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Abstract

Prediction and causal explanation are fundamentally distinct tasks of data analysis. In

health applications, this difference can be understood in terms of the difference between

prognosis (prediction) and prevention/treatment (causal explanation). Nevertheless,

these two concepts are often conflated in practice. We use the framework of generalized

linear models (GLMs) to illustrate that predictive and causal queries require distinct pro-

cesses for their application and subsequent interpretation of results. In particular, we

identify five primary ways in which GLMs for prediction differ from GLMs for causal in-

ference: (i) the covariates that should be considered for inclusion in (and possibly exclu-

sion from) the model; (ii) how a suitable set of covariates to include in the model is deter-

mined; (iii) which covariates are ultimately selected and what functional form (i.e.

parameterization) they take; (iv) how the model is evaluated; and (v) how the model is

interpreted. We outline some of the potential consequences of failing to acknowledge

and respect these differences, and additionally consider the implications for machine

learning (ML) methods. We then conclude with three recommendations that we hope

will help ensure that both prediction and causal modelling are used appropriately and to

greatest effect in health research.
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Introduction

Prediction and causal explanation are fundamentally dis-

tinct tasks of data analysis.1 A thorough discussion of this

distinction is given by Shmueli,2 yet the analytical implica-

tions are poorly recognised in much of health research,3

for which the distinction can be understood in terms of the

difference between prognosis (prediction) and prevention/

treatment (causal explanation).

Although many of the same techniques (e.g. linear mod-

els) can be applied to both predictive and causal queries,

they require distinct processes for their application and

subsequent interpretation of results. This is perhaps most

easily demonstrated in the context of generalized linear

models (GLMs), but has applicability to other modelling

methodologies, including machine learning (ML). For this

reason, we attempt here to simply and concisely illustrate

the key differences between prediction and causal inference

in the context of GLMs, to outline the potential conse-

quences of failing to acknowledge and respect these differ-

ences, and to provide recommendations that might enable

prediction and causal modelling to be used effectively in

health research.

A brief introduction to GLMs and historical
sources of confusion

Multiple (linear) regression models estimate the expected

value Eð�Þ of a single variate Y (the ‘dependent’ or ‘out-

come’ variable) from a linear combination of a set of ob-

served covariates X1; . . . ;Xn (the ‘independent’ or

‘explanatory’ variables, or simply ‘predictors’), as in:

E Yð Þ ¼ b̂0 þ b̂1X1 þ � � � þ b̂nXn

GLMs offer greater flexibility to accommodate a wider

range of outcome distributions by allowing a function of

the outcome [i.e. the ‘link function’ f ð�)] to vary linearly

with respect to the covariates, as in:

f ðE Yð ÞÞ ¼ b̂0 þ b̂1X1 þ � � � þ b̂nXn (1)

The coefficients b̂0; b̂1; . . . ; b̂n for a given GLM are typi-

cally obtained via a statistical process known as ‘maximum

likelihood estimation’, which determines the values that

make the observed data ‘most likely’.4 Although GLMs are

theoretically simple to understand and implement, estimat-

ing their parameters without the aid of a computing device

quickly becomes intractable as the number of covariates

grows.

The emergence of programmable desktop computers in

the 1980s and 1990s therefore facilitated a revolution in

data analytics, since it became possible to perform both

swiftly and automatically the complex matrix inversions

required for generalized linear modelling. However, the

routine application of generalized linear modelling that be-

came established and entrenched was unwittingly predi-

cated on prediction, rather than causal explanation.

