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Abstract

Background: Microexons, exons that are ≤ 30 nucleotides, are a highly conserved
and dynamically regulated set of cassette exons. They have key roles in nervous
system development and function, as evidenced by recent results demonstrating the
impact of microexons on behaviour and cognition. However, microexons are often
overlooked due to the difficulty of detecting them using standard RNA-seq aligners.

Results: Here, we present MicroExonator, a novel pipeline for reproducible de novo
discovery and quantification of microexons. We process 289 RNA-seq datasets from
eighteen mouse tissues corresponding to nine embryonic and postnatal stages,
providing the most comprehensive survey of microexons available for mice. We
detect 2984 microexons, 332 of which are differentially spliced throughout mouse
embryonic brain development, including 29 that are not present in mouse transcript
annotation databases. Unsupervised clustering of microexons based on their
inclusion patterns segregates brain tissues by developmental time, and further
analysis suggests a key function for microexons in axon growth and synapse
formation. Finally, we analyse single-cell RNA-seq data from the mouse visual cortex,
and for the first time, we report differential inclusion between neuronal
subpopulations, suggesting that some microexons could be cell type-specific.

Conclusions: MicroExonator facilitates the investigation of microexons in
transcriptome studies, particularly when analysing large volumes of data. As a proof
of principle, we use MicroExonator to analyse a large collection of both mouse bulk
and single-cell RNA-seq datasets. The analyses enabled the discovery of previously
uncharacterized microexons, and our study provides a comprehensive microexon
inclusion catalogue during mouse development.

Keywords: Microexons, Splicing, Alternative splicing, Neuronal development, Single-
cell, Reproducible software
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Background
In eukaryotes, mRNA processing is a key regulatory step of gene expression [1]. Alter-

native splicing is arguably one of the most important processes affecting the vast major-

ity of transcripts in higher eukaryotes [2]. Consequently, alternative splicing impinges

directly onto numerous biological processes such as cell cycle, cell differentiation, de-

velopment, sex, circadian rhythm, response to environmental change, pathogen expos-

ure and disease [3–6]. High-throughput RNA sequencing (RNA-seq) coupled with

efficient computational methods has facilitated annotation of low abundance and

tissue-specific transcripts and thus revolutionized our understanding of alternative and

non-canonical splicing events [7].

In vertebrates, dramatic changes in alternative splicing control neurogenesis, neur-

onal migration, synaptogenesis and synaptic function [8]. In particular, it was shown

that short exons tend to be included more frequently in the central nervous system [9,

10]. Recently, it was also shown that extremely short exons, known as microexons,

herein defined as exons ≤ 30 nucleotides, are the most highly conserved component of

neuronal alternative splicing during development [11]. Importantly, microexon inclu-

sion has been proposed to have a key regulatory role during brain development, having

an influence over neurite outgrowth, cortical layering and axon guidance [12–17].

However, the quantification of microexons using RNA-seq remains challenging due to

their incomplete annotation [18].

The first algorithms for genome-wide microexon discovery were based on EST/cDNA

misalignment corrections and discovered 170 microexons [19, 20]. De novo discovery

of microexon insertions by aligning short segments of mRNA using standard software

is difficult because most algorithms require a perfectly matching seed sequence that

often cannot fit within a single microexon. Detection can be improved by reducing the

size of alignment seeds, as was done for Olego which enabled the identification of 630

novel microexons 9–27 nucleotides (nt) in mice [21]. Another strategy for increasing

the sensitivity of microexon discovery is to directly map RNA-seq reads to libraries of

annotated splice junctions [11, 22], but the bioinformatic pipelines used in these sem-

inal studies have not been released to the public domain. Today, VAST-TOOLS is the

most widely used tool for microexon quantification from RNA-seq data [23]. However,

a significant restriction of VAST-TOOLS is that it can only identify microexons that

are annotated in VastDB [23], which is only available for a limited number of species.

Here, we introduce MicroExonator, a computational workflow for discovery and

quantification of microexons using RNA-seq data. MicroExonator employs a two-step

procedure whereby it first carries out a de novo search for unannotated microexons

and subsequently quantifies both new and previously annotated microexons (Fig. 1).

Using simulations, we show that MicroExonator outperforms other available tools, both

in terms of sensitivity and specificity. We then analyse mouse embryonic development

RNA-seq datasets, and we identify a total of 2984 microexons, 37% of these are not

previously annotated in GENCODE [24] mouse transcript models. We focus our ana-

lysis on 326 microexons that change during neuronal development, and 18% of which

are not present in VastDB. Our analysis shows a pattern of orchestrated microexon in-

clusion during brain development as evidenced by the high degree of connectivity of

the protein-protein interaction network encompassing the genes that contain microex-

ons. We also directly demonstrate the high degree of conservation of microexons by
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analysing 23 zebrafish brain RNA-seq samples where we detect 348 zebrafish microex-

ons that were conserved in mice, including 54 that were not annotated in the Ensembl

gene annotations. Finally, we apply MicroExonator to single-cell RNA-seq data, and we

demonstrate that some microexons are not only tissue-specific, but also cell type-

specific.

Results
Reproducible detection and quantification of microexons using RNA-seq data

MicroExonator is a computational workflow that integrates several existing software pack-

ages with custom python and R scripts to perform discovery and quantification of micro-

exons using RNA-seq data. MicroExonator can analyse RNA-seq data stored locally, but

it can also fetch any RNA-seq datasets deposited in the NCBI Short Read Archive or other

Fig. 1 Overview of the MicroExonator workflow. a To discover unannotated microexons, RNA-seq reads are
aligned with BWA-MEM to the annotated splice junctions. The resulting alignments are postprocessed to
discover novel microexons flanked by canonical U2-type GT-AG splice sites. b Both putative novel and
annotated microexons are quantified and filtered to produce a final list of microexon incorporation into
transcript models which can be used for downstream analysis. c Number of intronic matches and
distribution of spurious match probability across microexon lengths. d A two-component Gaussian mixture
is used to fit the U2 consensus splicing score distribution. The red line shows the Gaussian with lower
mean U2 splice score, which is assumed to consist mainly of false positives, while the green line denotes
the Gaussian with higher mean U2 splice-site score
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web-based repositories. As microexon annotations remain incomplete and sometimes in-

consistent across different transcript annotations, MicroExonator can incorporate prior

information from multiple databases such as RefSeq [25], GENCODE [24], ENSEMBL

[26], UCSC [27] or VastDB [23]. To discover putative novel microexons, reads are first

mapped using BWA-MEM [28] to a reference library of splice junction sequences. Misa-

ligned reads are then searched for insertions located at exon-exon junctions. Detected in-

sertions are retained if they can be successfully mapped to the corresponding intronic

region with flanking canonical U2-type splicing dinucleotides [29] (Fig. 1a). To maximize

the number of reads that can be assigned to each splice site, annotated and putative novel

microexon sequences are integrated as part of the initial splice tags where they were de-

tected. Reads are re-aligned with Bowtie, performing a fast but sensitive mapping of reads

which is further processed to quantify percent spliced in (PSI) microexon values and per-

form quantitative filters (Fig. 1b, Additional file 1: Fig. S1).

