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A B S T R A C T   

Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow 
down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, 
on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Accurate short-term forecasting of 
COVID-19 spread plays an essential role in improving the management of the overcrowding problem in hospitals 
and enables appropriate optimization of the available resources (i.e., materials and staff).This paper presents a 
comparative study of machine learning methods for COVID-19 transmission forecasting. We investigated the 
performances of deep learning methods, including the hybrid convolutional neural networks-Long short-term 
memory (LSTM-CNN), the hybrid gated recurrent unit-convolutional neural networks (GAN-GRU), GAN, CNN, 
LSTM, and Restricted Boltzmann Machine (RBM), as well as baseline machine learning methods, namely logistic 
regression (LR) and support vector regression (SVR). The employment of hybrid models (i.e., LSTM-CNN and 
GAN-GRU) is expected to eventually improve the forecasting accuracy of COVID-19 future trends. The perfor-
mance of the investigated deep learning and machine learning models was tested using confirmed and recovered 
COVID-19 cases time-series data from seven impacted countries: Brazil, France, India, Mexico, Russia, Saudi 
Arabia, and the US. The results reveal that hybrid deep learning models can efficiently forecast COVID-19 cases. 
Also, results confirmed the superior performance of deep learning models compared to the two considered 
baseline machine learning models. Furthermore, results showed that LSTM-CNN achieved improved perfor-
mances with an averaged mean absolute percentage error of 3.718%, among others.   

1. Introduction 

Humanity in the World has experienced various disease outbreaks in 
the past. World Health Organization (WHO) and numerous national 
authorities worldwide battle facing these pandemics to date. The coro-
navirus COVID-19 pandemic that has initially been identified in Wuhan, 
China, in December 2019 remains a significant problem facing our 
modern world [1]. As reported by the World Health Organization, 213 
countries and territories worldwide are contaminated with the COVID- 
19. The COVID-19 virus can spread in diverse ways, such as direct 
body contact, infected money, air from contaminated persons when 

coughing, or sneezing [2]. The incubation period of COVID-19 of a 
minimum of fourteen days plays a crucial in its propagation [3,4]. Thus, 
the accurate forecast of recovered and contaminated COVID-19 cases is 
indispensable in managing the outbreak and preparing efficient pro-
cedures to slow down the spread of COVID-19. 

COVID-19 pandemic has had a serious effect on population health 
and prosperity. Research efforts of COVID-19 forecasting become crit-
ical; in particular, biomedical informatics is major and central for each 
research efforts to deliver healthcare for COVID-19 patients. With recent 
advancements in computer and software technologies, artificial intelli-
gence (AI) becomes more prevalent in healthcare systems to detect 
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disease and perform clinical diagnosis. Moreover, this recent outbreak 
shows the necessity and possibility of using AI for outbreaks prediction. 
In other words, AI tools possess powerful feature extraction capabilities, 
which enables extracting relevant features from rapidly evolving data to 
support public health experts in decision-making. One of the key fea-
tures of AI is its ability to rapidly extract pertinent information from 
multi-sources including health reports, social media, news, and media. 
In past outbreaks (e.g., Severe Acute Respiratory Syndrome (SARS) in 
China in 2003), limited data were available [5]. With easy access to 
different data sources, AI tools have become even more necessary in 
healthcare systems. 

Note that artificial intelligence has already been employed in 
epidemiology. For example, the HealthMap group, founded by software 
developers and epidemiologists at Boston Children’s Hospital founded in 
2006, focuses on using online informal sources to monitor disease out-
breaks and real-time surveillance of emerging public health threats [6]. 
HealthMap group considered monitoring the informal data sources in 
the COVID-19 outbreak. Also, there is Google Flu, which used search 
engine queries for improving the track of the flu epidemic. Remarkably, 
BlueDot, a Canadian software company, has signaled an alert to its 
customers about the COVID-19 outbreak on December 31 [5]. Hence, 
this company specializing in infectious disease epidemiology indicated 
an early detection nine days before the first WHO warning on January 9, 
2020 [7]. This software company has also succeeded in predicting the 
transmission of the Zika virus from Brazil [8]. Hence, advances in AI 
methods to early detect epidemiologic risks will be necessary for 
enhancing the prediction and detection of future health risks. 

Over the last decay, many advances have been made in AI methods. 
Machine learning and, in particular, deep learning is considered as an 
essential aspect of artificial intelligence that can automatically extract 
relevant features from complex data. These aspects are represented as a 
promising technology used by various healthcare providers and re-
searchers [9–14]. Particularly, deep learning technology has achieved 
progress in multiple fields, such as computer vision, robotics, medical 
imaging, chemistry, and biology [15–18]. The deep learning-driven 
methods benefit other machine learning methods because they do not 
rely on feature engineering. 

The ongoing development in machine learning and deep learning has 
significantly enhanced healthcare experts. Recently, COVID-19 has 
received remarkable consideration from the research community, the 
epidemiological experts, and local authorities [19,20,15]. Various 
studies have been reported in the literature for detecting and diagnosing 
COVID-19 diseases using X-ray imagery [21–26]. In [1], COVID-19 
detection is addressed as a classification problem involving three clas-
ses: pneumonia, COVID-19 affected cases, and normal cases based on X- 
ray imagery. To this end, a support vector machine (SVM) is applied to 
the extracted features by CNN models (MobileNetV2 and SqueezeNet). 
However, the detection is performed in a supervised way, which de-
mands data labeling. In [22], Goel et al. considered an optimized CNN 
(called OptCoNet) to automatically diagnosing of COVID-19 based on 
chest X-ray images. The Grey Wolf Optimizer has been used to optimize 
the hyperparameters of the CNN model during the training phase. They 
applied the OptCoNet approach for discriminating normal from pneu-
monia patients and showed satisfying results. In [25], Turkoglu 
Muammer proposed an expert-designed system for COVID-19 diagnosis 
based on X-ray images. Specifically, a pre-trained CNN-based AlexNet 
model has been used as a features extractor. Then, the SVM algorithm is 
applied to the extracted features to discriminate between healthy, 
COVID-19, and Pneumonia patients. This approach showed high clas-
sification accuracy of 99.18%. Further, in [27], Zebin and Rezvy applied 
three pre-trained convolutional backbones (ResNet50, VGG-16, and 
EfficientNetB0 pre-trained on ImageNet dataset) to detect COVID-19 
and related infection based on chest X-ray images. Also, a generative 
adversarial framework is trained for the generation and augmentation of 
the minority COVID-19 class. It has been reported that even with a small 
number of images in the COVID-19 class, good discrimination 

