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Artificial intelligence (AI) has recently made great
advances in image classification and malignancy pre-
diction in the field of dermatology. However, under-
standing the applicability of AI in clinical dermatology
practice remains challenging owing to the variability
of models, image data, database characteristics, and
variable outcome metrics. This systematic review aims
to provide a comprehensive overview of dermatology
literature using convolutional neural networks.
Furthermore, the review summarizes the current
landscape of image datasets, transfer learning ap-
proaches, challenges, and limitations within current
AI literature and current regulatory pathways for
approval of models as clinical decision support tools.

JID Innovations (2023);3:100150 doi:10.1016/j.xjidi.2022.100150
INTRODUCTION
Artificial intelligence (AI) in healthcare is the application of
machine learning (ML) algorithms in medical fields to
potentially improve diagnosis and predict clinical out-
comes (Jiang et al., 2017). The advancements in computing
power and vast data curation within health systems have
led to algorithm development that can assist healthcare
providers as clinical decision-support (CDS) tools. A
myriad of AI applications exists within health care such as
using electronic health record data for risk predictors (Juhn
and Liu, 2020; Lauritsen et al., 2020), early prediction and
diagnosis of diseases such as sepsis (Goh et al., 2021;
Komorowski et al., 2018), and continuous disease moni-
toring using wearable devices. There have been innovative
efforts to procure large numbers of medical image datasets,
either within institutions or for public use, such as Deep-
Lesion, which contains 32,000 computed tomography
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images for scientific studies (Yan et al., 2018), or the Na-
tional Institutes of Health Chest X-Ray Dataset (Wang
et al., 20171).

Computer vision is a field of AI in which the system learns
to interpret visual images. It has advanced the process of
medical image evaluation with higher accuracy and more
efficient analysis (Voulodimos et al., 2018). The convolu-
tional neural network (CNN) is a type of artificial neural
network that has revolutionized image analysis without the
need to extract traditional handcrafted features such as
colors, intensity value, topological structure, and texture in-
formation (Carin and Pencina, 2018). Researchers have
developed deep learning models that have been trained on
millions of images for different tasks such as image classifi-
cation, object detection, and image recognition. Model
development for computer vision challenges such as image
classification and objection detection is achieved by training
and testing on millions of images. These models, most
notably inspired by ImageNet (Deng et al., 2009), CIFAR
(Krizhevsky and Hinton, unpublished data), Modified Na-
tional Institute of Standards and Technology (MNIST) (Deng,
2012), COCO (Common Objects in Context) (Lin et al.,
2014), Open Images (Kuznetsova et al., 20202), and SUN
(Xiao et al., 2010) challenges, can either detect or classify
numerous different categories such as dogs or cats in a given
image with high accuracy.

Medical imaging field has adapted these CNN methods
to solve a diverse array of problems, using datasets ob-
tained from various imaging modalities such as chest x-rays
(Lakhani and Sundaram, 2017), magnetic resonance imag-
ing (Pereira et al., 2016), pathology (Kermany et al., 2018),
and ophthalmology (Gulshan et al., 2016). In medical
image analysis, the lack of data creates a bottleneck for
training a deep learning model. Acquiring and annotating
medical images is costly, time consuming, and labor
intensive. Data sharing may serve as a potential solution to
accelerate data collection, but ethical and privacy issues
can hinder institutional data sharing. Hence, transfer
learning has vastly improved the medical imaging field by
allowing the use of models that have been pretrained on
millions of images to solve numerous medical imaging
problems, alleviating the need to spend hours building an
effective model or collecting vast amounts of clinical data.
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Pretrained models can be fine tuned to unique problems
according to the amount of available data and the data
similarity.

Thus, one can choose a standard model, often trained on
a popular dataset (such as ImageNet), and fine tune the
network to fit a given problem. Contrary to the assumptions
that weights from a model pretrained on real-world images
may not translate well for medical images, studies have
shown that ImageNet-pretrained models have produced
human-level accuracy for medical image classification
such as in pathology (Ehteshami Bejnordi et al., 2016;
Gown et al., 2008; Qaiser and Mukherjee, 2018) and
dermatology (Cho et al., 2020; Haenssle et al., 2018;
Maron et al., 2019). In dermatology, AI systems using
transfer learning are comparable with or even surpass the
performance of dermatologists in diagnosing skin condi-
tions (Esteva et al., 2017; Haenssle et al., 2020). The
rapidly growing global burden of skin cancer, rise of tele-
dermatology during the COVID-19 pandemic, and supply‒
demand imbalance for dermatologists point to an esca-
lating need to establish effective triaging systems supported
by AI for dermatological disease detection and diagnosis.
This study aims to provide a comprehensive review of
published applications of pretrained models on dermato-
logical images, their associated datasets, their limitations,
and their outcomes.

Search strategy

We conducted a query of MEDLINE and PubMed Central
databases through PubMed using keywords, including
dermatology, deep learning, transfer learning, and convolu-
tional neural network. Studies published from the year 2016
to 2021 were included. We excluded studies on the basis of
the following criteria: (i) use of non‒deep learning algo-
rithms, (ii) use of custom algorithms, and (iii) meta-analysis
and/or review articles. The search strategies are outlined in
Figure 1.
3 Harangi B. Skin lesion detection based on an ensemble of deep convolutional

neural network. arXiv 2017.
4 Codella NCF, Nguyen Q-B, Pankanti S, Gutman DA, Helba B, Halpern AC, et al.