MicroExonator employs several filters (Fig. 1b–d) to remove spurious matches to in-

tronic sequences which may arise due to sequencing errors [20]. To illustrate these fil-

ters, we ran the initial mapping steps over the total RNA-seq from mice (289 RNA-seq

samples from 18 different murine tissues and 1657 single cells from mice visual cortex

[30–32]) used in this paper. As the first filtering step, only those insertions that can be

detected in a minimum number of independent samples (i.e. technical or biological

replicates, three samples is set as default) are considered. Additionally, MicroExonator

scores the sequence context of the detected canonical splice sites to measure the

strength of their upstream and downstream splice junctions as quantified by a splicing

strength score [33], and a Gaussian mixture model is used to exclude matches that have

weak splice site signals (Fig. 1d). Finally, MicroExonator integrates the splicing strength,

probability of spurious intronic matching and conservation (optional) in an adaptive fil-

tering function to remove low confidence candidates (Additional file 1: Fig. S2).

To ensure that analyses are fully reproducible, MicroExonator was implemented using

the SnakeMake workflow manager [34]. As MicroExonator may require significant com-

putational resources, SnakeMake also facilitates running computational analyses on high-

performance computer clusters by automating the scheduling of interdependent jobs.

SnakeMake itself can be installed from Bioconda [35], and it can initiate MicroExonator

directly after downloading the code from our GitHub repository (https://github.com/

hemberg-lab/MicroExonator). During runtime, MicroExonator creates custom conda vir-

tual environments which contain specific combinations of software packages found in

BioConda repositories to ensure that the same versions are consistently used.

Benchmarking of computational methods for microexon discovery

To compare MicroExonator with other methods, we incorporated a set of synthetic

microexons into the GENCODE gene annotation. The microexon sizes were drawn

from the previously reported distributions [11, 22] with a greater abundance of in-

frame microexons. We also modified the genomic sequence by replacing the intronic

flanking regions of simulated microexons with sequences extracted from annotated

splice sites. To simulate spurious microexons, we randomly incorporated insertions

across splice junctions, as these inserted sequences have the potential to map to in-

tronic spaces.
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We used Polyester [36] to simulate reads with a standard Illumina sequencing error

rate and processed them using either MicroExonator, VAST-TOOLS [11], Hisat2 [37],

STAR [38] or Olego [21]. Our results show that both VAST-TOOLS and MicroExona-

tor performed significantly better than stand-alone RNA-seq aligners (Fig. 2a–c), dem-

onstrating the benefit of using a dedicated computational workflow for microexon

discovery. Even though all three aligners could detect a significant fraction of the simu-

lated microexons, they are all limited in their ability to discover very short microexons;

STAR’s sensitivity drastically declines for microexons < 10 nt, while the sensitivity of

Hisat2 and Olego drops for microexons < 8 nt (Fig. 2b). By contrast, VAST-TOOLS

could detect microexons 3 nt or longer with an overall sensitivity of 84.6%, and Micro-

Exonator could detect microexons of all sizes with a sensitivity of 88.8%. Moreover, our

results indicate that the direct output of STAR and Hisat2 do not represent a reliable

source of microexons, as they have low specificity. Using the default parameters results

in false discovery rates (FDR) of 0.43 and 0.33, respectively. Olego had the highest spe-

cificity (FDR = 0.13) of the aligners, while VAST-TOOLS and MicroExonator achieved

an FDR of 0.12 and 0.10, respectively. However, most of the MicroExonator’s false

Fig. 2 Evaluation of microexon discovery performance of RNA-seq aligners, VAST-TOOLS and MicroExonator
using synthetic data. a Size distribution of simulated microexons that were detected by the different
software. b, c Specificity and sensitivity of detected simulated microexons. d Log10 error PSI values show
the accuracy of the microexon quantification
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discovery events correspond to microexons 1–2 nt (which are not reported by VAST-

TOOLS), and when only ≥ 3-nt microexons are considered, FDR drops to 0.02 (Add-

itional file 1: Fig. S3).

The simulations also allow us to calculate the ground truth percent spliced in (PSI)

values for the microexons, a quantity that represents how frequently a splice junction is

incorporated in a transcript. Both MicroExonator and VAST-TOOLS exhibited signifi-

cantly lower PSI estimation errors for microexons < 10 nt compared to stand-alone

aligners (Fig. 2d). However, VAST-TOOLS was designed to discover and quantify

microexons 3–15 nt (additional VAST-TOOLS modules are required to quantify longer

microexons), while MicroExonator provides accurate PSI estimates for all microexon

sizes. Even though MicroExonator’s error rates are slightly higher for microexons > 10

nt, they are still comparable to the results obtained by stand-alone aligners. Taken to-

gether, these results show that MicroExonator is more accurate for annotating and

quantifying microexons from RNA-seq data compared to conventional RNA-seq

aligners and previously developed pipelines for microexon discovery.

Microexon inclusion changes dramatically throughout mouse embryonic development

To investigate how microexon inclusion patterns change during mouse development,

we analysed 271 RNA-seq datasets generated by the ENCODE Consortium [39, 40].

These RNA-seq data originate from 17 different tissues, (including the forebrain, hind-

brain, midbrain, neural tube, adrenal gland, heart and skeletal muscle) across 7 different

embryonic stages (ranging from E10.5 to E16.5), early postnatal (P0) and early adult-

hood (8 weeks). In addition, we analysed 18 RNA-seq experiments from mouse cortex

across nine different time points: embryonic development (E.14.5 and E16.5), early

postnatal (P4, P7, P17, P30) and older (4 months and 21months) [32]. To generate the

initial library of splice junctions, we provided MicroExonator with the GENCODE [24]

and VastDB [11] transcript annotations. We detected and quantified 2984 microexons

that are 3 nt or longer, and 928 of these were not annotated in neither GENCODE nor

VastDB (Additional file 2: Table S1). As some microexons were detected in lowly

expressed genes, we only retained microexons whose inclusion or exclusion was sup-

ported by > 5 reads in > 10% of the samples, and this resulted in 2599 microexons. To

characterize the splicing patterns, we performed dimensionality reduction using prob-

abilistic principal component analysis [41, 42], and we identified three components that

together explain 78.9% of the total PSI variance across samples (Fig. 3a, b, Add-

itional file 1: Fig. S4). The first principal component (PC1) accounts for 56.5% of the