performance has been achieved by these pre-trained models. The 
method in [28] applied a deep CNN model called Decompose, Transfer, 
and Compose (DeTraC) to classify COVID-19 chest X-ray images. They 
showed that DeTraC could handle irregularities in the image dataset and 
detect COVID-19 cases. 

For understanding and managing this epidemic, numerous studies in 
the literature focused on modeling, predicting, and forecasting COVID- 
19 spread based on the recorded COVID-19 time series data [29]. In 
[30], Sarkar et al. proposed a mathematical model called SARIIqSq to 
model and forecast the transmission dynamics of COVID-19. This model 
is based on monitoring the dynamics of six behaviors named susceptible 
(S), asymptomatic (A), recovered (R), infected (I), isolated infected (Iq), 
and quarantined susceptible (Sq). It is an extended version of the 
traditional SEIR (Susceptible, Exposed, Infectious, Removed) model. In 
[31], Abbasi et al. presented an alternative version of the SEIR model 
called SQEIAR that considers Quarantined individuals (Q) and Asymp-
tomatic (A) parameters to describe the COVID-19 epidemical dynamics. 
The method in [32] combines the benefits of the Ensemble of Kalman 
filter and the SIR (Susceptible, Infected, Recovered) model for modeling 
COVID-19 transmission. This coupled approach enables estimating the 
unknown transmission rates of the COVID-19 to reconstruct the basic 
reproduction number R0. The forecasting performance of this approach 
has been verified based on real data from March 6 to May 17, 2020, of 
the current COVID-19 pandemic outbreak in Cameroon. In [33], Ribeiro 
et al. applied regression models for forecasting COVID-19 cases in Brazil. 
Specifically, they considered ARIMA, cubist regression, random forest, 
ridge regression, SVR, and stacking-ensemble learning for one, three, 
and six-step ahead forecasting. They showed that the SVM regression 
and stacking-ensemble learning achieved better forecasting than the 
other models. In [34], SVR with different nonlinearity structures is used 
to predict COVID-19 cases. It has been shown that the SVR with 
Gaussian kernel presented better prediction compared to SVR with other 
Kernel functions. In [35], for the global forecast of the COVID-19, a 
nonlinear machine learning approach is coupled with partial derivative 
regression to build an epidemiological prediction method. For more 
computation efficiency and better dataset parameters, the Progressive 
Partial Derivative Linear Regression is used. 

Recently deep learning methods have gained particular attention in 
time-series modeling and analysis because of their outstanding gener-
alization capability and superior nonlinear approximation [36,37]. 
Deep learning models can be obtained by concatenating several layers 
into the neural network structures [38]. The main feature of deep 
learning models consists of their capacity to automatically extracting 
relevant information from large data [39]. They have attracted attention 
in the machine-learning community and investigated in a wide range of 
applications [38,40,41,11]. For instance, in [42], an long short-term 
memory (LSTM) model is applied to forecast new confirmed cases of 
COVID-19 in Canadian. They used data from January 22 to March 31, 
2020. Similarly, in [43], an improved LSTM model has been employed 
to predict the epidemic trends of COVID-19 in Russia, Peru, and Iran. In 
[44], support vector regression (SVR), LSTM, bidirectional LSTM 
(BiLSTM), and GRU are employed to forecast COVID-19 time-series data 
in ten countries most affected by COVID-19. Results reveal the superior 
performance of the BiLSTM based on COVID-19 data available until 
June 27, 2020. 

The deep learning technology has realized advancement in different 
areas, such as computer vision [45,46], natural language processing 
[47], speech recognition [48], renewable energy forecasting [13], 
anomaly detection [49,11,50], and reinforcement learning [51]. 

This paper is aimed at presenting a comparative study of machine 
learning-driven methods for COVID-19 transmission forecasting. 
Notably, this study investigates the efficiency of deep learning methods 
to forecast recovered and confirmed COVID-19 time-series and assess 
their performance compared to the traditional forecasting methods. 
Essentially, six deep learning models, including the hybrid convolu-
tional neural networks-Long short-term memory (CNN-LSTM), the 
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hybrid gated recurrent unit-convolutional neural networks (GAN-GRU), 
GAN, CNN, LSTM, and Restricted Boltzmann Machine (RBM), are 
introduced and compared to the base-line methods, namely logistic 
regression (LR) and support vector regression (SVR), for forecasting 
confirmed and recovered COVID-19 cases time-series data. Here, the 
employment of hybrid models (i.e., LSTM-CNN and GAN-GRU) is ex-
pected to eventually improve the forecasting accuracy of COVID-19 
future trends. For instance, in CNN-LSTM, this combination aims to 
integrate the capabilities of the LSTM in modeling time dependencies 
and the good ability of CNN in extracting features from complex data. As 
far as we know, this is the first time these two hybrid models were 
investigated to enhance the forecasting of COVID-19 time-series data. 
Confirmed and recovered COVID-19 cases time-series data from seven 
impacted countries, namely Brazil, France, India, Mexico, Russia, Saudi 
Arabia, and the US, are used to compare and verify the performance of 
the considered deep learning methods. The six deep learning methods 
and two commonly used machine learning methods, namely LR and 
SVR, were applied to daily recovered and confirmed COVID-19 time- 