Standard GLMs are agnostic to the causal structure of

the data to which they are fitted. The process of fitting a

GLM makes no assumptions about causality, nor does it

enable any conclusions about causality to be drawn with-

out further strong assumptions. Pearl’s work on graphical

causal models [often in the form of directed acyclic graphs

(DAGs)] provides a formal framework for causal inference

using GLMs by explicating the assumptions required to in-

terpret individual coefficients as causal effects.5–7

However, utilization of this framework (and, indeed, rec-

ognition of its existence) has been limited in health

research.8,9

As a result (and despite consistent reminders that ‘corre-

lation does not imply causation’), it remains common prac-

tice to endow the estimated coefficients for individual

covariates with causal meaning, often on the basis of ‘sta-

tistical significance’. This may be done explicitly or implic-

itly, as in a recent (though by no means unique) high-

profile study that found a significant association between

active commuting and lower risk of cardiovascular disease

but then used this as the basis for recommending initiatives

that support active commuting.10

Persistent confusion has also been created by much of

the language used to describe the relationships between a

Key Messages

• The distinct goals of prediction and causal explanation result in distinct modelling processes, but this is underappreci-

ated in current modelling applications in health research (e.g. generalized linear models).

• Modelling methods that are optimized for prediction are not necessarily optimized for causal inference.

• Failure to recognise the distinction between modelling strategies for prediction and causal inference in machine learn-

ing applications risks wasting financial resources and creates confusion in both academic and public discourse.
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dependent variable and its ‘predictors’, which often serves

to conflate correlational relationships with causal ones.

Perhaps the most notorious example of this is the term

‘risk factor’, which has both associational and causal con-

notations across different contexts.3,11

These factors have combined to produce ambiguity

about how GLMs for prediction differ from GLMs for

causal inference, often resulting in the conflation of two

distinct concepts.

GLMs for prediction and causal inference

Models for prediction are concerned with optimally deriv-

ing the likely value (or risk) of an outcome [i.e. Y in equa-

tion (1)] given information from one or more ‘predictors’,

a key task of risk prediction and prognosis. In contrast,

models for causal inference are concerned with optimally

deriving the likely change in an outcome [i.e. b̂i for 1 �
i � n in equation (1)] due to (potentially hypothetical)

change in a particular covariate (i.e. Xi), a key task of pre-

vention and treatment. Models for prediction and causal

inference are thus fundamentally distinct in terms of their

purpose and utility, and methods optimized for one cannot

be assumed to be optimal for the other.

GLMs for prediction and causal inference differ with re-

spect to the following.

i. The covariates that should be considered for inclusion

in (and possibly exclusion from) the model.

ii. How a suitable set of covariates to include in the

model is determined.

iii. Which covariates are ultimately selected, and what

functional form (i.e. parameterization) they take.

iv. How the model is evaluated.

v. How the model is interpreted.

To illustrate these differences, we use for context a re-

cent study by Pabinger et al.12 published in the Lancet

Haematology that concerns venous thromboembolism

(VTE), a common complication of cancer in which a blood

clot forms in a deep vein and then becomes lodged in the

lungs. We consider how two research questions—one pre-

dictive, one causal—might be addressed using logistic re-

gression (i.e. GLMs with the ‘logit’ link function) in this

context. This is then followed by a more general discussion

regarding the implications these differences have for the

application and interpretation of GLMs in health research,

and subsequent implications for ML.

Prediction modelling

The ultimate utility of a prediction model lies in its ability

to accurately predict the outcome of interest. Such

information may be used to anticipate the outcome—either

to simply prepare for its occurrence or to inform a subse-

quent intervention that attempts to alter it.

In our clinical context, for instance, a prediction model

for VTE in cancer patients could be used to identify indi-

viduals at heightened risk of VTE solely so that they can be

more carefully monitored in hospital, or so that they can

receive treatment with low-molecular-weight heparin13 in

order to reduce the risk that has been predicted.

The prediction research question (RQ1, and that which

is addressed by Pabinger et al.12) can thus be framed as:

Which cancer patients are most (or least) likely to de-

velop VTE?

Which covariates should be considered for

inclusion in the model?

Variables that are hypothesized to be useful ‘predictors’ of

the outcome should be identified; these are variables that

are likely to be associated with the outcome, though not

necessarily directly causally related to it. As an example,

Pabinger et al.12 consider D-dimer concentration as a pos-

sible covariate. D-dimer is a protein that is present in the

blood only after the coagulation system has been activated,

and thus a marker for the existence of a blood clot rather

than a cause of it.