PSI variance and strongly correlates with the embryonic developmental stage of neur-

onal samples measured as days postconception (DPC) between E10.5 and E14.5, sug-

gesting a strong coordination of microexon splicing during brain embryonic

development (Fig. 3c, Additional file 1: Fig. S5). PC2 explains 16.2% of PSI variability

and is mostly related to muscular-specific microexon inclusion patterns that were de-

tected in the heart and skeletal muscle, suggesting muscle-specific microexon splicing

patterns (Fig. 3a, Additional file 1: Fig. S4). Finally, PC3 explains 6.1% of PSI variability,

and it is related to microexon alternative splicing changes in the whole cortex postnatal

samples, suggesting that microexon neuronal splicing keeps changing after birth, but to

a lesser extent than during embryonic development (Fig. 3b, Additional file 1: Fig. S4).
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Fig. 3 Microexon inclusion through mouse embryonic development. a, b Dimensionality reduction using
probabilistic principal component analysis of microexon PSI values across mouse embryonic and postnatal
samples reveals correlation with developmental time for PC1, while PC3 is correlated with the
developmental time of the postnatal brain samples. Dot shapes denote different sample types, and their
colour indicate their developmental stage, here expressed as log days postconception (DPC). c PC1
correspondence with embryonic developmental time. d Heatmap showing the microexon inclusion
patterns across analysed RNA-seq samples, where rows correspond to microexons and columns to RNA-seq
samples. Blue to red colour scale represents PSI values. RNA-seq samples were clustered in 16 different
clusters. Microexons were clustered in 24 different clusters, and these were named according to their
further classification as neuronal (N), muscular (M), neuromuscular (NM), weak-neuronal (WN) and non-
neuronal (NN). e Tissue type and developmental stage composition from sample clusters containing
neuronal samples or samples associated with high microexon inclusion. f, g Projection of the sample
clusters across the estimated principal components
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To further investigate tissue-specific microexon changes throughout the develop-

ment, we performed bi-clustering of microexon PSI values from the different embry-

onic samples, and we obtained 24 microexon and 16 sample clusters (Fig. 3d). Each of

the sample clusters represents a combination of well-defined subsets of tissues and em-

bryonic states (Fig. 3e). For example, samples corresponding to the brain, heart, skeletal

muscles (SKM) and adrenal gland (AG) form separate groups, with the only exception

being E10.5 brain samples which clustered together with embryonic facial prominence

limb from E10.5 to E12.0. Consistent with the dimensionality reduction analysis, sam-

ples from the brain cluster preferentially by developmental time rather than by neur-

onal tissue, suggesting that microexon alternative splicing changes are greater between

developmental stages than between brain regions (Fig. 3e–g). As PC1 corresponds to

changes of microexon inclusion during neuronal development and PC2 to muscle tis-

sues, we used the mean loading factor values of each microexon cluster from PC1 and

PC2 to classify 17 microexon clusters as neuronal (N), muscular (M), neuromuscular

(NM), weak-neuronal (WN) and non-neuronal (NN) (Fig. 4a, b). Additionally, we found

10 microexon clusters that did not have strong tissue-specific patterns, but were instead

either constitutively included (I) or excluded (E) (Figs. 3d and 4c).

Studies of standard alternative exons have shown that they typically have weaker

splice signals than constitutive ones and that they are less likely to disrupt the reading

frame [43]. Thus, we measured the splice site strengths as defined by the average U2

score of microexon flanking splice sites and the fraction of microexons that preserve

the reading frame for each cluster (Fig. 4d). As expected, the included clusters exhibit

the strongest splicing signals, while the excluded clusters have the weakest splice sites,

suggesting that constitutive inclusion of microexons relies on strong splicing signals.

Moreover, the excluded clusters have a lower fraction of in-frame events, implying that

they are likely to be more disruptive to gene function. Interestingly, neuronal, muscular

and some neuromuscular clusters have almost as weak splice sites as the excluded clus-

ters, but the total in-frame fraction of these clusters is 0.74. This is considerably higher

than the in-frame fractions for longer cassette exons (overall 0.43 and developmentally

regulated 0.68) [32]. On the other hand, non-neuronal clusters have high U2 scores

and also the highest in-frame microexon fraction. The in-frame fraction of each micro-

exon cluster is strongly correlated with the conservation of the coding sequence (Pear-

son correlation = 0.88, p value < 1e−7, Additional file 1: Fig. S6, which implies that

microexon clusters with higher conservation tend to preserve the protein frame.

We found a pattern of gradually increased microexon inclusion in the neuronal and

neuromuscular categories during mouse brain development in neuronal tissues (Fig. 4e,

Additional file 1: Fig. S7). By contrast, non-neuronal microexons exhibited the opposite

trend. In addition, since neuronal and neuromuscular microexons have higher loading

factors on PC1, they are likely to have the most variation across mouse embryonic de-

velopment (Additional file 1: Fig. S8). To quantitatively assess alternative splicing across

mouse brain development, we integrated Whippet [44] as part of an optional downstream

MicroExonator module. We analysed 221 ENCODE RNA-seq experiments, using 85 non-

neuronal samples from the three clusters (C1, C6 and C8) with the lowest PC1 loadings

as negative controls. We systematically compared alternative splicing patterns detected in

the brain, SKM, heart and AG against other non-neuronal tissues. To find microexon spli-

cing changes associated with specific neuronal developmental stages, we pooled by
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embryonic stage RNA-seq samples from the midbrain, hindbrain and neural tube (MHN)

between E10.5 and E16.5, and we used Whippet-delta to assess alternative splicing

changes using MicroExonator and Whippet PSI values (Additional file 3: Table S2). We

observed high correlations between the PSI values obtained from MicroExonator and

Fig. 4 Inclusion properties of microexon clusters. a Number of microexons belonging to each cluster. b
Mean loading factors across each cluster for PC1 and PC2. c Mean and standard deviation of PSI values
across microexon clusters. d Mean U2 scores and in-frame fraction across microexon clusters. e Mean PSI
values across neuronal and neuromuscular microexons. Each grey line represents the mean PSI values for a
microexon across all samples from a tissue cluster or neuronal developmental stage (x-axis). Colour lines
represent the mean PSI values across all clusters and stages. f–h Alternative microexons detected between
non-neuronal tissue samples and midbrain, hindbrain and neural tube (f); forebrain (g); and adrenal gland
(AG), heart (HRT) and skeletal muscle (SKM) (h). Microexon splicing changes are the percentage of
microexons corresponding to each microexon cluster, where microexon inclusion fractions are represented
with blue bars and exclusion events with red bars. i Intersection between microexon sets that were
differentially included across sample groups. The vertical bars show the number of microexons
corresponding to combinations indicated by the connected dots below. j Area-proportional Euler diagram
representing the most abundant intersections between differentially included microexon sets
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Whippet, with the exception of microexons derived from 3′ or 5′ alternative splice sites

(Additional file 1: Fig. S9). In total, we found 426 microexons that were consistently de-

tected as differentially included (delta PSI > 0.1 and probability > 0.9 using MicroExonator

and Whippet PSI values) in at least one of the comparisons between MHN and control

groups. Interestingly, 326 of these microexon changes are maintained for all subsequent

stages once they have been observed. The distribution of the developmental stages when

these sustained microexon changes started to be detected differed. While some microexon

clusters showed early changes (N1 and N2), other clusters started to be differentially in-

cluded later on (N3, NM1 and NM2) (Fig. 4f). As the forebrain tends to show delayed

microexon inclusion compared to the midbrain, hindbrain and neural tube (Figs. 3c and

4e), we pooled forebrain samples between E10.5 and postnatal (P0) and compared the

samples grouped by developmental stage with the non-neuronal control sample group.

We found 407 microexons that were differentially included during at least one forebrain

developmental stage, with 257 sustained through all later developmental stages (Fig. 4g).

In total, we found 332 differentially included microexon events that were sustained

through all later developmental stages of MHN or forebrain. While all the observed

microexon changes across neuronal and neuromuscular clusters correspond to inclusion

events, microexons from the non-neuronal cluster (NN1) only correspond to exclusion

(Fig. 4f, g).