Deep learning ensembles for melanoma recognition in dermoscopy images.

arXiv 2017.
RESULTS
In total, 65 studies were included in the final review. Table 1
summarizes the classification tasks, methodology, and
outcome metrics for the CNNs developed for skin conditions.
Table 2 provides details of the publicly available dataset
investigated in this review. Table 3 classifies the studies ac-
cording to the type of dataset (i.e., institutional or public) and
image (i.e., clinical or dermoscopic).

We found 22 different types of the pretrained models
used for dermatology application, with ResNet being the
most widely used, followed by Inception and VGG. A
total of 45 studies conducted classification tasks across
different skin diseases, including melanoma, foot ulcer,
psoriasis, and rosacea. A total of nine studies focused on
skin lesion segmentation and two studies focused on skin
lesion detection (bounding box) mostly using U-Net ar-
chitecture, which is well-suited for object detection tasks.
A total of six studies tackled both segmentation and
classification tasks separately, whereas three studies aimed
to develop an end-to-end model from segmentation to
classification.
JID Innovations (2023), Volume 3
DISCUSSION
Model selection and feature extraction approaches

The classification methods can be divided into two ap-
proaches: single deep learning models and ensemble
methods (Dietterich, 2000).

Single deep learning models, as the name implies, use a
single pretrained model without modification of the archi-
tecture. Often, the studies tested multiple models and report
on the one with the best performance. For instance, Yap et al.
(2018) investigated five different models, such as VGG16,
ResNet-101, InceptionV3, DenseNet121, and EfficientNet,
for classifying infection and ischemia of diabetic foot ulcers
and reported that the EfficientNetB0 had the best results.
Guergueb and Akhloufi (2021) evaluated various submodels
of VGG, ResNet, EfficientNet, DenseNet, Inception, and
MobileNet for binary melanoma classification and discov-
ered that EfficientNetB7 had the highest accuracy of 99.33%.

The ensemble method combines predictions from two or
more models that could improve the predictive performance
instead of a single model (Sagi and Rokach, 2018). Harangi
(2017)3 used an ensemble of GoogLeNet, AlexNet, ResNet-
50, and VGG-VG-16 for melanoma classification and
showed that the ensemble method outperforms each indi-
vidual deep learning method. Han et al. (2018) used an
ensemble of ResNet-152 and VGG19 for onychomycosis
diagnosis and achieved the highest classification perfor-
mance than the dermatologists.

Few studies used pretrained models to extract features and
apply other traditional classification algorithms such as sup-
port vector machine (SVM) or XGBoost. Mahbod et. al.
(2019) used AlexNet, VGG16, and ResNet-18 as feature ex-
tractors and used an SVM as a classifier for each network.
Each SVM score is fused to obtain a probability for binary
classification. Yu et. al. (2017) used ResNet-50 to extract
features and averaged the scores from a neural network
classification layer and the SVM classifier to obtain the final
prediction. Tschandl et al. (2019) combined outputs from
InceptionV3 and ResNet-50 and used XGBoost to compute
the probabilities.

Datasets in dermatology

The key to developing a high-performance deep learning
model is the data. If the number of high-quality datasets is
large, there is a higher likelihood that the models will learn to
generate more accurate predictions. Several publicly avail-
able skin image datasets are provided to engage both
dermatology and ML communities to develop novel or to
hone existing algorithms. For example, the International Skin
Imaging Collaboration (ISIC) archive is one of the most well-
known public skin cancer image datasets that has gained a
high reputation over the years through algorithmic challenges
such as lesion segmentation, visual dermoscopic feature
detection and localization, and disease classification since
2016 (Codella et al., 2018, 20174; Tschandl et al., 2018). The
archive contains over 13,000 dermoscopic images collected



Figure 1. PRISMA diagram
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from leading clinical centers internationally. Additional im-
age repositories include dermatology atlases that were orig-
inally used for educational purposes but have recently been
used as a database of digital images for algorithm develop-
ment (Tables 2 and 3). There are few datasets that are avail-
able upon a fee and a licensing agreement such as Dermofit
Image Library or an ethical committee/institutional approval
(Han et al., 2020a; Papadakis et al., 2021; Webster et al.,
2017). Other public datasets of different skin diseases
include the diabetic foot ulcer challenge, providing >15,000
images of diabetic foot ulcers, other foot/skin conditions, and
healthy feet taken with three digital cameras. Besides these
public datasets, many clinical institutions have collected
their own respective datasets for diseases such as psoriasis,
rosacea, and lip disorder.

Challenges with image data/datasets

Duplicity of data. Cassidy et al. (2022) noted that several
manuscripts using the ISIC dataset had duplicate or similar
images within training and test sets, introducing bias into the
CNN model, and proposed a methodology to remove
duplicate images. Because the model predictions improve in
accuracy by extracting a higher number of unique features
rather than by simply enriching the data by sourcing a large
number of images from a small number of sources, it must be
noted that a rich source of nonduplicated data must be used
www.jidinnovations.org 3
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Table 1. Summary of Tasks, Methodology, Dataset, and Performance

Author Objective Model Tested Dataset Model Performance Limitations/Comments

Melanoma

Bi et al., 20177 Segmentation/classification

(separate)