Practical considerations often restrict the set of varia-

bles that are considered. For example, where a specific

dataset has already been chosen, only variables that appear

in this dataset are considered for inclusion. Variables that

are easy to measure and/or record are also preferred, in or-

der to improve the practical utility of the final model.

How are covariates selected for inclusion in the

model, which covariates are ultimately selected

and how are they parameterized?

Methods for narrowing down the set of ‘candidate’ covari-

ates are generally automatic and/or algorithmic in nature

(e.g. best subsets regression, forwards/backwards stepwise

or change-in-estimate procedures14) and operate within a

restricted range of the infinite potential parametric space.

These methods evaluate different possible covariate subsets

and parameterizations according to some specified criteria

in order to arrive at a suitable model. Pabinger et al.12 for

instance, implement the least absolute shrinkage and selec-

tion operator (LASSO15) combined with a backwards se-

lection algorithm to narrow down their twenty ‘candidate’

covariates to just two—tumour site and (log-transformed)

D-dimer concentration.
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The covariates that are ultimately selected are those

that, as a group, are deemed to efficiently maximize the

amount of joint information relative to the outcome.

Selecting the ‘optimal’ subset of covariates typically

involves a trade-off between ‘explaining’ the maximum

amount of variation in the outcome and creating a parsi-

monious model that is likely to fit other similar datasets.

Additional complexity—in the form of more covariates

and more complex parameterizations—is likely to increase

the predictive capabilities of the model, but at the expense

of external validity. This trade-off is made explicit in many

of the criteria used for subset selection, including adjusted

R2 and penalized likelihood-based measures such as

Akaike’s information criterion (AIC) and Bayesian infor-

mation criterion (BIC).4

How is the model evaluated?

The model is assessed via statistical evaluation of the over-

all model, with little focus on the specific choice of model

covariates and limited reference (if any) to exogenous theo-

retical constructs informed by the context of the model.

Examples of common ‘goodness-of-fit’ criteria include root

mean squared error of residuals, (adjusted) R2 and receiver

operator characteristic (ROC) curves.

Oftentimes, the performance of the model is assessed

using a different dataset than that which was used to build

it, so as to evaluate its wider validity.

How is the model interpreted?

The prediction model provides information about the

expected value (or risk) of an outcome, given data on the

covariates in the model. The model does not provide infor-

mation about how to change the expected value (or risk) of

an outcome. The consequences of any (hypothetical) inter-

vention to change the outcome may be estimated from ex-

ternal knowledge (e.g. clinical trial results for low-

molecular-weight heparin treatment13) but are unknow-

able from the model itself without further strong

assumptions.

The model also cannot indicate which individual predic-

tors are most relevant, as the set of predictors ultimately

selected depends upon the initial set of ‘candidate’ predic-

tors and the parameterizations considered. Moreover,

there is no guarantee that the variables which, as a group,

accurately predict the outcome have any sensible interpre-

tation (causal or otherwise) in isolation. In general, even

attempting to qualitatively or quantitatively rank the ‘con-

tribution’ of different predictors should not be attempted,

since both the magnitude and sign of each predictor are

conditional on the inclusion of all others. Although there

are a small number of cases where ranking predictors could

be useful, it is nevertheless a common problem that authors

seek to interpret individual covariates in ways that are

inappropriate.16

Causal modelling

The goal of causal explanation is to estimate the true

causal association between a particular variable (often re-

ferred to as the ‘exposure’) and the outcome, by removing

all other hypothesized associations that distort that rela-

tionship (henceforth referred to as ‘spurious’ associations).

Such information may then be used to attempt to alter the

outcome by altering the exposure. [We restrict our analysis

here to considering the ‘total’ causal effect, since additional

complexities arise in the estimation of ‘direct’ and ‘indi-

rect’ (i.e. ‘mediated’) causal effects.17]

In the context of a GLM, the causal association of inter-

est is represented by the coefficient of the exposure vari-

able; removing all spurious associations is achieved in

principle by also including as covariates a sufficient set of

variables that ‘control for’ those associations.