In agreement with previous studies [11, 22] we also found strong inclusion patterns

associated with heart and SKM. In addition, we found microexon inclusion patterns as-

sociated with AG samples (Fig. 3a, b, d, e). Compared with the set of non-neuronal

control samples, we found 83, 106 and 58 microexons to be differentially included in

the heart, SKM and AG, respectively (Fig. 4h). Most neuronal and neuromuscular

microexon clusters show distinct microexon inclusion patterns for these tissues com-

pared to controls, whereas amongst non-neuronal clusters, differentially included

events were restricted to the heart and SKM (Fig. 4h).

The set of microexons that were differentially included across the different tissue groups

(brain-MHN, forebrain, heart, SKM and AG) overlaps. Closer inspection reveals high con-

cordance between the set of microexons associated with sustained changes in inclusion

across MHN and forebrain samples. Surprisingly, we found a significant overlap of alter-

natively included microexons that have concordant patterns in AG and neuronal samples

(hypergeometric test p value < 1e−30). Nearly all of the AG microexons are also found in

neuronal samples, but in AG, we observed lower PSI values (Fig. 4i, j, Additional file 1:

Fig. S10). We hypothesize that the mixture between neuronal and non-neuronal isoforms

found in AG is due to the chromaffin cells in the adrenal medulla which are derived from

the neural crest and share fundamental properties with neurons [45, 46].

Microexon alternative splicing is coordinated throughout embryonic development

Based on in vitro studies of neuronal differentiation, it has been proposed that microex-

ons are an integral part of a highly conserved alternative splicing network [11]. Our

analysis of mouse embryonic data (Fig. 4e) shows that most microexons remain in-

cluded once their splicing status has changed. To explore the possible functional conse-

quences of these splicing changes, we analysed the interactions between the proteins

which contain microexons by constructing tissue-specific protein-protein interaction
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(PPI) networks for the brain, heart, SKM and AG using STRING [47]. For all four PPI

networks, the degree of connectivity was significantly higher than expected by chance

(p value < 1e−16) (Fig. 5a, Additional file 1: Fig. S11-S12). On average, there were 2.3-

fold more connections than expected by chance, with the brain having the largest num-

ber of connections (Additional file 1: Table S3). Next, we considered the Gene Ontol-

ogy (GO) terms and pathways associated with the PPI networks [48]. The Reactome

pathways that showed a significant enrichment, include parts of molecular complexes

that are involved in the membrane trafficking pathways, e.g. “ER to Golgi anterograde

transport”, “clathrin-mediated endocytosis”, “Golgi-associated vesicle biogenesis”,

“intra-Golgi and retrograde Golgi-to-ER traffic” and “lysosome vesicle biogenesis”. We

also found a distinct cluster that is annotated as part of “protein-protein interactions at

synapses”. This group includes presynaptic proteins, e.g. liprins (Ppfia1, Ppfia2 and

Ppfia4), protein tyrosine phosphatase receptors (Ptprf, Ptprd and Ptprs) and neurexins

Fig. 5 Microexon protein-protein interaction network. a PPI network using as input genes that have
microexons that are differentially included across mouse embryonic brain development. Edges represent
protein-protein interactions that are supported by either experimental evidence or databases. Edge width
represents the confidence of the interaction based on a combined score calculated by STRING. Colours
represent different Reactome pathways that were enriched on the network. b Eigencentrality calculated for
each gene node in relation to the developmental stage at which each microexon was included. Labels are
provided for the protein nodes belonging to the upper quartile eigencentrality, and their colours indicate
their corresponding annotation status. c Effect of microexon alternative splicing for different Reactome
pathways. Counts indicate the number of microexons that start to be differentially included at each
developmental stage. d, e Eigencentrality and earliest developmental stage at which each gene is affected
by differential microexon inclusion show differences across some of the GO categories that were
significantly enriched after gene background correction. Statistical differences were assessed by one-sided
Wilcoxon test while correcting for multiple comparisons. Significant p values are denoted by *> 0.05, **>
0.01 and ***> 0.001
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(Nrxn3), which are involved in trans-synaptic interactions with multiple postsynaptic

proteins, having a key role in synaptic adhesion and synapse organization. The interac-

tions of these proteins have been shown to be highly regulated by alternative splicing

[49], and our results reveal that many of these events occur towards the end of embry-

onic development.

In agreement with previous reports that have highlighted the importance of microex-

ons for axonal and neurite outgrowth [14, 50], we detected 17 alternative neuronal

microexons that affects 15 proteins in the PPI network that are annotated as part of

the “axon guidance” Reactome pathway. These proteins are found in the centre of the

network, and they are connected with the domains involved with membrane trafficking

and trans-synaptic protein-protein interactions (Fig. 5a). For two of the proteins associ-

ated with this pathway, the non-receptor tyrosine kinase protein Src and L1 cell adhe-

sion molecule (L1cam), microexon inclusion is known to play a key role in

neuritogenesis [51, 52], but the importance of microexons in other proteins involved in

this pathway remains poorly characterized.

To characterize the topology of the PPI network, we calculated the eigencentral-

ity for each protein. Amongst the nodes with centrality scores from the upper

quartile, we identified two microexons (in Dctn2 and Rpgrip1l) that were differen-

tially included at E13.5, and they were not annotated in GENECODE, but only in

VastDB (Fig. 5b). Conversely, we found seven alternative microexons (in Dctn1,

Mark4, Ncam1, Synj1 and Sgip1) that were not annotated in VastDB, but only in

GENECODE. Interestingly, within the upper quartile of eigencentrality values, we

also detected four alternative microexons (in Dctn2, Cd59a, Ptk2 and Dnm3) that

were not annotated neither in GENCODE nor in VastDB. This result demonstrates

that it is important to perform microexon exon discovery and to integrate different

sources of transcript annotation, as many of the central nodes in the PPI network

would have been missed otherwise. At early developmental stages (E10.5–E11.5),

we found several microexon alternative splicing events in genes associated with

“membrane trafficking” pathways concentrated. A subset, “clathrin-mediated endo-

cytosis”, is associated with microexon changes in the later stages, as most events

became significant only after E12.5 (Fig. 5c). Similarly, “axon guidance” microexon

changes mostly occur at E11.5, in particular, the microexon alternative splicing

events for proteins that interact with L1cam. L1cam and 7 out of 10 of its interac-

tors are amongst the 25% of nodes with the highest eigencentrality, and Src has

the highest harmonic centrality and betweenness. These results suggest that micro-

exon regulation across mouse embryonic development may impact Src/L1cam-asso-

ciated pathways. The inclusion of Src microexon has been reported to enable L1-

CAM-dependent neurite elongation [52]; however, the global effect of microexons

on Src/L1cam-interacting proteins is currently unknown.