Multiclass: melanoma,

seborrheic keratosis, and

nevus

ResNet Public/dermoscopy

ISIC 2017 skin lesion analysis

challenge

Segmentation

Jaccard Index 79.4

Classification

AUC: 0.843

SE: 69.3%

SP: 83.6%

N/A

Shahin et al.,

2018

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

Ensemble of

ResNet-50 and

Inception V3

Public/dermoscopy

ISIC 2018: Skin lesions analysis

toward melanoma detection

Acc: 89.9%

Average precision of 0.862

Average recall of 0.796

Data imbalance (used weighted

cross entropy to alleviate

effects)

Did not manage to run cross

validation to ensure stability

and robustness

Yap et al., 2018 Classification

Binary: Melanoma,

seborrheic keratosis, and

nevus

Two ResNet50

fusion

Institutional/dermoscopy,

clinical, meta-data

Multiple skin cancer clinics

(macroscopic image,

dermatoscopic image, meta-

data)

Image label split: 350 Acral

melanoma; 374 acral nevi

Best results

AUC of dsc þ macro: 0.866 mAP

of dsc þ macro þ meta: 0.729

Lack of patient information/

clinical information

Adding age, gender, location,

and lesion size increased the

accuracy

Common verification bias in

dermatoscopic studies, with

only pathologically diagnosed

cases included.

Brinker et al.,

2019a

Classification

Binary: melanoma versus

atypical nevi

ResNet50 Public/clinical

Trained with ISIC image archive

and HAM1000 dataset

Validated with Mclass-

Benchmark for clinical images

obtained from MED-NODE

database

SE: 89.4%

SP: 68.2%

N/A

Brinker et al.,

2019b

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

ResNet50 Public/dermoscopy

ISIC image archive 2018

At SE: 74.1% model achieved SP:

86.5%

At SP: 69.2% model achieved SE:

84.5%

Clinical encounters with actual

patients provide more

information than can be

provided by images alone

Hekler et al.,

2019

Classification

Binary: melanoma versus

nevi

ResNet50 Public/dermoscopy

Trained with ISIC image archive

and HAM1000 dataset

Tested on biopsy-verified

images from HAM1000 dataset

Acc: 81.59%

SE: 86.1%

SP: 89.2%

Lack of patient information for

AI models’ algorithms

performance would be worse

on an entirely external dataset

of images.

Salamaa and

Aly, 2021

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

Tested VGG16 and

ResNet50 with

SVM

ResNet50 showed

the best

performance

Public/dermoscopy

ISIC2017, MNIST-HAM10000,

and ISBI 2016

Acc: 99.19%

AUC: 99.32%

SE: 98.98%

Precision: 98.78%

F1 score: 98.88%

N/A

Jojoa Acosta

et al., 2021

Classification

Binary: benign versus

malignant (melanoma,

seborrheic keratosis, and

nevus)

ResNet152 Public/dermoscopy

ISIC challenge 2017

SE: 0.820

SP: 0.925

Acc: 0.904

Balanced Acc: 0.872

N/A

Yu et al., 2017 Segmentation/classification

(separate)

Binary: malignant versus

nonmalignant

Segmentation: fully

convolutional

residual network

Classification: very

deep CNNs

(residual) with

softmax and SVM

classifier

Public/dermoscopy

ISBI 2016 Skin lesion analysis

toward melanoma detection

challenge

Image data split: not reported

Segmentation:

Acc: 0.949

SE: 0.911

SP: 0.957

Classification:

Acc 0.855

SE: 0.547

SP: 0.931

Insufficiency of quality training

data

Difficulty in fully exploiting the

discrimination capability gains

of very deep CNNs under the

circumstance of limited training

data

Harangi, 2017 Segmentation/classification

(separate)

Multiclass: melanoma,

seborrheic keratosis, and

nevus

Ensemble of

GoogLeNet,

AlexNet, ResNet50,

and VGG-VD-16

Public/dermoscopy

ISIC 2017 skin lesion analysis

challenge

AUC: 0.932

SE: 82% | SP: 89.4%

SE: 89% | SP: 85.0%

SE: 95% | SP: 65.9%

N/A

Li and Li, 20188 Segmentation/classification

(end-to-End)

Multiclass: melanoma, AK,

nevus, BCC,

dermatofibroma, vascular

lesion, and benign keratosis

Segmentation:

ResNet

Classification:

ResNet, DenseNet,

Inception

Public/dermoscopy

ISIC challenge 2018

HAM10000 dataset

Segmentation

Jaccard Index: 0.818

Classification

DenseNet121: 0.848

ResNet152: 0.86

Inception, version 4: 0.85

N/A

(continued )
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Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

DenseNet w/cropped image:

0.912

Rezvantalab

et al., 20189
Classification

Binary: melanoma,

melanocytic nevi, BCC,

benign keratosis, AK and

intraepithelial carcinoma,

dermatofibroma, vascular

lesions, and atypical nevi

Comparing

DenseNet 201;

ResNet152;

Inception, version

3; and

InceptionResNet,

version 2

Public/dermoscopy

HAM10000 Dataset

PH2 dataset

AUC of melanoma versus that of

basal cell carinoma

94.40% (ResNet152)

99.3% (DensNet 201)

The utilized dataset is highly

unbalanced, and also no

preprocessing step is applied in

this paper. Still the results are

promising

Mahbod et al.,

2019

Classification

Binary: melanoma and

seborrheic keratosis versus

nevus

AlexNet, VGG16,

and ResNet18 for

feature extraction

SVM for

classification

Public/dermoscopy

ISIC 2016 and 2017

competition

AUC: 83.83% (melanoma)

AUC: 97.55% (seborrheic

keratosis)

N/A

Tschandl et al.,

2019

Classification

Binary: malignant versus

benign nonpigmented skin

lesions

Combined

Inception, version 3

(dermoscopic

images), and

ResNet50 (clinical

close-ups) using

xgboost

Institutional/dermoscopy and

clinical

7,895 dermoscopic and 5,829

close-up images of the training

set originated from a

consecutive sample of lesions

photographed and excised by

one author (CR) at a primary

skin cancer clinic in

Queensland, Australia.

