM 1.717 1.129–2.610 0.0115* 4.632 1.519–14.132 0.0071*
Risk model High vs low 8.506 2.299–31.471 0.0013* 36.362 4.276–309.228 0.001*

Abbreviations: CM = centimeter; CMF¼ cyclophosphamide-methotrexate-5-fluorouracil. *Po0.05.
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analysis, independent of other factors (Table 1).

Lung metastasis score ¼ �1:25ð Þ � TFF1 %

� 0:82ð Þ � RARa nuclear Hscore

þ 115ð Þ � NPI;

If lung metastasis scoreX436;

then high risk of lung metastasis

Unlike the previous two site-specific models, using an SVM to
predict lung metastasis produced a marginally superior AIC, and
thus fit (Supplementary Table S10), although all models retained
significant stratification. Also, although the model showed power-
ful prognostic ability among CMF-treated patients, it lost
significance in the patient subgroup that did not receive CMF
(Supplementary Table S9, P¼ 0.1); this was likely due to the low
number of metastatic events and metastasis-free patients in that
patient subgroup (4 and 27, respectively).

Brain metastasis. Although brain metastasis only accounts for
around 10–16% of all breast metastasis sites (Barnholtz-Sloan et al,
2004), and is a relatively longer process due to the blood–brain
barrier (Weil et al, 2005), it results in a very poor survival and a
marked reduction in quality of life (Klos and O’Neill, 2004). The
current paucity of biomarkers with the ability to predict metastasis
to the brain (Arnold et al, 1999), coupled with lack of an effective
targeted treatment (Deeken and Löscher, 2007) demonstrate that
this is an area of urgent and unmet clinical need for BC patients.
Recently, though, aB-crystallin, a chaperone protein predomi-
nantly expressed in brain metastasis, has shown promise as a
TNBC site-specific IHC biomarker (Malin et al, 2014; Voduc et al,
2015). In our data set, we found only a few biomarkers that
(a) showed significantly different expression between patients with
metastasis to the brain and those with no metastases, and (b) had
prognostic value in univariate analyses (Supplementary Figure
S13A). Post-hoc survival analysis using a non-optimised (mini-
mised Wald P-value) biomarker combination for brain metastasis
patients yielded a very imbalanced high-risk group that included
only two patients (not shown). We therefore combined the
biomarkers whose combination had the second best P-value
(Supplementary Figure S13B) to develop the model shown below.
With this model, high-risk patients possessed more than a 7�
higher risk of brain metastasis (Figure 2D). This effect was
maintained in multivariate analysis (Table 1) and cross validation
(Supplementary Figure S8D).

Brain metastasis score ¼ 0:77ð Þ � Parp1 nuclear Hscore

þ 0:87ð Þ � BRCA2 cytoplasmic H

� scoreþ 79ð Þ � NPI;

If brain metastasis scoreX568;

then high risk of brain metastasis

The prognostic value appears to result from significant stratifica-
tion of the untreated patients (Supplementary Table S9), as only
three treated patients, who were stained for both markers, had DM
to the brain. Patient prognosis, while significant with our model,
was predicted slightly better using an SVM (Supplementary Table
S10).

We then addressed the question of whether every TNBC patient
in the clinic should be prescribed the test for our panel of eight
IHC-based biomarkers that are able to foretell risk of metastasis to
specific sites. Interestingly, we found that the vast majority of
TNBC patients in this data set had an NPI 44 regardless of
whether they experienced metastasis or not (Supplementary Figure
S14A), and thus would require testing for all eight biomarkers. We
confirmed elevated NPI among TNBCs in a second independent
data set (Supplementary Figure S14B). These data suggest that with

the exception of a very small proportion of TNBC patients whose
NPI is below 4, the majority of TNBCs may require testing for all
eight biomarkers to determine risk of metastasis to these sites in
the future.