Finally, an investigation of genes corresponding to some of the most relevant GO

terms revealed that groups of genes related with vesicle-mediated transport and cyto-

skeleton organization hold more central positions in the PPI network than genes asso-

ciated with signal transduction, nervous system development and synapse assembly

(Kruskal-Wallis rank sum test, p values < 0.05, Fig. 5d). Similar to the microexons

found in genes associated with cytoskeleton organization, they are also included earlier

in development than in microexon found in genes related with signal transduction,
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nervous system development and synapse assembly (Kruskal-Wallis rank sum, p values

< 0.05, Fig. 5e).

MicroExonator enables the identification of novel neuronal microexons

Of the 332 microexons that were differentially included across brain development, 98

were inconsistently annotated as compared to GENCODE and VastDB. Of these 98

neuronal microexons, we found 35 that are only annotated in GENCODE, and 30 neur-

onal microexons that are not annotated in GENCODE, but are present in VastDB. Des-

pite the fact that the mouse genome is comprehensively annotated, we found 33

neuronal microexons that are not annotated neither in GENCODE nor in VastDB. The

high sensitivity and specificity demonstrated in simulations imply that the false discov-

ery rate is 0.0053 for microexons ≥ 6nt (Fig. 2, Additional file 1: Fig. S3). Thus, we ex-

pect that all 31 microexons ≥ 6 nt are true positives, and our conclusion is further

supported by the fact that the lengths follow a similar periodicity pattern to annotated

microexons (Fig. 6a).

To validate one of the novel microexons, we focused on the Dctn2 gene (eigencen-

trality of 0.76), where we detected two adjacent differentially included microexons of

length 9 and 6 nt (Fig. 6b). Neither of these microexons are annotated in GENCODE,

but the 9-nt microexon is annotated in VastDB (MmuEX0013953). Interestingly, the

downstream 6-nt microexon that was discovered by MicroExonator is validated by

spliced ESTs [53]. We detected differential inclusion of the 6-nt Dctn2 microexon from

Fig. 6 Discovery of novel microexons in mouse and zebrafish. a Histogram showing the size distribution of
microexons that were found to be differentially included across mouse embryonic development. b
Alternative Dctn2 microexons that are inconsistently annotated in mouse GENCODE and VastDB
annotations. c Novel 6-nt Dctn2 microexon shows a progressive inclusion through mouse embryonic
development. d PSI values calculated from normalized RT-PCR measurements show a gradual inclusion of
the 6-nt Dctn2 microexon though in vitro neuronal mESC to neuron differentiation. e Number of conserved
microexons between mouse and zebrafish that are missing from their transcript annotation
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E10.5 in MHN samples, whereas in the forebrain, it is differentially included from

E12.5 (Fig. 6c).

We performed qRT-PCR experiments to assess the inclusion of the Dctn2 6-nt

microexon during mESC to neuron differentiation. We used one set of primers to amp-

lify Dctn2 isoforms with 6-nt microexon inclusion and another set to amplify total

Dctn2 isoforms. Next, we calculated the ratio of 6-nt inclusion across mESC, epiblast

stem cells and differentiated neurons at two different stages (Fig. 6d). The inclusion ra-

tios from the qRT-PCR measurements indicate that the Dctn2 6-nt microexon is in-

cluded through in vitro differentiation of mESC to neuron, consistent with our findings

during embryonic development for this microexon. These results show that the alterna-

tive splicing quantification provided by MicroExonator can identify novel microexons,

even for model organisms that are well annotated.

Identification of microexons in zebrafish brain

To demonstrate how MicroExonator can be applied to species with less complete anno-

tation, we analysed 23 RNA-seq samples from zebrafish brain [54]. We found 1882

microexons (Additional file 4: Table S4), of which 23.8% are not found in the ENSE

MBL gene annotation. We used the liftover tools [55] to assess whether some of these

microexons are evolutionary conserved microexons in mice, and we successfully

mapped 401 zebrafish microexons. Of these, 85% mapped directly to a previously iden-

tified mouse microexon, and most of the remaining 15% mapped to longer exons. Map-

ping the microexons in the other direction, 617 out of 2938 that were identified from

the mouse development data mapped to the zebrafish genome and 49.7% of those in re-

turn mapped to a zebrafish microexon. By integrating these results, we obtained a total

of 402 microexon pairs that are found in both zebrafish and mice (Additional file 5:

Table S5). Since 90.3% of the pairs had an identical length in both species, they are

highly likely to correspond to the evolutionary conserved microexons.

To compare the microexon annotation between mouse and zebrafish, we asked how

many of the 402 conserved microexons that are missing in mouse or zebrafish gene

transcript annotation. While only 6.9% of these exons are missing from the mouse tran-

script annotation provided by GENCODE, 16.1% are missing from the ENSEMBL zeb-

rafish transcript annotation. Moreover, the largest fraction of conserved microexons

that are missing in zebrafish transcript annotation corresponds to neuronal microexons

(Fig. 6e).

Cell type-specific microexon inclusion in mouse visual cortex

Our analysis of neuronal development suggested that the main difference in microexon

inclusion is between time points rather than tissues. However, since these data do not

reflect the diversity of cell types within neuronal tissues, we hypothesized that micro-

exon inclusion patterns may vary amongst different neuronal subtypes. To study the

cell type-specific patterns of microexon inclusion, we analysed the SMART-seq2

scRNA-seq data from the visual cortex of adult male mice [31]. The sample contains

1657 cells which were assigned into six cell type classes that were further subdivided

into 49 distinct clusters.
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We focused on the GABA-ergic and the glutamatergic clusters of neurons

which contain 739 and 764 cells, respectively. We first ran the microexon discov-

ery module with an expanded annotation, which included the microexons discov-

ered from our previous analyses. This yielded 2344 microexons that were

included in at least one cell. Next, we used Whippet to quantify the PSI of the

microexons detected by MicroExonator for each cell. Due to the sparse coverage,

the single-cell analysis is sensitive to errors. Thus, for each neuronal type, we

also pooled 15 randomly selected neurons into pseudo-bulk groups that were

quantified by Whippet. To avoid false positives due to the pooling, we ran the

analysis 50 times and we integrated the results to ensure the robustness of the

reported alternative splicing changes between the two neuronal subtypes. From a

total of 195,441 splicing nodes tested, we detected 208 that were consistently dif-

ferentially included between GABA-ergic and glutamatergic neurons (Add-

itional file 6: Table S6). Amongst these nodes, 2265 correspond to microexon

splicing events, and 29 were differentially included between these neuronal classes

(28 core exon and 1 alternative acceptor node). These results show that alterna-

tive splicing events between GABA-ergic and glutamatergic neurons are strongly

enriched for microexon splicing events (hypergeometric test p value < 10−19 when

the total amount of nodes or just the core exon nodes are considered).

Amongst the genes that contain differentially included microexons between

GABA-ergic and glutamatergic neurons is a group of eleven genes that encode

for proteins that localize at synaptic compartments. We found seven presynaptic

proteins, two postsynaptic proteins and two proteins that have been observed at

both locations (Fig. 7a). For example, the type IIa RPTP subfamily of proteins

undergo tissue-specific alternative splicing that determines the inclusion of four

short peptide inserts, known as mini-exon peptides (meA-meD) [49, 56, 57].