Image data split: described in

the manuscript in detail

AUC: 0.742

SE: 80.5%

SP: 53.5%

Test set included >51 distinct

classes, of which most did not

have enough examples to be

integrated into the training

phase

Chang, 201710 Segmentation/classification

(separate)

Binary: malignant versus

benign nonpigmented skin

lesions

Segmentation:

U-Net

Classification:

Google

Inception,

version 3

Public/dermoscopy

ISIC challenge website. A total

of 2,000 dermoscopic images

includes 374 melanoma

images, 1,372 nevus images,

and 254 seborrheic keratosis

images

N/A N/A

Esteva et al.,

2017

Classification keratinocyte

carcinomas versus benign

seborrheic keratoses and

malignant melanomas

versus benign nevi.

Inception, version

3, CNN

architecture

Institutional and public/

dermoscopy

ISIC dermoscopic archive, the

Edinburgh Dermofit Library 22,

and data from the Stanford

Hospital

AUC for different image sets

carcinoma 135 images: 0.96

carcinoma 707 images: 0.96

melanoma 130 images: 0.94

melanoma 225 images: 0.94

melanoma 111 dermoscopy

images: 0.91

melanoma 1,010 dermoscopy

images: 0.94

The CNN achieves performance

on par with all tested experts

across both tasks, showing an AI

capable of classifying skin

cancer with a level of

competence comparable with

that of dermatologists

Mirunalini

et al., 201711
Classification

Binary: melanoma,

seborrheic keratosis, and

nevus

Google Inception,

version 3

Public/dermoscopy

ISIC challenge 2017

Acc: 65.8% N/A

Murphree and

Ngufor, 201712
Classification

Binary: melanoma,

seborrheic keratosis, and

nevus

Google

Inception,

version 3

Public/dermoscopy

ISIC challenge 2017

AUC: 0.84 (nevus and seborrheic

keratosis)

AUCL 0.76 (melanoma)

N/A

Haenssle et al.,

2018

Classification

Binary: melanoma versus

melanocytic nevi

Google’s

Inception,

version 4

Public and Institutional/

dermoscopy

Trained and validated on ISIC

and ISBI 2016 dataset

Tested on 300 from the image

library of the Department of

Dermatology, University of

Heidelberg (Heidelberg,

Germany) and on 100 images

from ISIC and ISBI dataset

Image data split: 20%

melanoma, 80% benign nevi

300 test set

SE: 95%

SP: 80%

AUC: 0.95

100 Test Set

SE: 95%

SP: 63.8%

AUC: 0.86

Lack of melanocytic lesions

from other skin types

Kawahara

et al., 2018

Classification

Multiclass: melanoma,

melanocytic nevi, BCC,

benign keratosis, AK and

intraepithelial carcinoma,

dermatofibroma, vascular

lesions, and atypical nevi

Inception v3 Public/dermoscopy, clinical,

meta-data

Interactive Atlas of Dermoscopy

by Argenziano (made publicly

available)

SE: 60.4

SP: 91.0

Precision: 69.6

AUC: 89.6

N/A

(continued )
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Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

Winkler et al.,

2019

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

Inception, version 4 Institutional/dermoscopy

Department of Dermatology,

University of Heidelberg

Unmarked lesion

SE: 95.7%

SP: 84.1%

AUC: 0.969

Marked lesion

SE: 100%

SP: 45.8%

AUC: 0.922

Cropped image

SE: 100%

SP: 97.2%

AUC: 0.993

Most images included in this

study were derived from fair-

skinned patients residing in

Germany; therefore, the

findings may not be generalized

for lesions of patients with other

skin types and genetic

backgrounds.

Fujisawa et al.,

2019

Classification

Binary: benign versus

malignant lesions

GoogLeNet Institutional/dermoscopy

4,867 clinical images obtained

from 1,842 patients diagnosed

with skin tumors from the

University of Tsukuba Hospital

Acc: 76.5%

SE: 96.3%

SP: 89.5%

N/A

Vasconcelos

and

Vasconcelos,

201713

Classification

Binary: melanoma,

seborrheic keratosis, and

nevus

GoogLeNet Public/dermoscopy

ISIC challenge 2017

AUC: 0.932 N/A

Sousa and de

Moraes, 201714
Classification

Binary: melanoma,

seborrheic keratosis, and

nevus

GoogLeNet

AlexNet

Public/dermoscopy

ISIC challenge 2017

AUC: 0.95 (GoogLeNet)

AUC: 0.846 (AlexNet)

N/A

Yang et al.,

201715
Segmentation/classification

(separate)

Binary: melanoma,

seborrheic keratosis, and

nevus

Segmentation: U-

Net

Classification:

GoogLeNet

Public/dermoscopy

ISIC challenge 2017

Segmentation:

Jaccard Index: 0.724

Classification:

AUC: 0.880

0.972

N/A

Codella et al.,

2017

Segmentation/classification

(end-to-End)