DISCUSSION

BC patients with DM have a median survival of only 2–3 years
(Cardoso et al, 2012). Even more worrisome is the fact that both
the time until DM and survival after metastasis is greatly reduced
for TNBCs, especially among those with residual disease after
neoadjuvant treatment (Liedtke et al, 2008; Cleere, 2010).
However, metastasis to different sites is associated with distinct
survival times after metastasis with some metastatic sites associated
with poorer outcomes compared to others. Therefore, predicting
DM before it occurs and identifying the potential sites of metastasis
would have a significant impact in management of TNBC.

Previous studies investigating biomarkers predictive of the site
of DM in BC have mainly utilised either global gene expression
data using high-throughput techniques such as microarrays and
next-generation sequencing or single proteins using IHC (Largillier
et al, 2008; Hu et al, 2009; Lorusso and Ruegg, 2012). No studies
have investigated DM using large groups of protein biomarkers in
primary TNBC tumour samples. Using our novel models, we are
able to introduce a clinically-facile IHC biomarker panel that can
identify high-risk subgroups among TNBCs, with at least a 5�
increased risk of site-specific metastasis. The strength of the
current study stems from (a) the large number of cases in our
TNBC series, (b) their long-term follow-up and detailed clinical
annotation, (c) the unique, and, to the best of our knowledge,
largest IHC biomarker data set available for this cohort, and (d) the
comprehensive analytical approaches.

Bone is the most studied BC DM site, with multiple steps of the
metastasis cascade elucidated in substantial detail (Mundy, 2002;
Roodman, 2004). Alongside this molecular knowledge, multiple
bone metastasis-specific biomarkers have been proposed. For
example, Winczura et al (2015) have found that a reduction of
osteopontin was consistently observed in patients who developed
bone metastasis, whereas Mihai et al (2006) have found that the
calcium-sensing receptor (CaR) was commonly expressed in breast
tumours, which metastasised to the bone. Although our models
uncovered some proteins previously known to be associated with
metastasis, it also uncovered several proteins that generally have
not been studied in the context of BC tropism to specific metastatic
sites/tissues, or have not been implicated directly in regulating
metastasis. For example, upregulation of the high-risk biomarker
MTA1 in our bone metastasis model, is seen in several aggressive
cancers (Kumar et al, 2003) and has been linked to bone metastasis
from prostate cancer (Kai et al, 2011). In BC, MTA1 upregulation
has been shown to promote lung-specific metastasis in mice
(Pakala et al, 2013). By contrast, we found that underexpression of
the karyopherin, KPNA2, is associated with development of bone
metastasis. KPNA2 has not been implicated in site specificity of
metastasis; in fact, its overexpression was correlated with poorer
recurrence-free overall survival in BC (Dahl et al, 2006; Dankof
et al, 2007). More importantly, KPNA2 expression in patients with
no metastases and patients with metastasis to sites other than bone,
was higher than in patients with bone metastasis. These results
suggest that TNBC patients (a) have high baseline expression of
KPNA2 (Alshareeda et al, 2015), and (b) this high expression
preferentially selects for all the other metastatic sites (seen in
Supplementary Figure S15A, along with the other site-specific
biomarker comparisons).

Although liver is one of the most common sites of metastasis for
BC patients (Weigelt et al, 2005), there is little research into
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potential liver metastasis-specific IHC biomarkers. Interestingly,
the biomarkers that were differentially expressed in patients with
liver metastases showed a strong tendency to be overexpressed in
patients with liver metastases (Supplementary Figure S11A). The
best model included N-cadherin, whose upregulation has been
associated with pro-migratory phenotypes (Cavallaro and
Christofori, 2004), and is thus believed to contribute to the general
risk of metastasis. There is also evidence suggesting a preference for
tropism to liver in BCs that overexpress N-cadherin (Hazan et al,
2000; Aleskandarany et al, 2014), although the mechanistic
underpinning of that preference is yet to be uncovered. The other
biomarker selected, XPD (also known as ERCC2), has no
previously published evidence of being involved in BC metastasis.
In fact, most studies focus on the association between mutations in
this gene and an increased risk of developing BC (Bernard-Gallon
et al, 2008), or specifically TNBC (Smolarz et al, 2014).