While meB comprises four residues (ELRE) and is encoded by a single micro-

exon, meA has three possible variants that can form as a result of the combina-

torial inclusion of two microexons: meA3 (ESI), meA6 (GGTPIR) and meA9

(ESIGGTPIR) [58]. Ptprd (also known as PTPδ) is a member of the RPTP sub-

family, and our analysis shows a consistent inclusion of Ptprd meB in both

GABA-ergic and glutamatergic neurons. However, we detected cell type- specific

rearrangement of meA microexons which promotes the inclusion of meA9 in glu-

tamatergic neurons, while in GABA-ergic neurons, meA variants are mostly ex-

cluded (Fig. 7b). Alternative splicing of meA/B microexons is key to determining

the selective trans-synaptic binding of Ptprd to postsynaptic proteins, which is a

major determinant of the synaptic organization [49]. In addition, we found that

the Ptprd microexon that determines the inclusion of meD is alternatively in-

cluded, as well as microexons in genes that are involved in synaptic cell adhesion,

e.g. Gabrg2, Nrxn1 and Nrxn3 [49, 59]. The microexon inclusion in these genes

is variable across the core clusters, sometimes showing stark differences between

GABA-ergic and glutamatergic neuron subtypes (Fig. 7c). These results suggest

that microexon inclusion is not only coordinated at the tissue type level, but it is

also finely tuned across neuronal cell types, and these differences may be of im-

portance for determining neuronal identity and synapse assembly.
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Discussion
We have presented MicroExonator, a complete bioinformatic workflow for repro-

ducible discovery and quantification of microexons. MicroExonator is designed to

handle large volumes of data, and it will automatically download datasets and

schedule jobs on a computer cluster. Currently, it is the only publicly available

method that allows these types of investigations. MicroExonator’s discovery module

is based on the detection of inserted sequences between annotated splice sites

Fig. 7 Differential alternative splicing analysis of microexons between glutamatergic and GABA-ergic
neurons using scRNA-seq data. a Volcano plot showing alternatively included microexons between
glutamatergic and GABA-ergic neurons. Differentially included microexons are highlighted in black. Synaptic
proteins are labelled with different colours depending on their sub-synaptic localization. b Sashimi plot
showing Ptprd microexons that determine the inclusion of meA/B mini-exon peptides. c Microexon
inclusion patterns across all core clusters at proteins involved in trans-synaptic interactions. Ptprd
microexons involved in the inclusion of mini-exon peptides are labelled on the side (meA and meD)
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which enables the identification of very short microexons that cannot be reliably

detected by spliced RNA-seq aligners (Fig. 2c). Thus, MicroExonator will greatly fa-

cilitate the study of microexons. MicroExonator is straightforward to incorporate

into an existing RNA-seq analysis workflow. Importantly, MicroExonator can be

used to directly study the microexon conservation across species, thereby making it

possible to understand if inclusion patterns are as well conserved as the nucleotide

sequences. Furthermore, MicroExonator makes it possible to study RNA-seq data

from large cohorts to investigate if there are microexons that differ amongst

individuals.

As proof of principle, we used MicroExonator to analyse RNA-seq data from 301 RNA

samples from mice at embryonic and adult stages and 1679 single cells. We have ex-

panded the catalogue of murine microexons by identifying 928 previously uncharacterized

loci. In agreement with previous analyses, we identified microexons that were differen-

tially included in the brain, heart and SKM [11, 22], but we also detected 58 microexons

that are differentially included in the adrenal gland. Taken together, we have presented

the most comprehensive catalogue of microexons available to date, and it allowed us to

uncover several distinct inclusion patterns in both developing and adult mice.

Microexon coordination across neuronal development

Our quantitative analysis revealed that the proteins containing microexons form a

highly connected network during mouse neuronal development. Moreover, analysis of

the topology of the network suggests that the microexons for the most central nodes

are included early in development. It is not yet fully understood how this coordination

is achieved, but it has been shown that microexon inclusion relies on upstream intronic

splicing enhancers which promote neuron-specific microexon inclusion [60]. However,

we also identified a large group of microexons that are constitutively included across

murine tissues, suggesting that their inclusion cannot be dependent on tissue-specific

factors alone. Instead, our analysis points to a more straightforward explanation as the

constitutive microexons have stronger splicing signals than neuronal microexons. Fur-

ther analysis of neuronal microexon cis-regulatory elements is required to understand

how inclusion events are coordinated and why there is a small number of microexon

that is progressively excluded through brain development.

The predominant mechanism for regulating alternative splicing events during neur-

onal development is through RNA-binding proteins [8]. In the case of microexons,

SRRM4 and RBFOX1 have a critical role in coordinating microexon inclusion through

brain development, and changes in the expression of these splicing factors have been

linked to misregulation of alternative splicing events in individuals with autism

spectrum disorder (ASD) [11, 22, 61]. In fact, alternative splicing changes associated

with ASD are enriched for microexons, and they are recapitulated in mutant mice hap-

loinsufficient for SRRM4, which also display multiple autistic features [14]. Moreover, a

recent genome-wide CRISPR-Cas9 screen has identified two additional factors, SRSF11

and RNPS1, that contribute to SRRM4-dependent microexon regulation, and these

genes have also been implicated in ASD and other neurological disorders [60]. Another

example of a protein where imbalances of microexon inclusion have been associated

with an elevated risk of ASD is cytoplasmic polyadenylation element-binding protein 4
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(CPEB4) [62]. We found differential inclusion of CPEB4 microexon during mouse em-

bryonic brain development, and we also found microexon changes in other protein fac-

tors that are involved in mRNA polyadenylation, such as CPEB2, CPEB3 and FIP1L1.

However, the role of these microexons in neuronal function and neuropsychiatric dis-

eases remains unexplored.

The high degree of conservation of microexons strongly suggests that they are func-

tionally important, but for the most part, we lack a detailed, mechanistic understanding.

A notable exception is Src where microexon inclusion leads to the production of n-Src,

a well-characterized neuronal splice variant. The Src microexon encodes for a positively

charged residue located at an SH3 domain that has been shown to regulate Src kinase

activity and specificity [63]. From the STRING analysis, we found evidence for Src-

dependent phosphorylation of Git1, Ctnnd1 and Ptk2 [64–66], though the impact of

neuronal microexon alternative splicing for these phosphorylation events remains un-

known. Moreover, recent studies show that n-Src microexon inclusion is required for

normal primary neurogenesis and L1cam-dependent neurite elongation [52, 67], imply-

ing a strong phenotype. Another central node in the PPI network that is known to

undergo microexon alternative splicing changes that are important for axon growth is

L1cam, a founding member of the L1cam protein family. Across the L1cam protein

family, a sorting signal is included due to 12-nucleotide alternative microexons. In the

case of L1cam, the 12-nucleotide microexon mediates its clathrin-mediated endocytosis

by interacting with adaptor protein complex 2 (AP-2) [68]. Our analysis shows that the

AP-2 mu subunit (Ap2m1) is also affected by microexon inclusion through mouse

brain development.

Cell type-specific microexon alternative splicing across the mouse visual cortex

Single-cell RNA-seq data is providing an unprecedented opportunity to survey cell-

specific expression profiles. However, with a few notable exceptions [69–72], most

scRNA-seq analyses have focused on analysis at gene rather than the transcript level.