Binary: melanoma versus

melanocytic nevi

Segmentation:

similar to U-Net

architecture

Classification:

ensemble of deep

residual network,

CaffeNet, U-Net

architecture

Public/dermoscopy

900 training and 379 testing

images from ISBI 2016 dataset

Segmentation

Jaccard Index 0.84

Acc: 95.1%

Classification

AUC: 0.843

SE: 69.3%

SP: 83.6%

Lack of patient information for

AI models

Ashraf et al.,

2022

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

UNet, deep

residual U-Net

(ResUNet), and

improved ResUNet

(ResUNetþþ)

Public/dermoscopy

ISIC 2016 and 2017 database

Jaccard Index

80.73% on ISIC 2016

90.02% on ISIC 2017

N/A

Mishra and

Daescu, 2017

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

U-Net Public/dermoscopy

ISIC 2017

Jaccard Index: 0.842

Acc: 0.928

SE: 0.930

SP: 0.954

Dice Coeff: 0.868

N/A

Araújo et al.,

2021

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

U-Net Public/dermoscopy

PH2 and DermIS

Dice Coeff

PH2: 0.933

DermIS: 0.872

N/A

Pomponiu

et al., 2016

Classification

Binary: malignant versus

nonmalignant

AlexNet Public/dermoscopy

DermIS and DermQues

SE: 92.1

SP: 95.18

Acc: 93.64

N/A

Pour et al.,

2017

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

FCN-AlexNet with

seven

convolutional

layers and a deeper

model that is VOC-

FCN8s with 15

convolutional

layers

Public/dermoscopy

ISBI 2016 Skin lesion analysis

toward melanoma detection

challenge

SE: 0.91

SP: 0.95

Acc: 0.94

JA: 0.83

DI: 0.89

N/A

Kaymak et al.,

2018

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

AlexNet Public/dermoscopy

ISIC 2018. Skin lesions analysis

toward melanoma detection

Acc: 84%

SE: 84.7%

SP: 83.8%

N/A

(continued )
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Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

Menegola

et al., 2017

Classification

Melanoma, BCC, nevus

VGG-M with SVM

as a classifier

Public/dermoscopy

Interactive atlas of dermoscopy

(atlas), and the ISBI challenge

2016/ISIC

AUC: 80.7%

SE: 47.6%

SP: 88.1%

N/A

Yu et al., 2018 Classification

Binary: acral melanoma

and benign nevi

Fine-tuned

modified VGG

model with 16

layers

Institutional/dermoscopy

A total of 724 dermoscopy

images were collected from

January 2013 to March 2014 at

the Severance Hospital in the

Yonsei University Health

System (Seoul, Korea) and from

March 2015 to April 2016 at the

Dongsan Hospital in the

Keimyung University Health

System (Daegu, Korea)

Acc:

Group A: 83.51%

Group B: 80.23%

AUC

Group A: 0.8

Group B: 0.84

N/A

Lopez et al.,

2017

Classification

Binary: malignant versus

nonmalignant

VGGNet Public/dermoscopy

ISBI 2016 Skin lesion analysis

toward melanoma detection

challenge

SE: 78.66%

Precision: 0.7974

Acc: 81.33%

N/A

Shorfuzzaman,

2022

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

Ensemble of

EffcientNetB0,

DenseNet121, and

Xception

Public/dermoscopy

PH2 and ISIC (018 and 2019

database

Acc: 95.76%

SE: 96.67%

AUC: 0.957

N/A

Guergueb and

Akhloufi, 2021

Classification

Binary: malignant

(melanoma) versus

nonmalignant (nevi)

Multiple models

were tested, and

Efficientnet b7

showed the best

result

Public/dermoscopy

SIIM-ISIC 2020, ISIC’s archive,

ISIC 2019, ISIC 2018, and ISIC

2017

Acc: 99.33

SE: 98.78

SP: 99.38

AUC: 99.01

N/A

Han et al.,

2020b

Detection/classification

(end-to-end)

Binary: Benign versus

malignant lesions

Detection: Faster

R-CNN

Classification:

SENet,

SE-ResNeXt-50,

and SE-ResNet-50

Institutional/clinical

1,106,886 training set, 2,844

validation set, and 325 test set

from Asan Medical Center;

plastic surgery from Chonnam

National University Department

of Plastic Surgery and Hallym

University Department of

Plastic Surgery

AUC: 0.92

SE: 92.5% at t > 0.9

SP: 70.0% at t > 0.9

SE: 80.0% SS at t > 0.8

SP: 87.5% at t > 0.8

Algorithm was validated with

one race (Asian) within one

region (South Korea).

Model only has photo

information and lacks other

evaluations from physicians.

Li and Shen,

2018

Segmentation/Classification

(separate)

Binary: melanoma versus

seborrheic keratosis and

nevus

FCRN-88 Public/dermoscopy

ISIC 2017 skin lesion analysis

challenge

Segmentation

Jaccard Index 0.753

Classification

AUC: 0.912

N/A

Jafari et al.,

2017

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

Basic architecture

of the configured

CNN is inspired

by the layers in

the LeNet network

Public/dermoscopy

Dataset of skin lesion images

from Dermquest database that is

publicly available with

segmentation ground truth

Melanoma lesion

SE: 95.2%

SP: 99.0%

Acc: 98.7%

N/A

Goyal et al.,

2019

Segmentation

Automated prediction of

lesion segmentation

boundaries from

dermoscopic images

ResNet-Inception,

version 2; DeepLab,

version 3

Ensemble-A:

combines results

from both models

Ensemble-L:

chooses the larger

area

Ensemble-S:

chooses a smaller

area

Public/dermoscopy

PH2 and ISIC 2017

Ensemble-A (best performance)