We also found that the roles reported for some of the metastasis
biomarkers in our models appear to differ between ER-positive and
TNBC patients. For instance, in ER-positive BC cohorts, gene
expression studies showed TFF1 to be very highly overexpressed in
patients who had bone metastasis vs metastasis to another site
(Smid et al, 2006). However, IHC data showed no significant
difference between patients who developed bone metastasis and
those with no metastasis (Bohn et al, 2009). There are also
conflicting reports regarding the impact of TFF1 overexpression on
BC prognosis with some studies suggesting that it may have an
oncogenic role (Perry et al, 2008), whereas others indicate an
association between its overexpression and a favourable prognosis
(Buache et al, 2011). In our TNBC cohort, reduced TFF1
expression was associated with high risk of lung metastasis
(Supplementary Figure S12A). However, studies in ER-positive
BC suggest that high TFF1 levels could promote lung metastasis via
TFF1’s role in enhancing chemotaxis (Prest et al, 2002). Another
protein that has not previously studied with regard to promoting
metastasis to any specific site is RARa. Our data suggest that
TNBC patients who experience lung metastasis underexpress
nuclear RARa (Supplementary Figure S6A). In ER-positive BC, the
presence of ER both correlates with the number of RARa receptors
and the ability of ER to inhibit cell growth in concert with RARa
(Sheikh et al, 1993). In TNBCs that underexpress RARa, it is
plausible that the brakes on proliferation are lifted; however, the
molecular basis of the propensity of these low-RARa TNBCs to
metastasise to the lung is currently unclear and merits further
study.

An important feature that cancer cells require to metastasise to
the lung, the ability to extravasation through non-fenestrated
capillaries, is also vital for brain metastasis. In fact, multiple genetic
similarities were shown between cells primed to metastasise to the
brain and to the lungs, such as COX2 (Bos et al, 2009). In the brain
metastasis model we derived, we observed an unexpected
combination of overexpressed biomarkers (Supplementary Figure
S13A) that were not significant for metastasis to any other site. A
previous study of IHC biomarkers had shown that an increase in
both PARP1 and nuclear BRCA2 expression is associated with a
stark decrease in both OS and RFS, separately and when combined
(Park et al, 2015b). By contrast though BRCA2 in our brain
metastasis model was cytoplasmic; more studies are required to
clarify the functions of cytoplasmic BRCA2 (Spain et al, 1999).

The aim of this retrospective study was exploratory, to identify
IHC-based biomarkers, which held statistical significance in
predicting TNBC metastasis to specific sites. Our study highlights
the importance of evaluating protein subcellular localisation and
identification of such ‘phenotypic’ biomarkers, as subcellular
localisation can profoundly influence biological activities and
prognostic significance of protein biomarkers. In fact, we found
that in the majority of the cases, the nuclear-localised or
cytoplasmic pools of the proteins in our signatures held prognostic

significance, whereas the overall levels did not. This finding
emphasises a key limitation of gene expression-based signatures
where robust gene expression-based signatures would be limited to
the subset of proteins whose cellular activities are directly
proportional to mRNA expression levels.

It is also noteworthy that in our data set, among patients with
metastases to multiple sites, the exact order of metastases is
unknown and each metastasis was treated independently even
though it is possible that some of these metastases may have arisen
from other earlier metastases rather than from the primary
tumour. In closing, our novel multi-parametric prognostic models
allow for very significant identification of patients with TNBC who
will experience DM to a specific site. Design of a cost-effective,
clinically-facile IHC-based battery of tests to predict the most likely
site of metastasis for TNBCs would (a) enable early detection of
metastases through increased surveillance, (b) allow use of
preventative therapy to prevent disease progression and
(c) improve outcomes for TNBCs.
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