Here, we applied MicroExonator to GABA-ergic and glutamatergic cells from the visual

cortex, and to increase the power, we developed a downstream SnakeMake workflow,

snakepool. As many splicing events are undetected in single-cell data due to poor

coverage, a pooling strategy is necessary to increase the power to identify significant

differential inclusion events.

We identified 29 microexons that were differentially included between GABA-ergic

and glutamatergic neurons and 11 synaptic proteins that are affected by 15 of these cell

type-specific microexons. Amongst these, we found three alternative microexons on

Ptprd, which control the inclusion of meA and meD mini-exon peptides. While meA is

known to have a key role in modulating trans-synaptic interactions and having a direct

impact on synapse formation [58, 73], the functional repercussions of meD inclusion

remain unexplored. In addition, we also show that microexons found in Ptprd and

other proteins involved in trans-synaptic protein interactions can have distinctive alter-

native inclusion profiles across GABA-ergic and glutamatergic subtypes (Fig. 7c). Im-

portantly, this result demonstrates that even though bulk RNA samples from different

brain regions are largely similar, there are differences between both neuronal and non-

neuronal populations. The differential inclusion of microexons could have profound
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effects on neuronal identity, synapse formation and disease. For example, the differen-

tial microexon inclusion event that we identified in GABAa receptor subunit γ

(GABRG2) can have a direct impact on GABA-ergic neurons as this microexon intro-

duces a phosphorylation site that regulates GABA-activated current. Misregulation of

this alternative splicing event has been associated with schizophrenia in human patients

[18]. However, additional analyses of alternative microexon patterns across neuronal

cell types will be required to fully understand their contribution to neuronal heterogen-

eity and function.

Methods
Annotation-guided microexon discovery using RNA-seq data

MicroExonator was implemented over the SnakeMake workflow engine [34], to facili-

tate reproducible processing of large numbers of RNA-seq samples. In the initial dis-

covery module, MicroExonator uses annotated splice junctions supplied by the user (a

gene model annotation file can be provided in GTF or BED format) to find novel

microexons. RNA-seq reads are first mapped to a library of reference splice junction

tags using BWA-MEM [28] with a configuration that enhances deletion detection (bwa

mem -O 6,2 -L 25). The library of splice junction tags consists of annotated splice junc-

tions between exons ≥ 30 nt and spanning introns ≥ 80 nt. For each splice junction, a

reference sequence tag is generated by taking 100 nt upstream and downstream from

the corresponding transcript sequence. Splice junction alignments are processed to ex-

tract read insertions with anchors ≥ 8 nt that map to exon-exon junction coordinates.

Inserted sequences are then re-aligned inside the corresponding intronic sequence, but

only matches flanked by canonical splice site dinucleotides (GT-AG) are retained

(Fig. 1a). The obtained reads are re-mapped to the reference genome using hisat2 [74].

A preliminary list of microexon candidates is generated based on reads whose inser-

tions are aligned to the intronic spaces with no mismatches and that could not be fully

mapped to the reference genome (soft clipping alignments are ignored).

Quantification of microexon inclusion

In a subsequent quantification module, novel microexon candidates are integrated into

the gene annotation to generate a second library of splice junctions tags, where putative

novel loci from the discovery phase and annotated microexons are integrated at the

middle of the tag sequences (Fig. 1b). Reads are aligned again to this expanded library

of splice junction tags using Bowtie [75], which performs a fast ungapped alignment

allowing for 2 mismatches (bowtie -v 2 -S). Reads that map to the splice junction tags

are also mapped to the reference genome using Bowtie, also allowing two mismatches.

Reads that could only fully map to a single splice junction tag but no other location

count towards novel or annotated microexons.

Filtering of spurious intronic matches

MicroExonator uses a series of filters to distinguish real splicing events that may result

in a novel microexon of length L from spurious matches with intronic sequences. Since

we only allow for intronic matches that are flanked by canonical dinucleotides (4 nt),

we search for a matching sequence of length L + 4 in the intron.
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For a random sequence of length L, where all four nucleotides have the same fre-

quency, the probability of at least one spurious match inside an intron with flanking

GT-AG dinucleotides, Ps, can be calculated as Ps = 1 − (1 − 1/4L + 4)K, where K is the

number of k-mers of length L + 4 that are found in an intron of length N, with K =N −

L − 4. Since microexons shorter than 3 nt cannot be identified with high specificity, they

are reported as a separate list without further filtering.

Microexons that are 3 nt or longer are filtered further by evaluating the splice site sig-

nal by measuring the match to the canonical splicing motif as defined by the U2-type

intron position frequency matrices [29]. We normalize the score to range from 1 to

100, and we call this quantity U2 score. We then fit the distribution of U2 scores using

a two-component Gaussian mixture model (Fig. 1d), and from this, we calculate a

score, Ms, for each putative microexon as Ms = 1 − (1 − PsPU2)/n, where PU2 is the prob-

ability that the observed U2 score came from the Gaussian with the higher mean and n

is the number of matches for a given intron. Finally, MicroExonator calculates an adap-

tive threshold, M*, to determine the minimal Ms score required. Let R
t denote the num-

ber of detected microexons that have Ms > t. A linear model is used to fit Rt as a

function of their length, with t ranging between 0 and 1. MicroExonator recommends

M* as the score corresponding to t*, the value which results in the minimal residual

standard deviation sum. This threshold is used to generate a high confidence list of

microexons, but all detected microexon are reported across different output files. By

default, MicroExonator uses M* to filter out microexons with low scores, but the

threshold can be set manually by the user. If conservation data (e.g. Phylop/Phastcon)

is provided, then microexons with Ms <M
* that exceed a user-defined conservation

threshold (default value = 2) are also included in a high confidence list of microexons

and flagged as “rescued”.

RNA-seq simulation

We used Polyester [36] to simulate RNA-seq reads from modified mouse GENCODE

gene models (V11). To generate true positive microexons, we inserted a set of 4930

randomly selected sequences with a length ranging from 1 to 29 nucleotides inside an-

notated introns longer than 80 nt. At the same time, we swapped the original intronic

sequences of annotated microexons for splicing signals found at another randomly se-

lected annotated exon. To simulate spurious microexon matches (false-positive micro-

exons), we randomly included 5180 insertions corresponding to intronic sequences at

exon-exon junctions that were not flanked by canonical splicing sequences. The inser-

tion rates and lengths were simulated using parameters extracted from real RNA-seq

experiments from postnatal forebrain samples. Our simulations provide a realistic set

of false-positive microexons that emulates real RNA-seq experiment condition as

closely as possible. The microexon discovery module from VAST-TOOLS was made

available by the authors upon request. To discover novel microexons with VAST-

TOOLS, reads were pre-processed using “VAST-TOOLS align” to split each simulated

100-nt reads into 50-nt reads with 25 nt of overlap (using the arguments -sp mm10

--noIR --keep -c 15). The obtained reads were further processed using the run_mic_

extraction.sh script to obtain a list of novel microexons (using the arguments -c 15

-maxL 29).
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Using MicroExonator to analyse publicly available RNA-seq datasets

MicroExonator can be configured to download and process any number of RNA-seq

samples that can be found locally or deposited on public archives, such as Short Read

Archive, European Nucleotide Archive or ENCODE. During the initial configuration

steps, MicroExonator extracts annotated microexons and splice sites from one or more

gene annotation databases (e.g. GENCODE) and optionally complements them with

multiple specialized alternative splicing databases such as VastDB [23]. After configur-

ation, SnakeMake enables coordination with cluster schedulers used on high-

performance computing platforms or direct process management on a single computer.