Returning to our clinical example, chemotherapy has

been identified as a ‘risk factor’ for VTE.18 However, de-

termining to what degree it increases the risk of VTE com-

pared with other treatments or interventions (e.g. no

chemotherapy) requires a robust estimate of the causal ef-

fect of chemotherapy on VTE risk.

The causal research question (RQ2) can thus be

framed as:

To what degree does chemotherapy increase the risk of

developing VTE?

Which covariates should be considered for

inclusion in the model?

Variables that are hypothesized to create or transmit spuri-

ous associations between the exposure and outcome should

be identified and considered for inclusion in the model.

The most familiar of such associations is confounding,

which arises due to one or more common causes of the ex-

posure and outcome. The causal effect of chemotherapy on

risk of VTE, for example, is likely to be confounded by tu-

mour size, since this is often taken into consideration when

deciding whether to initiate chemotherapy and also likely

affects subsequent VTE risk.

In causal modelling, it is equally as important to iden-

tify variables that should be excluded from consideration.

For example, spurious associations may arise due to an

under-recognised phenomenon known as ‘collider bias’, in
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which ‘controlling for’ a common causal descendent (i.e. a

‘collider’) induces an additional non-causal dependency be-

tween the exposure and outcome.19,20 Variables that trans-

mit part of the causal association of interest should also be

excluded from consideration.

The process of identifying covariates to potentially in-

clude or exclude should not be limited by what is available

in a particular dataset, since spurious associations between

the exposure and outcome do not simply cease to exist if

they are ignored.21,22

How are covariates selected for inclusion in the

model, which covariates are ultimately selected

and how are they parameterized?

The covariates ultimately selected for inclusion in the

model must, as a group:

i. ‘control for’ all spurious associations,

ii. not ‘control for’ any of the causal association, and

iii. not create any additional spurious associations.23

Graphical causal models (often in the form of DAGs)

are of enormous utility to covariate selection in causal

modelling. These models consist of a set of nodes (varia-

bles) connected by a set of arrows (representing hypothe-

sized direct causal effects), where an arrow from one

variable to another implies that a change in the first causes

a change in the second. Any two variables may also be

connected by indirect causal pathways, which are sequen-

ces of edges that flow in the same direction, and paths that

transmit spurious associations (e.g. confounding paths).6,23

A simplified DAG for our example scenario is provided in

Figure 1.

The use of a DAG provides a transparent means of

spelling out the causal assumptions underlying a given sce-

nario. Moreover, the subset(s) of covariates that satisfy the

three conditions identified previously may be identified al-

gorithmically,24 since in a DAG framework the three con-

ditions correspond to covariates that, as a group:

i. block all confounding paths,

ii. do not block any causal paths, and

iii. do not open any ‘colliding’ paths.23

For instance, the DAG in Figure 1 implies that age, sex,

tumour site and tumour size should be included as covari-

ates in order to estimate the total causal effect of chemo-

therapy on VTE risk, since they confound the relationship

of interest; platelet count should be excluded, since it medi-

ates the effect of chemotherapy on VTE risk.

If there exist multiple subsets of covariates that satisfy

the three conditions, practical considerations may be used to

choose between them. For example, subsets containing vari-

ables that are not available in the intended dataset, or that

are otherwise hard to measure accurately, may be rejected.

Once a suitable set of covariates is identified, the goal

of covariate parameterization is to appropriately modify

Figure 1 Directed acyclic graph (DAG) depicting the hypothesized causal relationship between chemotherapy (the ‘exposure’) and venous thrombo-

embolism (VTE, the ‘outcome’); causal pathways are depicted with dashed lines. Age, sex, tumour site and tumour size confound the relationship be-

tween chemotherapy and VTE, and so should be included as covariates in the GLM in order to estimate the total causal effect of chemotherapy on

VTE risk. Platelet count mediates the relationship between chemotherapy and VTE, and so should not be included as a covariate in the GLM in order

to estimate the total causal effect of chemotherapy on VTE risk.
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the exposure–outcome relationship (i.e. remove the spuri-

ous component(s) of their association); failure to ade-

quately ‘control for’ these covariates may result in residual

confounding.25

How is the model evaluated?