series datasets from January 22nd, 2020, to September 6th, 2020. 
Measurements of effectiveness including coefficient of determination 
(R2), Root Mean Square Error (RMSE), mean absolute error (MAE), 
Mean Squared Logarithmic Error (MLSE), and explained variance (EV) 
were adopted to assess the forecasting quality. Results confirmed the 
superior performance of deep learning models compared to the two 
considered shallow machine learning models, namely logistic regression 
and support vector regression. The results highlight that the hybrid 
LSTM-CNN model reaches the best forecasting performance, followed by 
the hybrid GRU-GAN model. Also, it has been shown that the considered 
hybrid models outperform the other considered non-hybrid models. 
Furthermore, this study has demonstrated that time-series modeling and 
forecasting are not restricted to only recurrent models like LSTM and 
GRU. Still, it can be extended to other generative composite models, 
such as GAN-DNN and GAN-GRU, or standalone models like RBM that 
showed a good forecasting ability with low computation cost and less 
number of parameters compared to the other considered models. 
Moreover, we showed that deep learning models provided satisfying 

Table 1 
The considered benchmark deep learning methods.  
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forecasting results even with a relatively small amount of data. Thus, 
these methods can be extended to deal with different communicable 
diseases, such as SARS [52], EBOLA [53], HIV [54,55], and COVID-19, 
and non-communicable diseases including Cancer [56], Diabetic [57], 
and Heart disease [58] outbreak. In the next section, we provide a brief 
review of the essential features of DBN, RBM, CNN-GRU, and GAN-RNN 
models. In the third section, we present how they can be employed in 
forecasting. The fourth section offers the involved multivariate patient 
flow datasets and discusses the models forecasting results and compar-
isons. Lastly, in the fifth section, we conclude this study. 

2. Methodology 

Deep learning techniques, which could automatically learn relevant 
information from time-series data, are considered in this study to fore-
cast confirmed and recovered COVID-19 time-series data. This section 
briefly describes the considered deep learning models, namely LSTM 
[59], CNN [60,61], RBM [62], Generative adversarial networks based 
on deep fully connected neural network (GAN-DNN) [63], GAN-GRU 

[64,63], and LSTM-CNN. Table 1 offers the pros and cons of the five 
benchmark deep learning architectures. 

2.1. The hybrid LSTM-CNN model 

A hybrid deep learning architecture called LSTM-CNN has been 
introduced to merges the benefits of the LSTM, which learn and model 
temporal dependencies embedded in the data sequence, and the CNN 
model, which cam well process high-dimensional data. The LSTM is 
equipped with recurrent connections and a gating mechanism that help 
to memorize features. Table 2 lists the LSTM gates, memory cell, and 
hidden state equations. (see Table 3). 

With W xi,W xf ,W xo,W xc,W hc,W hi,W hf , and W ho are the weight 
parameters and B i,B f ,B o, and B c are bias parameters, ⊙ denotes the 
element-wise multiplication. 

The second model integrated into the hybrid model is the well- 
known one-dimensional CNN that aims to extract features from the 
temporal feature space built by the nonlinear transformation performed 
by LSTM. Indeed CNN learns to extract features based on a series of 
nonlinear transformations via several Convolution and Pooling opera-
tions that usually end with a fully connected layer. CNN can extract 
features first and perform the internal features mapping based on one- 
dimensional (1-D) sequences data represented by COVID-19 cases 
recorded. On the other hand, the CNN-1D layer structure is simple and 
thus has a low computational cost. The mathematical formulation of 
each convolutional layer l is done as follows: 

Y l = σ
(
∑l− 1

i=1
C

(

W l,Y l− 1

)

+ bl

)

, (1)  

C (.) is 1-D convolution function and σ(.) is the activation function, 
while (W ,b) refers to the weight and bias of the layer l, respectively. 
Overall, in the LSTM-CNN approach, the LSTM process the input rep-
resented by the time-series data, and the CNN performs the forecasting. 
The basic flowchart of the LSTM-CNN is depicted in Fig. 1, where LSTM 
and CNN are stacked to form the deep hybrid architecture. The fore-
casting is done actually by the fully connected output layer of the CNN. 

2.2. Forecasting model 

In this study, we construct six deep learning models: non-hybrid 
models (i.e., LSTM, CNN, and RBM) and three hybrid models (i.e., 
GAN-DNN, and GAN-GRU, and LSTM-CNN). The COVID-19 time-series 
data is first normalized by min–max normalization within the interval 
[0, 1]. It should be noted that after the COVID-19 time-series forecasting 
using testing data, this normalization is reversed so that the forecasted 
data is comparable to the original testing time-series data. Also, the 
normalized data is preprocessed before the application of the deep 
learning models. Specifically, to train the six considered models, data 
preparation is performed, the normalized time series is transformed into 
a set of sequences X of fixed length using the window sliding methods, 

Table 2 
Long Short-Term Memory gates and Memory equations.   

Component Equation 

Input Gate I t = σ(X tW xi + H t− 1W hi + B i)

Forget Gate F t = σ(X tW xf + H t− 1W hf + B f ),  

Output Gate O t = σ(X tW xo + H t− 1W ho + B o),  

Memory Cell C t = F t ⊙ C t− 1 + I t ⊙ C̃ t .  

Candidate Memory Cell C̃ t = tanh(X tW xc + H t− 1W hc + B c).  

Hidden State H t = O t ⊙ tanh(C t).   

Table 3 
Definition of measurements of effectiveness.  