Acc: 0.941

Dice: 0.871

Jaccard Index: 0.793

SE: 0.899

SP: 0.950

N/A

Psoriasis

Zhao et al.,

2020

Classification

Design and evaluation of

a smart psoriasis

identification system

based on clinical images

DenseNet;

Inception, version

3; InceptionResNet,

version 2; and

Xception

Inception, version

3, performed best

Institutional/clinical

Images collected by

dermatologists at Xiangya

Hospital, Annotated by three

dermatologists with >10 years’

experience at Xiangya Hospital

according to the corresponding

AUC: 0.981 � 0.015

SE: 0.98

SP: 0.92

Model has the capability to

identify psoriasis (acc of model:

0.96) with a level of

competence comparable with

those of 25 dermatologists

(mean acc of 25 dermatologists:

0.87)
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Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

medical record and pathology

results

Dash et al.,

2019

Segmentation

CNN model for detection of

psoriasis lesions

U-Net Institutional/dermoscopy

Images captured and annotated

by a dermatologist at the

Psoriasis Clinic and Research

Centre, Psoriatreat, Pune,

Maharashtra, India

Acc: 94.80

Dice Coeff: 93.03

Jaccard Index: 86.40

SE: 89.60

SP: 97.60

N/A

Raj et al., 2021 Segmentation

Automatic approach based

on a deep learning model

using transfer learning for

the segmentation of

psoriasis lesions from the

digital images of different

body regions of patients

with psoriasis.

U-Net Institutional/clinical

Psoriasis Clinic and Research

Centre, Psoriatreat, Pune,

Maharashtra, India

Dice similarity: 0.948

Jaccard Index: 0.901

N/A

Yang et al.,

2021

Classification

Train an efficient deep-

learning network to

recognize dermoscopic

images of psoriasis (and

other papulosquamous

diseases), improving the

Acc of the diagnosis of

psoriasis

EfficientNet-b4 Institutional/dermoscopy

7,033 dermoscopic images

from 1,166 patients collected

from the Department of

Dermatology, Peking Union

Medical College Hospital

(Peking, China)

Psoriasis

SE: 0.929

SP: 0.952

Eczema

SE: 0.773

SP: 0.926

Lichen planus

SE: 0.933

SP: 0.960

Other groups

SE: 0.840

SP: 0.985

The algorithm only recognized

the dermoscopic images from

lesions to diagnose the disease,

different from the clinical

diagnosis process with

multimodal data (e.g., age, sex,

medical history, and treatment

response) and more types of

diseases involved.

The model may not perform

well on other populations with

different skin types/colors.

Meienberger

et al., 2020

Classification

To establish psoriasis

assessment on the basis of

segmenting images using

machine learning

A fully

convolutional

neural network

called Net16 uses a

residual connection

architecture as

introduced by He

et al. (2016)

Institutional/clinical

203 photographs of Caucasian

patients aged between 18 and

80 years and suffering from

plaque-type psoriasis were

selected. The photographs

included were taken with a

Nikon D700 camera

Acc: 0.91

F1-score: 0.71

Restriction of the data is the

inclusion of mostly Caucasian

patients. Because the

manifestation of psoriasis differs

depending on the skin type,

including only a few images of

other skin types would have led

to a highly imbalanced data set

Arunkumar and

Jayanna, 2021

Classification

Automatically classify

psoriasis-affected skin area

from normal healthy skin

using machine learning

algorithm

mobilenet,

nasnetlarge

NasNetLarge

chosen

Institutional/clinical

Psoriasis: Department of Skin

and STD, Karnataka Institute of

Medical Sciences (Hubli, India)

and Department of

Dermatology, Navodaya

Medical College (Raichur,

India)

Normal: Department of

Computer Science, Rani

Channamma University

(Belagavi, India).

SE: 0.75

SP: 0.67

Precision: 0.60

Acc: 0.70

N/A

Foot ulcer/onychomycosis

Han et al.,

2018

Classification

Binary: onychomycosis

versus nononychomycosis

Used CNN

(ResNet152) to

select hand and

foot images

R-CNN (VGG16) to

select nail parts

Ensemble method

using two CNN

(ResNet152 þ
VGG19) for feature

extraction and

feedforward neural

network for

classification

Institutional/dermoscopy

Clinical images obtained from

four hospitals

Trained with Asan dataset

Validated with a dataset from

Inje University, Hallym

University, and Seoul National

University

SE/SP/AUC

B1 Dataset

96.0/94.7/0.98

B2 Dataset

82.7/96.7/0.95

C Dataset

82.3/79.3/0.93

D Dataset

87.7/69.3/0.82

The clinical photographs used

in dermatology are not

standardized in terms of image

composition.