A DAG is, by construction, a map of hypothesized statisti-

cal dependencies between variables. Conversely, it implies

certain statistical independencies between variables, the ex-

istence of which can be tested empirically in the dataset

used and then potentially used to further refine the

model.24

Sensitivity analyses may also be employed to estimate

the magnitude of biases arising from unmeasured con-

founding, residual confounding or collider bias.26

How is the model interpreted?

The coefficient for the exposure may be interpreted as an

estimate of the total causal effect of the exposure on the

outcome, i.e. the total expected change in the value of the

outcome that is due to a (potentially hypothetical) change

in the value of the exposure. In our example, this corre-

sponds to the expected increase in the risk of VTE that is

attributable only to initiation of chemotherapy (i.e. all else

‘being equal’27). Of course, the validity of this estimate is

only as good as the validity of the causal assumptions un-

derlying it.

The model does not provide information about the total

expected change in the outcome that is due to changes in

the other model covariates except under extremely restric-

tive circumstances. In general, estimating the effect of a dif-

ferent ‘exposure’ requires a different model. Erroneously

attempting to interpret multiple coefficients in a single

GLM as total causal effects is referred to as the ‘Table 2

fallacy’.28

Implications

The distinct goals of prediction and causal explanation re-

sult in distinct processes for covariate selection and param-

eterization, model evaluation and model interpretation.

For these reasons, GLMs for prediction and causal expla-

nation are not interchangeable and should not be

conflated.

Any coefficient in a GLM could potentially represent a

true causal effect (either direct, total or a subset of the to-

tal), an association due to uncontrolled confounding or

collider bias, or any combination thereof. Interpreting a

particular coefficient as an estimate of the total causal ef-

fect of that covariate on the outcome requires making the

assumption that all other covariates in the model ‘control

for’ all spurious associations, do not ‘control for’ any of

the causal association, and do not create any additional

spurious associations. Causal modelling processes have

these assumptions explicitly built into their foundations,

but prediction modelling processes do not.

The goal of prediction modelling is to develop a useful

tool to forecast an outcome that has yet to occur, and so

the model-building process is ultimately driven by conve-

nience and other practical considerations. It is well-suited

to automated methods for covariate selection and parame-

terization, because the specific subset of covariates that is

ultimately used to predict the outcome (and the way in

which they are parameterized) is relatively unimportant so

long as the model has a sufficient degree of internal and ex-

ternal validity.

In contrast, the causal model-building process is neces-

sarily driven by external and a priori theory, and thus ben-

efits little from algorithmic modelling methodologies. To

estimate the causal effect of one variable on another, one

must specify both the possible causal pathways through

which those effects are realized and the possible non-causal

pathways that transmit spurious associations before any

modelling is undertaken. Although the process of identify-

ing a suitable subset of covariates that remove all spurious

associations between the exposure and outcome may be

automated once all causal assumptions are made explicit

(often in the form of a DAG), identifying the initial set of

variables and specifying the manner in which they are

likely to transmit spurious associations cannot be

automated.

Implications for machine learning

Much of the previous discussion surrounding the applica-

tion and interpretation of GLMs has direct relevance to

ML.

ML refers to the automated, typically algorithmic, de-

tection of meaningful patterns in data, and may thus be

viewed as a branch of artificial intelligence.29 In health re-

search, it is often hailed as the new frontier of data analyt-

ics which, combined with big data, will purportedly

revolutionize delivery of healthcare (e.g. through ‘person-

alized medicine’), provide new and important insights into

disease processes, and ultimately lead to more informed

public health policy and clinical decision-making.30–34

Nevertheless, many ML methods (e.g. neural networks) es-

sentially perform regression, and thus require equally

thoughtful implementation.