Metric Definition 

R2  ∑n
t=1 [(yt, − y)⋅(ŷt − y)]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(yt − y)2
√

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(ŷt − y)2
√

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(yt − ŷt)

2
√

MAE ∑n
t=1
⃒
⃒yt − ŷt

⃒
⃒

n    

MAPE 100
n
∑n

t=1

⃒
⃒
⃒
⃒
yt − ŷt

yt

⃒
⃒
⃒
⃒%    

EV 
1 −

Var(ŷ − y)
Var(y)

MSLE 1
N
∑N

t=0
(log(yt + 1) − log(ŷt + 1))2   

Fig. 1. Flowchart of the LSTM-CNN approach.  
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where for each sequence x ∈ X is mapped y that represent the next 
value of the sequence x to form the mapping set of the subsequent values 
Y . The general framework of the proposed deep learning-driven fore-
casting strategy is depicted in Fig. 2. 

After normalizing and reshaping the COVID-19 time-series data, we 
will train the deep learning models. The training stage aims to learn 
complex features and construct the final forecasting model. It is worth 
pointing out that every model has its particularity regarding the learning 
approach, supervised or unsupervised. 

It is worth noticing that four deep learning models are trained in an 
unsupervised way (i.e., LSTM, RBM, GAN-DNN, and GAN-GRU), and 
two models (i.e., CNN and LSTM-CNN) are trained in a supervised 
manner. For instance, GANs and RBM are generative models trained 
only with the historical data X . At first, these two models try to learn 
the probability distribution without the need for Y , and later a fine- 
tuning procedure is applied through supervised training to optimize 
the models’ parameters via learning the mapping X ⇒Y . During the 
fine-tuning step, a predictor layer with a single output to perform the 
forecasting is added. On the other hand, traditional LSTM and CNN are 
trained in a supervised way. Precisely, training a CNN model consists of 
extracting features from the input depending on the data structure like 
images, a 2D signal, or for sensory data of 1D. In contrast, LSTM belongs 
to gated recurrent neural networks designed to deal with time-series and 
data sequences to extract and discover temporal dependencies like text 
processing, where the objective is to predict the next word of a given 

sentence (a series of words). 
The training procedure of the deep hybrid LSTM-CNN is supervised. 

The two models LSTM, and CNN, are simultaneously trained (Fig. 3). 
The time-series data (input) is processed first by LSTM, resulting in 
temporal features space that feeds CNN. The forecasting is done through 
the last layer of CNN with a single output. The role of CNN is to learn the 
mapping of the temporal features to the next value in the original input 
(recovered or confirmed COVID-19 cases). 

This study aims to compare deep learning methods to forecast 
COVID-19 time-series data. Towards this end, the present work uses two 
hybrid deep learning models (i.e., LSTM-CNN and GAN-GRU), four 
standalone deep learning models (i.e., GAN, CNN, LSTM, and RBM), and 
two baseline machine learning methods (i.e., LR, and SVR), and results 
are compared based on COVID-19 data from six well-impacted 
countries. 

The performance of the considered deep learning-driven methods is 
compared with traditional forecasting methods, SVR and LR, to validate 
their efficiency. The SVR and LR are deployed on a rolling window where 
the previous five days records are taken as covariates to forecast counts of 
one day ahead. Indeed, SVR showed good performance in various time 
series forecasting problems [65–67]. This is mainly because of its capacity 
to feel with the overfitting problem using kernel tricks and without the need 
for the specification of data distribution [68]. LR, which are usually 
incorporated into machine learning and deep learning models, can be 
viewed as a shallow neural network composed of one layer with a logistic 

Fig. 2. Flowchart of the proposed COVID-19 cases forecasting.  

Fig. 3. Deep hybrid LSTM-CNN approach for COVID-19 cases forecasting.  
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function also called sigmoid formulated as f
(
x
)
= 1

a+e− x [69]. LR has also 

been used in forecasting time-series data [69]. Here, a window sliding 
procedure is applied to reshape time-series data used by the SVR and LR 
models. Of course, SVR and LR are trained to learn to map a given sequence 
to its next value in the training phase, and then they are applied to unseen 
data to predict future observation (forecasted data). 

2.3. Evaluation metrics 

For performance comparisons, the following indexes have been 
adopted to quantify the forecasting of Confirmed and Recovered COVID- 
19: Coefficient of determination (R2), Root Mean Square Error (RMSE), 
mean absolute error (MAE), Mean Squared Logarithmic Error (MSLE), 
and explained variance (EV). 

With yt is the number of Confirmed or Recovered patients, ŷt is its 
corresponding forecasted values, and n is the number of data points. 

3. Results and discussion 

3.1. Data description 

In this study, daily confirmed and recovered COVID-19 cases time 

series data of seven different countries (Brazil, France, India, Mexico, 
Russia, Saudi Arabia, and the US) are used to assess the forecasting 
capability of the hybrid and non-hybrid deep learning models. The data 
are made accessible publicly by the Center for Systems Science and 
Engineering (CSSE) at Johns Hopkins University (https://github.com/ 
CSSEGISandData/COVID-19). Here, we consider the data from the 
appearance of the first cases in each country. Fig. 4 depicts the used 
COVID-19 time-series dataset in the considered countries recorded from 
January 22 to September 6, 2020. 

Before applying the deep learning-based forecasting methods, the 
COVID-19 time series data displayed in Fig. 4 are first normalized via 
min–max normalization within the interval [0, 1], and the used for 
constructing the deep learning models. 

x̃ =
(x − xmin)

(xmax − xmin)
(2)  

where xmin and xmax denotes the minimum and maximum of the raw 
data, respectively. After the forecasting process, we allied a reverse 
operation so that the forecasted data correspond to the original 
confirmed and recovered COVID-19 time-series data. The normalized 
time series data (confirmed and recovered) are depicted in Fig. 5. 