Additional medical

photographs may be required

for accurate medical diagnoses,

and retrieving sufficient

numbers of such images may be

difficult or even impossible in

practical terms

Goyal et al.,

2017

Segmentation

Automatic segmentation of

ulcer and surrounding skin

FCN-AlexNet and

FCN-VGG16

Institutional/clinical

DFU dataset was collected over

a five period at the Lancashire

Teaching Hospitals

Dice Coeff: 0.794 for ulcer

region, 0.851 for the surrounding

skin region, and 0.899 for a

combination of both regions

N/A
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Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

Goyal and

Hassanpour,

202016

Detection

Automatic DFU detection

on the DFU challenge

dataset

EfficientDet Public/clinical

DFUC2020 provided

participants with a

comprehensive dataset

consisting of 2,000 images for

training and 2,000 images for

testing

Best test average precision: 53.7

(EfficientDet-D7)

N/A

Cassidy et al.,

2021

Classification

Automatic DFU detection

on the DFU challenge

dataset

YOLO, EfficientDet,

FRCNN (resnet,

inception resnet)

Public/clinical

DFUC2020 provided

participants with a

comprehensive dataset

consisting of 2,000 images for

training and 2,000 images for

testing

Best results

Recall: 0.7554 (Inception,

version 2

ResNet10

Precision: 0.6919 (EfficientDet)

F1-score: 0.6929 (EfficientDet)

mAP: 0.6596 (R-FCN)

Authors acknowledge that there

is a bias in the dataset, given

that the vast majority of subjects

are white.

Yap et al., 2021 Classification

Automatic DFU detection

on the DFU challenge

dataset

Faster ReCNN and

an ensemble

method, YOLOv3,

YOLOv5, and

EfficientDet

Public/clinical

DFUC2020 provided

participants with a

comprehensive dataset

consisting of 2,000 images for

training and 2,000 images for

testing

mAP: 0.6940

F1-score: 0.7434

N/A

Brüngel and

Friedrich, 2021

Classification

Automatic DFU detection

on the DFU challenge

dataset

DETR and YOLOv5 Public/clinical

DFUC2020 provided

participants with a

comprehensive dataset

consisting of 2,000 images for

training and 2,000 images for

testing

DETR

F1-score: 0.7355 mAP: 0.7284

YOLOv5

F1-score: 0.7302 mAP: 0.6752

YOLOv5 with TTA F1-score:

0.7351 mAP: 0.7080

N/A

Galdran et al.,

202217
Classification

Automatic DFU detection

on the DFU challenge

dataset

Big Image Transfer

(BiT), EfficientNet,

Vision

Transformers, Data-

efficient Image

Transformers

Public/clinical

DFUC2021 dataset

BiT-ResNeXt50 (best result)

F1-score: 61.53

AUC: 88.49

Recall: 65.59

Precision: 60.53

N/A

Other

Maron et al.,

2019

Classification

Multiclass: five disease

classes (AK, intraepithelial

carcinoma, benign

keratosis, melanocytic nevi,

and melanoma)

ResNet50 Public/dermoscopy

Trained with ISIC image archive

and HAM1000 dataset

Tested on biopsy-verified

images from HAM1000 dataset

Primary endpoint

SE: 74.4%

SP: 91.3%

Secondary endpoint

SE: 56.5%

SP: 98.8%

Lack of patient information for

AI model algorithms

performance would be worse

on an entirely external dataset

of images.

Zhao et al.,

2021

Classification

Rosacea, acne, seborrheic

dermatitis, and eczema

ResNet50 Institutional/clinical

24,736 photos comprising

18,647 photos of patients with

rosacea and 6,089 photos of

patients with other skin diseases

such as acne, facial seborrheic

dermatitis, and eczema

Rosacea Detection

Acc: 0.914

Precision: 0.898

AUC: 0.972

Rosacea versus Acne

Acc: 0.931

Precision: 0.893

Rosacea versus seborrheic

dermatitis and eczema

Acc: 0.757

Precision: 0.667

One single dermoscopic image

covers only a small proportion

of the whole lesion, which

hardly represents all the clinical

characteristics of the disease

comprehensively.

Integrating different types of

images (clinical, dermoscopic,

histopathological) could

improve performance.

Aggarwal,

2019

Classification

Acne, atopic dermatitis,

impetigo, psoriasis, and

rosacea

Inception, version 3 Public/clinical

Open-source dermatological

images captured through

DermNet, Dermatology Atlas,

Hellenic Dermatological Atlas,

and Google images

Average across 5 diseases

SE: 0.653 � 0.045

SP: 0.913 � 0.027

PPV: 0.660 � 0.079

NPV: 0.913 � 0.011

MCC: 0.569 � 0.074

F1-score: 0.655 � 0.057

Symptoms such as itching, pain,

and other clinical symptoms are

absent in the image analysis,

which can help the

dermatologist in diagnosing the

disease

Liu et al., 2020 Classification

Multiclass: 26 disease

classes (common skin

conditions, representing

roughly 80% of the volume

of skin conditions seen in a

primary care setting)

Inception, version 4 Institutional/dermoscopy

16,114 deidentified cases

(photographs and clinical data)

from a teledermatology practice

serving 17 sites

Validation Set A:

Top 1: SE: 0.48, PPV: 0.96

Top-3: SE: 0.88, PPV: 0.69

Validation set B:

Top 1: SE: 0.57, PPV: 0.95

Top 3: SE: 0.92, PPV: 0.76

Dataset was deidentified, and

only structured meta-data was

available, which loses

information compared with free

text clinical notes or an in-

person examination

(continued )

HK Jeong et al.
A Systematic Review of Deep Learning Algorithms in Dermatology

www.jidinnovations.org 9

http://www.jidinnovations.org


Table 1. Continued

Author Objective Model Tested Dataset Model Performance Limitations/Comments

Haenssle et al.,

2020

Classification

Multiclass: 10 disease

classes (nevus, angioma/

angiokeratoma, SK,

dermatofibroma, solar

lentigo, AK, Bowen’s

disease, melanoma, BCC,

and SCC)

CNN architecture

based on inception,

version 4

Public/dermoscopy

Tested on MSK-1 dataset (1,100

images) and the ISIC 2018

challenge 16 dataset (1,511

images)

SE: 95.0%

SP: 76.7%

AUC: 0.918

The test set did not include

some other benign (e.g., viral

warts), malignant (e.g., Merkel

cell carcinoma), or

inflammatory (e.g., clear cell

acanthoma) skin lesions.