Although the application of ML to health research has

potential promise, the distinction between prediction and

causation has been largely overlooked in discussions
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surrounding such promise. Historically, ML methods have

been applied to prediction tasks, and indeed their most

high-profile successes to date involve predictive and/or di-

agnostic tasks.35–37 However, as has been demonstrated in

the preceding example, prediction modelling requires dis-

tinct processes from those required for causal inference. It

is not difficult to imagine that it will soon be as simple to

perform ML methods in off-the-shelf software as it is to

implement GLMs, and that the automation that facilitated

such confusion in the realm of GLMs will be played out on

an even larger scale in the realm of ML.

Selection of a particular variable into a prediction

model does not alone imply anything about the strength

(or even existence) of a true causal relationship between

that variable and the outcome of interest. More generally,

individual ‘predictors’ offer little insight (causal or other-

wise), as prediction models are inherently outcome-

focused. Interestingly, complex ‘black box’ algorithms—

which are frequent subjects of ethical concerns38–41—are

potentially less susceptible to causal (mis)interpretation

than GLMs because they do not attach numeric values to

particular covariates. However, there is unfortunately al-

ready some evidence to suggest that the conflation of pre-

diction and causation has extended into the realm of

ML,42–44 although we have not conducted a systematic re-

view to assess how widespread such behaviour is.

Integration of modern causal inference methods into

ML applications should be sought and encouraged for an-

swering causal questions. Indeed, there is already promis-

ing research being done in this area (e.g.45–49).

Recommendations

Based upon our previous analysis and discussion, we offer

the following three recommendations to ensure that both

prediction and causal modelling be used appropriately and

to greatest effect in health research.

(i) The purpose of any model should be specified

from the outset, and the model built with

appropriate respect for this context

The distinct purposes of prediction and causal inference re-

quire distinct models. It is paramount that the purpose of

any model is established from the outset, and that it is then

constructed, evaluated and interpreted with appropriate re-

spect for this context. All reporting of methods and results

should be consistent with this guidance in order to avoid

misinterpretation or misapplication of the model.

(ii) Contextual knowledge is generally required for

both prediction and causal inference, and this

cannot be automated

The frameworks of both GLMs and ML can provide auto-

mated methods for estimating the parameters that map

inputs (i.e. covariates) to outputs (i.e. outcomes).50 These

methods do not, however, replace contextual knowledge,

which is generally required for both prediction and causal

modelling.

Specifying the initial set of variables to consider for

each model, for instance, requires temporal knowledge. A

model that includes a variable that occurs after any (hypo-

thetical) intervention to alter the outcome is of little use

practically, yet an algorithm by itself cannot make this

determination.

Requirements for contextual knowledge are even

greater for causal modelling, where causal assumptions

must be specified, ideally before any modelling is under-

taken; this is addressed further in point (iii).

(iii) Attributing causal effects requires causal

assumptions

Robust causal evidence from observational data cannot be

obtained in a ‘theory-free’ environment. Attempting to ex-

tract causal meaning from models that have not been built

in an explicit causal framework is futile at best. Whereas it

might be argued that prediction in one setting helps to in-

form intervention in another, such transference of infer-

ence relies on the ability of a single selected ‘predictor’ to

provide causal insight, which it cannot do without addi-

tional strong (causal) assumptions.

Conclusion

The distinction between modelling strategies for prediction

and those for causal inference is not widely appreciated in

the context of GLMs, despite being the mainstay method

for health data analysis. Failing to recognise the distinction

and its implications risks wasting substantial financial

resources and creating confusion both in academic and

public discourse. Moreover, the application of ML and

other modelling methodologies are likely to suffer many of

the same problems (and potentially on a vastly larger scale)

if the lessons of GLMs are not heeded. We hope that this

article has highlighted some of the important considera-

tions associated with the use of GLMs and ML for predic-

tion and causal inference, and thereby provides researchers

with practical guidance for implementing them.
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