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M
any behaviors and physiological processes
are influenced by internal recurrent daily
rhythms, which likely represent an adaptation
to the Earth’s rotation around the Sun and the

recurrent 24-h light-dark cycles in the external environ-
ment. These circadian rhythms are an important regulator
of many key biological processes that influence cellular
metabolic pathways and organ function (1,2). The results
from a series of studies have demonstrated the importance
of normal circadian action for maintaining health in people
and the disruption of circadian rhythm, which can have
adverse effects on metabolic function. For example, ex-
perimentally induced sleep restriction and/or circadian
misalignment, generated by inducing recurrent 28-h sleep-
wake cycles, decrease insulin sensitivity and glucose tol-
erance (3–6). Data from epidemiological studies suggest
that long-term alteration in sleep pattern increases the risk
of obesity and metabolic diseases. The prevalence of
obesity, hypertension, hypertriglyceridemia, and the met-
abolic syndrome are greater in shift workers than day
workers, and short sleep duration is associated with an
increased risk of obesity and diabetes (7,8).

Circadian rhythms are generated by a transcriptional
autoregulatory feedback loop that involves core clock
genes. CLOCK (circadian locomotor output cycles protein
kaput) and BMAL1 (brain and muscle ARNT-like 1) pro-
teins form a heterodimer complex that binds to E-boxes,
which drive the transcription of Period (PER1, 2, and 3)
and Cryptochrome (CRY1 and 2), which in turn produce
a negative feedback loop by suppressing CLOCK:BMAL1-
mediated transcriptional activity (1,2). In mammals, neu-
rons in the hypothalamic suprachiasmatic nucleus act as
a master pacemaker and synchronize the daily oscillations
in peripheral tissues throughout the body (1,9). Data from
studies conducted in rodent models show that circadian
clock genes function both centrally in the suprachiasmatic
nucleus and peripherally in key metabolic organs, in-
cluding the liver, skeletal muscle, pancreatic islets, and
adipose tissue (1,2) (Fig. 1). Clock genes are involved in
regulating glucose metabolism in the liver. Gluconeogen-
esis is impaired in both ClockD19 mutant and Bmal1
knockout (KO) mice (10), and hepatic glucose export is
also dysregulated in liver-specific Bmal1 KO mice (11). In

contrast, CRY1 inhibits fasting-induced gluconeogenic en-
zyme expression in the liver, so overexpression of CRY1
improves glucose tolerance and hepatic insulin sensitivity
in diabetic mice (12). In skeletal muscle, CLOCK and
BMAL1 are essential for the maintenance of normal mito-
chondrial biogenesis and respiratory function (13). In
pancreatic islets, CLOCK and BMAL1 help regulate glu-
cose-stimulated insulin secretion, and both ClockD19 mu-
tant and pancreas-specific Bmal1 KO mice have impaired
glucose tolerance because of b-cell dysfunction (14). In
adipose tissue, BMAL1 and PER2 regulate adipocyte dif-
ferentiation, de novo lipogenesis, and fatty acid oxidation
(15,16).

In this issue of Diabetes, Shostak et al. (17) present
findings that demonstrate a new and important function of
clock genes in regulating lipolytic activity in white adipose
tissue. The investigators conducted a series of elegant
experiments in wild-type (WT) mice and genetic mouse
models (ClockD19 mutant, Bmal1 KO, and Per2::Lucifer-
ase knock-in mice) that demonstrate 1) 24-h serum free
fatty acids (FFAs) and glycerol concentrations, which
provide an index of adipose tissue lipolytic activity, are
lower in WT than ClockD19mutant and Bmal1 KO mice; 2)
serum FFAs and glycerol concentrations and lipolytic ac-
tivity in fat pad explants follow a circadian pattern in WT
mice, which is abolished in ClockD19 mutant and Bmal1
KO mice; 3) adipose tissue obtained from different depots
display an endogenous and sustained circadian rhythm
manifested as autonomous bioluminescent rhythm in Per2::
Luciferase knock-in mice in fad pad explants obtained from
epididymal, perirenal, peritoneal, subcutaneous white adi-
pose tissue, and intrascapular brown adipose tissue; 4) gene
expression of the major proteins that hydrolyze adipose
tissue triglycerides, adipose triglyceride lipase (Atgl), and
hormone-sensitive lipase (Hsl), exhibit circadian variations
in WT mice, which are abolished in ClockD19 mutant and
Bmal1 KO mice; 5) CLOCK/BMAL1 regulate Atgl and Hsl
transcription in adipose tissue by binding to the E-boxes in
the Atgl and Hsl genes; and 7) the normal increase in adi-
pose tissue lipolytic activity that occurs in response to food
restriction is blunted in ClockD19 mutant mice, so these
animals rely much more on liver glycogen than do WT mice
as an energy source during fasting.

These results demonstrate that adipose tissue clock
genes regulate the hydrolysis of adipose tissue trigly-
cerides and provide a rhythmic release of FFAs and glyc-
erol from adipocytes. Moreover, this circadian function
has important physiological consequences because its
disruption decreases overall daily lipolytic activity and
blunts the lipolytic response to fasting. Adipose tissue is
the body’s major fuel reserve. Therefore, the mobilization
of adipose triglycerides and the release of FFAs and
glycerol into the bloodstream are critical for survival dur-
ing periods of food deprivation and for physical function
during prolonged physical activity. Accordingly, alterations
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in adipose tissue clock function could have serious adverse
consequences during fasting and endurance exercise.
However, it is also possible that localized adipose tissue
clock disruption and downregulation of lipolytic activity
have beneficial metabolic effects if energy intake and adi-
posity are not increased because experimentally increasing
circulating FFAs causes hepatic (18) and skeletal muscle
(19) insulin resistance, whereas experimentally decreasing
serum FFA concentrations improves insulin sensitivity (20).

An additional key finding from the study by Shostak
et al. (17) is that ClockD19 mutant mice had greater food
intake, body weight, and percent body fat than WT mice.
Unfortunately, these effects confound the interpretation of
the data from their study because it is possible that altered
feeding patterns and increased adiposity affect circadian
oscillations in adipose tissue lipolytic activity. A weight
gain–matched control group is needed to fully resolve this
issue. The increase in body weight and fat mass was likely
caused by hyperphagia and by not a decrease in adipose
tissue lipolytic activity. Body weight and body fat reflect
the balance between energy intake and energy expendi-
ture. Impaired lipolytic rate alone should not cause an ac-
cumulation of body fat without a concomitant positive
energy balance. Therefore, these data suggest circadian
rhythms are involved in the drive to eat, and they provide
a potential mechanism responsible for weight gain and obe-
sity associated with sleep deprivation and working at night.

The findings of Shostak et al. (17) add to our un-
derstanding of the molecular and physiological connection
between circadian rhythm and adipose tissue metabolism.
Additional studies conducted in adipose tissue–specific

(and organ-specific) KO or transgenic mice, in conjunction
with diet-matched control animals, are needed to help un-
ravel the complex effects of clock rhythms in individual
organs. The extraordinary diverse and profound effects of
circadian rhythm disruption on eating behavior and multi-
organ metabolic function make them particularly important
to understand the potential link between central and pe-
ripheral clocks in the pathogenesis of obesity and metabolic
dysfunction in people. These studies could lead to novel
targets for treating obesity and its metabolic complications.
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