3.2. A comparison of methods for COVID-19 transmission forecasting 

This study focus on the univariate daily forecasting of the number of 
confirmed and recovered COVID-19 cases from the seven considered 
countries (i.e., Brazil, France, India, Mexico, Russia, Saudi Arabia, and 
the US). Forecast models were developed for each time series. To do so, 
we split the normalized data into training and testing sub-datasets. The 
training data from January 22, 2020, to September 6, 2020, are used to 
construct the deep learning models: the standalone models (LSTM, CNN, 
and RBM) and the hybrid models (GAN-DNN, GAN-GRU, and LSTM- 
CNN), and baseline machine learning models: LR and SVR. The goal is 

Fig. 4. Confirmed (a) and recovered (b) CODID-19 times series data recorded from January 22 to September 6, 2020.  

Fig. 5. Normalized confirmed (a) and recovered (b) CODID-19 times-series data.  

Table 4 
Hyper-parameters using in the training of the investigated models.  

Model Parameters 

LSTM layers: 3, hidden units: [32,32,1] learning rate: 0.0001 epochs:200 
GAN-GRU layers: 3, hidden units: [32,1] learning rate: 0.0001 epochs:200 
LSTM- 

CNN 
layers: 5, hidden units: [16,32,32,1] learning rate: 0.0001 epochs:200 

RBM layers: 3, hidden units: [32,1] learning rate: 0.001 epochs:1000 
GAN-DNN layers: 3, hidden units: [16,1] learning rate: 0.0001 epochs:150 
CNN layers: 3, hidden units: [32,32,1] learning rate: 0.0001 epochs:200  
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to investigate the performance of the six considered models in the 
presence of small-sized datasets and compare their performance with the 
traditional machine learning models (i.e., LR and SVR). The methods in 
this study provide one-step-ahead forecasting. The observation window 
is five, i.e., we are using the previous five days to predict the next day. 
The window size that maximizes the forecasting accuracy is chosen 
during the training phase using the grid search approach. For all deep 
learning models, we used the cross-entropy as loss function and Rmsprop 
as an optimizer in training. Table 4 lists the models’ hyper-parameters 
used in the training stage. (see Table 5). 

Reliable daily forecasting of the number of recovered and confirmed 
COVID-19 data offers pertinent information to assist medium-term 
planning(e.g., the assignment of rotas). This enables the hospital man-
agers to improve decisions on staff that need to be contacted on call and 
getting prior knowledge on situational awareness. Overall, accurate 
forecasting is required for providing support for decisions. Now, we will 
explore and investigate the performance when applied to a relatively 
small-sized dataset. The testing data consists of confirmed and recovered 
COVID-19 cases recorded from June 06, 2020, to September 06, 2020, in 
the seven considered countries. Forecasting results from the trained 

Table 5 
Measurements of effectiveness for confirmed cases COVID-19 forecasting.  

Country Model RMSE MAE R2 EV MSLE MAPE 

Brazil GAN-GRU 1.02E + 05 8.30E + 04 0.993 0.996 0.005 6.485  
LSTM-CNN 4.49E + 04 3.39E + 04 0.999 0.999 0.002 2.891  
RBM 2.33E + 05 2.03E + 05 0.964 0.965 0.102 19.696  
GAN-DNN 1.25E + 05 9.48E + 04 0.99 0.993 0.020 8.358  
CNN 9.77E + 11 8.40E + 11 0.964 0.964 0.080 18.567  
LSTM 6.79E + 11 5.95E + 11 0.982 0.983 0.131 28.998  
SVM 1.85E + 12 1.67E + 12 0.87 0.878 0.455 83.117  
LR 2.13E + 12 1.84E + 12 0.828 0.865 0.586 103.288 

France GAN-GRU 8.21E + 03 7.72E + 03 0.945 0.993 0.002 3.780  
LSTM-CNN 2.75E + 03 1.51E + 03 0.994 0.994 0 0.628  
RBM 8.54E + 03 7.17E + 03 0.941 0.957 0.001 3.341  
GAN-DNN 6.28E + 03 4.16E + 03 0.968 0.969 0.001 1.815  
CNN 1.93E + 09 1.11E + 09 0.972 0.975 0.001 1.483  
LSTM 2.18E + 09 1.59E + 09 0.965 0.967 0.001 2.16  
SVM 6.56E + 09 5.36E + 09 0.679 0.892 0.007 7.231  
LR 5.21E + 09 3.20E + 09 0.798 0.81 0.004 4.12 

India GAN-GRU 8.36E + 04 6.69E + 04 0.995 0.997 0.008 8.495  
LSTM-CNN 8.31E + 04 6.09E + 04 0.995 0.998 0.005 6.021  
RBM 2.15E + 05 1.77E + 05 0.965 0.966 0.144 27.280  
GAN-DNN 1.07E + 05 7.83E + 04 0.991 0.993 0.075 15.954  
CNN 1.10E + 12 8.94E + 11 0.949 0.953 0.195 35.072  
LSTM 9.34E + 11 7.60E + 11 0.963 0.964 0.144 27.783  
SVM 2.45E + 12 2.34E + 12 0.744 0.841 1.439 256.757  
LR 3.04E + 12 2.75E + 12 0.608 0.661 1.672 303.742 

Mexico GAN-GRU 1.05E + 04 7.28E + 03 0.997 0.998 0.003 3.439  
LSTM-CNN 4.98E + 03 3.89E + 03 0.999 1 0.001 2.180  
RBM 3.58E + 04 3.18E + 04 0.964 0.965 0.097 19.655  
GAN-DNN 1.47E + 04 1.21E + 04 0.994 0.994 0.018 7.493  
CNN 2.36E + 10 2.02E + 10 0.961 0.965 0.082 18.292  
LSTM 1.67E + 10 1.27E + 10 0.981 0.987 0.03 12.785  
SVM 4.15E + 10 3.77E + 10 0.88 0.884 0.306 60.162  
LR 5.08E + 10 4.45E + 10 0.82 0.828 0.407 75.116 