Thus, given a shortlist of configuration files, MicroExonator can be set to fully repro-

duce any previous analyses through a single command. Moreover, we provide add-

itional SnakeMake workflows to integrate MicroExonator with downstream

quantification steps and to optimize analyses of single-cell RNA-seq, which are often

much noisier than bulk RNA-seq data.

Microexon analyses across mouse development using bulk RNA-seq data

As a proof of principle, we applied MicroExonator to 283 RNA-seq datasets obtained

from the ENCODE Project (Sloan et al. [30]), corresponding to embryonic and postna-

tal tissue samples coming from 17 different tissues. We used mm10 mouse genome as-

sembly obtained from the UCSC Genome Browser database (Karolchik et al.), and as a

source of annotated splice junctions, we used the union of GENCODE Release M16

(Harrow et al. [24]) and VastDB [23]. We quantified novel and annotated microexons

through percent of spliced-in (PSI) values by using MicroExonator’s built-in scripts or

by using Whippet [44]. Bi-clustering of samples and microexons was performed by ap-

plying Ward’s minimum variance criterion in R [76, 77] over a MicroExonator Euclid-

ean distance matrix where the similarity of the samples was calculated from the PSI

values (Additional file 8).

PSI values were also used to perform PPCA using the ppca function from the pca-

Methods R library [78]. The obtained PPCA loading factors were used to classify micro-

exon clusters. Assuming that PC1 and PC2 are related with variance observed at the

brain and muscle, respectively, loading factors can be used to evaluate the tissue specifi-

city of microxon inclusion. Thus, microexons that have loading factors > 0.03 for PC1

and PC2 were considered as neuromuscular (NM1–3). The ones that only have high

loading factors for either PC1 or PC2 were considered as neuronal (N1–4) and muscu-

lar (M1–3), respectively. We found one microexon cluster with a significant negative

loading factor over PC1 (< − 0.03), which we considered to be non-neuronal (NN1).

We also found microexon clusters that have a consistent inclusion (I1–7) or exclusion

(E1–5) pattern across all samples.

We quantified splicing nodes using Whippet’s quantification module (whippet-

quant.jl) and we supplied MicroExonator output as input to the Whippet differential

inclusion module (whippet-delta.jl). We used both MicroExonator and Whippet quanti-

fication to assess changes in microexon inclusion between different sample groups. A

baseline was defined by the non-neuronal tissue clusters that had the lowest PC1 values

(clusters C1, C6 and C6). Different neuronal sample groups were defined by develop-

mental stages (E10.5, E11.5, E12.5, E13.5, E14.5, E15.5) and brain tissue type; samples
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corresponding to the midbrain, hindbrain and neural tube were pooled together (MHN

sample group) whereas forebrain samples were evaluated independently. Moreover,

additional non-neuronal groups were formed according to their tissue of origin, which

correspond to the heart, SKM or adrenal gland. Each sample group was compared with

the baseline groups. Across the different comparisons, we only considered as significant

those microexons which have > 0.9 probability of being differentially included and ≥ 0.1

delta PSI values. To further avoid quantification errors, we only selected those microex-

ons that were detected as differentially included using both MicroExonator and Whip-

pet quantification. The sets of genes that have at least one microexon differentially

included in the brain, SKM, heart or adrenal gland were analysed by building a protein-

protein interaction network using STRING [47]. PPI network analyses were performed

using STRING v.11.0 [47], through the main webserver (https://string-db.org/) taking

as input the ENSEMBL ID of the set of genes which contains one or more microexons.

Neuronal mouse dopamine neuron preparation and RT-PCR validations

Mouse embryonic stem cells (mESC) were differentiated into dopamine neurons as pre-

viously described [79]. Briefly, mESCs were first differentiated into epiblast stem cells

(EPI) using fibronectin-coated plates and N2B27 basal media (composed of Neurobasal

media, DMEM/F12, B27 and N2 supplements, L-glutamine and 2-mercaptoethanol)

supplemented with FGF2 (10 mg/ml) and activin A (25 mg/ml). After three passages,

EPI were differentiated into dopaminergic neurons using plates coated with poly-L-ly-

sine (0.01%) and laminin (10 ng/ml) and N2B7 media supplemented with PD0325901

(1 mM) for 48 h (day 0 to day 2). Three days later (day 5), N2B27 media were supple-

mented with Shh agonist SAG (100 nM) and Fgf8 (100 ng/ml) for 4 days. The media

were then changed to N2B27 media supplemented with BDNF (10 ng/ml), GDNF (10

ng/ml) and ascorbic acid (200 nM) from day 9 onwards. During neuronal differenti-

ation, cells were passaged at day 3 and day 9. Cells were collected for qRT-PCR analysis

at several stages: mESC, EPI, day 9 neurons and day 19 neurons. RNA extraction was

performed using the RNeasy Mini Kit (Qiagen), and samples were analysed with a

QuantStudio 5 PCR system (Thermo Fisher Scientific).

Microexon identification in Zebrafish brain

RNA-seq experiments for Zebrafish brain tissues were obtained from (Park et al. [54])

using GEO accession code GSM2971317. Microexon detection and quantification were

performed with MicroExonator using default parameters based on Ensembl gene pre-

dictions 95 and the danRer11 genome assembly. To compare mouse and zebrafish

microexons, we performed a batch coordinate conversion using the liftover script from

UCSC utilities [80].

Single-cell analyses

To identify differentially included microexons across cell populations profiled using

scRNA-seq, we have developed snakepool, a SnakeMake framework that works as a

downstream module of MicroExonator. The sparse nature of scRNA-seq data makes it

difficult to estimate PSI, and to get around this problem, we pool cells into pseudo-

bulks (default = 50 pools of equal size). snakepool runs Whippet splicing node
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quantification (whippet-quant.jl) on the groups of cells, and the resulting quantification

of pseudo-bulks is used to provide a probability of differential inclusion for each spli-

cing node (whippet-delta.jl). To avoid false positives due to the pooling of cells, the

pseudo-bulk quantification of splicing nodes and differential inclusion assessment is re-

peated r times (default r = 50). We fit a beta distribution to the r probabilities of differ-

ential inclusion for each splicing node. The beta distribution models the probability of

including a splicing node. Let the cumulative distribution function be Ps and let y = arg-

min Ps(x) > t, where t is a user-defined threshold (default t = 0.8). If y < 0.05, and the

mean probability of differential inclusion is > 0.9, then a node is flagged as differentially

included.

We applied snakepool with default parameters to assess the differential inclu-

sion of microexons between GABA-ergic and glutamatergic neurons. Sashimi

plots were generated by adapting ggsashimi [81] to display the total number of

reads that is supported by each splice site (Supplemental Material). The total

read count for each cell type was subsequently used to calculate splice site usage

rates.
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