Russia GAN-GRU 1.23E + 04 9.33E + 03 0.998 0.998 0.002 2.582  
LSTM-CNN 6.26E + 03 4.84E + 03 0.999 0.999 0 0.941  
RBM 5.88E + 04 5.19E + 04 0.944 0.944 0.052 12.213  
GAN-DNN 2.77E + 04 2.30E + 04 0.988 0.989 0.003 4.230  
CNN 6.35E + 10 5.53E + 10 0.938 0.939 0.054 12.933  
LSTM 5.74E + 10 5.00E + 10 0.949 0.953 0.042 11.658  
SVM 9.03E + 10 7.57E + 10 0.875 0.906 0.025 13.046  
LR 8.69E + 10 7.47E + 10 0.884 0.886 0.047 17.49 

Saudi Arabia GAN-GRU 6.56E + 03 5.50E + 03 0.995 0.997 0.006 5.661  
LSTM-CNN 2.85E + 03 2.51E + 03 0.999 0.999 0.001 2.250  
RBM 1.92E + 04 1.73E + 04 0.961 0.961 0.073 15.595  
GAN-DNN 9.43E + 03 7.99E + 03 0.99 0.99 0.004 4.969  
CNN 6.15E + 09 5.43E + 09 0.961 0.962 0.07 15.650  
LSTM 6.31E + 09 5.41E + 09 0.958 0.963 0.064 15.28  
SVM 1.03E + 10 8.91E + 09 0.889 0.904 0.069 22.314  
LR 1.41E + 10 1.26E + 10 0.792 0.813 0.13 33.386 

US GAN-GRU 6.18E + 04 4.70E + 04 0.998 0.999 0 1.534  
LSTM-CNN 5.69E + 04 4.75E + 04 0.999 0.999 0 1.632  
RBM 3.26E + 05 2.91E + 05 0.958 0.958 0.025 11.587  
GAN-DNN 1.61E + 05 1.16E + 05 0.99 0.991 0.001 3.018  
CNN 2.07E + 12 1.91E + 12 0.957 0.958 0.03 12.636  
LSTM 1.79E + 12 1.66E + 12 0.968 0.97 0.019 10.754  
SVM 3.65E + 12 3.32E + 12 0.867 0.868 0.044 19.841  
LR 4.06E + 12 3.64E + 12 0.835 0.839 0.065 23.974  

A. Dairi et al.                                                                                                                                                                                                                                    



Journal of Biomedical Informatics 118 (2021) 103791

8

deep learning models using testing data are depicted in Fig. 6. The 
shaded zone represents the testing period. From Fig. 6, we observe that 
these models are following the trend of recorded and confirmed COVID- 
19cases from the starting of the epidemic. After forecasting the COVID- 
19 time series using each trained model, to judge the quality of each 
model quantitatively, we calculate the evaluation metrics (R2, EV, 
RMSE, MAE, MAPE, and MSLE) from the testing datasets for the six deep 
learning models and two baseline machine learning models (i.e., LR and 
SVR). The obtained forecasting results are tabulated in Tables 6. 

Results in Table 6 show that the quality of the forecast from the six 
trained models is promising. Table 6 indicates that deep learning models 
exhibited improved forecasting performance compared to the shallow 
methods (LR and SVR). We observe that the MAPE values of SVR and LR 
(data recorded from India and Brazil) are larger than 100%, which 
means that the forecasting errors are much greater than the actual 
values [70,71]. It is interesting to see better outcomes from the three 
hybrid models (GAN-DNN, GAN-GRU, and LSTM-CNN) than the other 
standalone models. We observe that the three hybrid models (GAN- 
DNN, GAN-GRU, and LSTM-CNN) can capture the most variability in 
confirmed time-series data by reaching values of EV and R2 close to one. 
This indicates that the forecasted confirmed cases closely follow the 
trend of recorded confirmed cases. Also, the standalone models (LSTM, 
CNN, and RBM) can capture most of the variance in data with low 
forecasting error. By considering all metrics, LSTM-CNN is the best 
approach with high efficiency and satisfying forecasting accuracy. It 
could be attributed to its capacity to model time-dependent data and 

high features extraction capability. 
Fig. 7 illustrates the forecasting results of six models based on the 

recovered COVID-19 time-series data. The forecasted data closely follow 
the trends of the recorded data. For shallow methods, the SVR model 
outperformed the LR forecasting method. It could be attributed to the 
SVR capacity in handling nonlinearity. Similarly to confirmed COVID-19 
data, the hybrid models (GAN-DNN, GAN-GRU, and LSTM-CNN) record 
the highest score in terms of the statistical indicators (Table 6). In 
comparison, the non-hybrid models can achieve acceptable outcomes 
for all time-series. Again, the LSTM-CNN model keeps the best score in 
terms of the evaluation metrics and dominates the other models. 

Table 7 presents the averaged statistical metric per model to evaluate 
the overall performance of the considered models. The forecasting re-
sults support that the hybrid models outperform the considered stand-
alone models. The LSTM-CNN is dominating the other models by 
achieving an MAPE of 3.718%. It is followed by GAN-GRU and GAN- 
DNN with MAPE values of 5.254% and 11.105%, respectively. 

In summary, this study highlights the highest forecasting accuracy of 
the hybrid models achieved by joining the two models in a single ar-
chitecture, even with small-sized data. The results obtained base on 
hybrid and composite models are better than those obtained with the 
standalone models. Also, it can be noticed that the hybrid LSTM-CNN 
provides improved forecasting compared to the standalone LSTM and 
for CNN models. This could be due to the fact the double feature 
extraction performed by the deep hybrid model during the learning 
process. In other words, in the hybrid LSTM-CNN model, LSTM can 

Fig. 6. Measured and forecasted confirmed COVID-19 cases from 6 June to 06 September 2020: (a) Brazil, (b) France, (c) India, (d) Mexico, (e) Russia, (f) Saudi 
Arabia, and (g) US. 
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capture time dependencies and the 1D feature extractor CNN predict the 
next value of a sequence of values. On the other hand, GANs (GAN-DNN 
and GAN-GRU) as a deep composite architecture (designed initially for 
image generation) demonstrate the potential of the generative models to 
fit COVID-19 time-series data and their ability to approximate the data 
distribution of time series data accurately. Also, we noticed that the 
RBM model obtain acceptable forecasting performance even with a 
straightforward architecture based on only two layers (i.e., visible and 
hidden layers), making it suitable for online forecasting. 

This experimental study reveals that building a composite deep 
learning model can considerably improve the forecasting accuracy, 
where each element of the hybrid architecture plays an essential role in 
modeling temporal dependencies embed in the time-series data of the 
recorded COVID-19 cases. The proposed approach can be seen as hier-
archical features extraction process resulting from a succession of 
nonlinear transformation performed in multi-stages (LSTM, CNN). 

Furthermore, this study has demonstrated that time-series modeling 
and forecasting are not restricted to only recurrent models like LSTM 
and GRU. Still, it can be extended to other generative composite models, 
such as GAN-DNN and GAN-GRU, or standalone models like RBM that 
shown a good forecasting ability with low computation cost and less 
number of parameters compared to the other considered models. 
Moreover, we showed that deep learning models provided satisfying 
forecasting results even with a relatively small amount of data. 

Deep learning models have outperformed the baseline approaches (i. 

e., LR and SVR). Because deep learning models are efficient to model 
long temporal dependencies embed in time-series data (e.g., RNNs, 
LSTM-CNN, and GAN-GRU). The RNN-based models can capture short 
and long temporal dependencies in time-series data using memory and 
gate mechanisms. Also, RNN considers the past data to generate its 
output. This structure makes it appropriate to model time dependency 
than the traditional feed-forward that generates the output using only 
the current input. 

4. Conclusion 

Deep learning technology and artificial intelligence are promising 
techniques applied by different healthcare providers. The accurate 
COVID-19 spread forecasting models do not only support the manage-
ment of the available resources in hospitals but also help slow down the 
progression of such diseases. In this study, short term forecasting of 
COVID-19 cases has been carried out through hybrid deep learning 
models to provide suitable forecasting accuracy. Towards this purpose, 
the LSTM-CNN model has been introduced for COVID-19 time series 
forecasting. Overall, we compared three hybrid models (i.e., LSTM-CNN, 
GAN-DNN, and GAN-GRU) and three standalone deep learning models 
(i.e., CNN, LSTM, and RBM). In other words, we examined the capability 
of advanced structures of deep learning methods in forecasting COVID- 
19 time-series data on datasets of limited size. The data from daily 
confirmed and recovered cases from seven of the most impacted 

Fig. 7. Measured and forecasted recovered COVID-19 cases from 6 June to 06 September 2020(a) Brazil, (b) France, (c) India, (d) Mexico, (e) Russia, (f) Saudi 
Arabia, and (g) US. 
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countries, namely Brazil, France, India, Mexico, Russia, Saudi Arabia, 
and the US, are modeled using six advanced data-driven models. The 
number of daily confirmed and recovered COVID-19 cases recorded 
from January 22nd, 2020, to September 6th, 2020, are used in this 
study. We applied the six deep learning models and two baseline ma-
chine learning models (i.e., LR and SVR) to forecast COVID-19 
confirmed and recovered cases for a 92-day forecast horizon from 
June 6th, 2020. Six measurements of effectiveness are adopted to assess 
and compare the forecasting performance: R2, RMSE, MAE, MAPE, EV, 
and MSLE. Results show the domination of the LSTM-CNN model due to 
its capability to learn higher-level features that permit good forecasting 
precision. 

The main challenges of training deep learning models are the 
availability of a sufficient amount of data to build an accurate model. 
Unfortunately, till now, there are no exact rules or methods to check 
these criteria. Essentially, we investigate the performance of deep 
learning models when applied to a small amount of time-series data and 
compare their forecasting accuracy with the traditional time-series 
models. Results in this study showed that deep learning models pro-
vide satisfying results, even with relatively small-sized data. The second 
challenge resides in tuning the hyper-parameter model used in the 
design of deep neural networks and the way to learn like the number of 
layers, the number of neural units by layer, the activation function, the 
optimizer, the learning rate, the loss function, number of epoch and 

Table 6 
Validation Metrics for Recovered cases COVID-19 forecasting.  

Country Model RMSE MAE R2 EV MSLE MAPE 

Brazil GAN-GRU 5.53E + 04 3.91E + 04 0.997 0.998 0.077 8.630  
LSTM-CNN 4.72E + 04 3.93E + 04 0.998 0.999 0.004 5.395  
RBM 1.94E + 05 1.61E + 05 0.967 0.968 0.13 22.837  
GAN-DNN 2.26E + 05 1.87E + 05 0.956 0.959 0.162 29.272  
CNN 6.16E + 11 5.22E + 11 0.974 0.975 0.156 33.177  
LSTM 8.27E + 11 6.00E + 11 0.952 0.967 0.107 21.868  
SVM 1.53E + 12 1.42E + 12 0.836 0.863 1.074 191.317  
LR 1.75E + 12 1.53E + 12 0.787 0.855 1.281 229.856  

France GAN-GRU 1.10E + 03 8.94E + 02 0.961 0.961 0 1.334  
LSTM-CNN 9.37E + 02 8.12E + 02 0.971 0.992 0 1.180  
RBM 2.84E + 03 2.06E + 03 0.736 0.753 0.002 3.264  
GAN-DNN 2.53E + 03 2.07E + 03 0.791 0.791 0.002 3.199  
CNN 1.86E + 08 1.44E + 08 0.796 0.8 0.002 3.034  
LSTM 1.10E + 08 8.28E + 07 0.928 0.934 0.001 1.722  
SVM 8.24E + 08 792008938.63 0.692 0.692 0.029 15.206  
LR 3.17E + 08 2.97E + 08 0.41 0.686 0.004 5.78  

India GAN-GRU 2.71E + 04 1.57E + 04 0.999 0.999 0.126 10.203  
LSTM-CNN 3.24E + 04 2.49E + 04 0.999 0.999 0.514 16.113  
GAN-DNN 7.35E + 04 5.30E + 04 0.993 0.994 0.092 17.493  
RBM 1.68E + 05 1.34E + 05 0.964 0.965 0.277 46.168  
CNN 6.00E + 11 4.80E + 11 0.957 0.959 0.389 63.179  
LSTM 4.70E + 11 3.92E + 11 0.973 0.974 0.454 80.68  
SVM 1.57E + 12 1.50E + 12 0.703 0.835 2.539 559.762  
LR 1.71E + 12 1.56E + 12 0.646 0.803 2.822 645.671  

Mexico GAN-GRU 6.38E + 03 3.99E + 03 0.998 0.999 0.001 2.006  
LSTM-CNN 6.29E + 03 5.41E + 03 0.998 0.999 0.002 3.593  
RBM 2.99E + 04 2.63E + 04 0.964 0.964 0.109 20.695  
GAN-DNN 3.34E + 04 2.80E + 04 0.955 0.962 0.12 21.328  
CNN 1.61E + 10 1.38E + 10 0.962 0.964 0.103 19.994  
LSTM 1.66E + 10 1.44E + 10 0.959 0.962 0.116 21.06  
SVM 2.98E + 10 2.70E + 10 0.868 0.876 0.426 78.665  
LR 3.47E + 10 3.03E + 10 0.821 0.863 0.563 99.751  

Russia GAN-GRU 2.52E + 04 2.32E + 04 0.99 0.997 0.016 10.266  
LSTM-CNN 1.03E + 04 9.03E + 03 0.998 0.999 0.001 2.937  
RBM 5.05E + 04 4.42E + 04 0.961 0.961 0.112 18.116  
GAN-DNN 2.59E + 04 2.12E + 04 0.99 0.991 0.058 9.709  
CNN 4.44E + 10 3.69E + 10 0.957 0.961 0.1 18.594  
LSTM 4.28E + 10 3.72E + 10 0.96 0.961 0.103 17.906  
SVM 7.01E + 10 6.07E + 10 0.893 0.893 0.353 66.182  
LR 8.03E + 10 6.82E + 10 0.86 0.863 0.445 81.487  

Saudi Arabia GAN-GRU 4.63E + 03 4.27E + 03 0.998 0.999 0.007 6.035  
LSTM-CNN 3.34E + 03 2.85E + 03 0.999 0.999 0.004 4.303  
RBM 1.84E + 04 1.63E + 04 0.962 0.963 0.108 19.045  
GAN-DNN 9.08E + 03 7.25E + 03 0.991 0.992 0.05 8.948  
CNN 5.45E + 09 4.58E + 09 0.962 0.967 0.104 20.453  
LSTM 4.99E + 09 4.36E + 09 0.968 0.969 0.084 20.799  
SVM 9.34E + 09 8.17E + 09 0.889 0.89 0.382 73.476  
LR 1.23E + 10 1.08E + 10 0.809 0.809 0.492 93.661  

US GAN-GRU 3.20E + 04 2.47E + 04 0.997 0.998 0.001 3.111  
LSTM-CNN 2.41E + 04 1.83E + 04 0.999 0.999 0.001 1.987  
RBM 1.31E + 05 1.21E + 05 0.958 0.959 0.076 18.832  
GAN-DNN 1.42E + 05 1.28E + 05 0.951 0.955 0.082 19.680  
CNN 3.15E + 11 2.82E + 11 0.954 0.956 0.059 17.619  
LSTM 1.91E + 11 1.62E + 11 0.983 0.984 0.027 12.061  
SVM 5.50E + 11 5.09E + 11 0.861 0.867 0.162 40.553  
LR 6.38E + 11 5.59E + 11 0.813 0.819 0.21 46.899  
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batch size. To mitigate this challenge several approaches are reported in 
the literature, such as grid search, random search, and Bayesian opti-
mizating, to help optimize the set of hyper-parameters. 

A direction for future improvement is to incorporate explanatory 
variables, such as meteorological measurements and lockdown in-
dicators, in constructing the deep learning models. Further, it will be 
interesting to conduct comparative studies to investigate the impacts of 
measures established during this pandemic event and to extend this 
method to deal with different communicable and non-communicable 
diseases. 
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[50] M.M. Hittawe, D. Sidibé, and F. Mériaudeau, ”A machine vision based approach for 
timber knots detection,” in Twelfth International Conference on Quality Control by 
Artificial Vision 2015, vol. 9534. International Society for Optics and Photonics, 
2015, p. 95340L. 

[51] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, 
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, 
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, 
K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with deep 
neural networks and tree search, Nature 529 (2016) 484–503. 

[52] M.M. Barbat, C. Wesche, A.V. Werhli, M.M. Mata, An adaptive machine learning 
approach to improve automatic iceberg detection from SAR images, ISPRS Journal 
of Photogrammetry and Remote Sensing 156 (2019) 247–259. 

[53] A. Colubri, M.-A. Hartley, M. Siakor, V. Wolfman, A. Felix, T. Sesay, J.G. Shaffer, R. 
F. Garry, D.S. Grant, A.C. Levine, et al., Machine-learning prognostic models from 
the 2014–16 Ebola outbreak: data-harmonization challenges, validation strategies, 
and mHealth applications, EClinicalMedicine 11 (2019) 54–64. 
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