Therefore, our results should not

be generalized to a large

prospective patient population.

Dermoscopic images were

mostly of patients with a

Caucasian genetic background

and may not provide

comparable results in a

population of nonwhite skin

types.

Sun et al., 2016 Classification

Multiclass: 198 categories

CaffeNet: CNN

model pretrained

on ImageNet

VGGNet

Public/dermoscopy and Clinical

SD-198, which contains 198

different diseases from different

types of eczema, acne, and

various cancerous conditions.

There are 6,584 images in total

CaffeNet: 46.69%

VGGNet: 50.27%

The dataset shows an imbalance

among different categories.

Authors tried to collect the same

number of samples, whereas

some diseases rarely appear in

real life

Thomsen et al.,

2020

Classification

Acne, rosacea, psoriasis,

eczema, and cutaneous

VGG 16 Institutional/clinical

A total of 19,641 images were

provided from the local skin

image database of the

Department of Dermatology,

Aarhus University Hospital

(Aarhus, Denmark)

Acne versus Rosacea:

SE: 85.42%

SP: 89.53%

Cutaneous versus Eczema:

SE: 74.29%

SP: 84.09%

Psoriasis versus Eczema:

SE: 81.79%

SP: 73.57%

One limitation is racial bias, as

the data source consisted

primarily of Patients with

Fitzpatrick skin type II and III.

Concerns have been raised

about racial bias in CAD in

dermatology because databases

used for machine learning have

historically had an

overrepresentation of

Caucasian data

Cho et al.,

2020

Classification

Binary: malignant versus

benign lip disorders

Inception-ResNet,

version 2

Institutional/dermoscopy

Image label split: a total of

1,629 SNUH images (743

malignant and 886 benign) for

the training set. The remaining

344 SNUH images (110

malignant and 234 benign)

were used as the testing set,

along with 281 images (57

malignant and 224 benign) from

Seoul National University

Bundang Hospital (225 images)

and SMG-SNU Boramae

Medical Center

344 image set:

AUC: 0.827

SE: 0.755

SP: 0.803

281 image set:

AUC: 0.774

SE: 0.702

SP: 0.759

Limitations:

The algorithm was used to

classify binary responses of the

diseases and not the likelihood

rating from the participants.

Most of the images used in this

study were of Asian people. The

diversity of the diagnoses from

the external data of the two

affiliated hospitals was lower

than that of the training set. The

dataset was small compared

with those used in previous

studies. It is difficult to obtain

high-quality, diagnosis-

annotated lip images, but these

obstacles can be overcome if

more appropriate images

become available in the future.

Binol et al.,

2020

Segmentation/detection

Automatically identify

rosacea lesions from facial

images

Inception-ResNet,

version 2, and

ResNet-101

Institutional/clinical

Images used in this study were

captured at the Ohio State

University Division of

Dermatology

Dice Coeff

Inception-ResNet, version 2: 89.8

� 2.6 %

ResNet-101: 87.8 � 2.4 %

N/A

Kawahara and

Hamarneh,

2016

Classification

10 classes: AK, BCC,

melanocytic nevus/mole,

SCC, SK, IEC, PYO,

hemangioma (VSC), DF,

and malignant melanoma.

A hybrid of the

pretrained AlexNet

architecture for

early network layers

and additional

untrained layers for

later network layers

that learn only from

skin images.

Public/dermoscopy

Dermofit Image Library: 1,300

skin lesion images from 10

classes

Validation Acc: 0.781

Test Acc: 0.795

N/A
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Author Objective Model Tested Dataset Model Performance Limitations/Comments

Wu et al., 2020 Classification

Psoriasis, eczema, and

atopic dermatitis

EfficientNet-b4 Public/clinical

Clinical images from the

Department of Dermatology,

The Second Xiangya Hospital,

Central South University

(Xiangya, China)

Overall

Acc: 95.80 � 0.09 %

SE: 94.40 � 0.12 %

SP: 97.20 � 0.06 %

Psoriasis

Acc: 89.46%

SE: 91.4%

SP: 95.48% atopic dermatitis and

eczema

Acc: 92.57%

SE: 94.56%

SP: 94.41%

N/A

Abbreviations: Acc., accuracy; AI, artificial intelligence; AK, actinic keratosis; AUC, area under the curve; BCC, basal cell carcinoma; CAD, computer aided
diagnostic; CNN, convolutional neural network; Coeff, coefficient; DF, dermatofibroma; DFU, diabetic foot ulcer; DI, dice coefficient; dsc, dermatoscopic;
IEC, intraepithelial carcinoma; ISBI, international symposium on biomedical imaging; ISIC, International Skin Imaging Collaboration; JA, jaccard index;
mAP, mean average precision; MCC, Matthews correlation coefficient; N/A, not applicable; NPV, negative predictive value; PPV, positive predictive value;
PYO, pyogenic granuloma; SCC, squamous cell carcinoma; SE, standard error; SK, seborrhoeic keratosis; SMG-SNU, Seoul Metropolitan Goverment-Seoul
National University; SNUH, Seoul National University Hospital; SP, specificity; SVM, support vector machine; TTA, test-time augmentation.
7Bi L, Kim J, Ahn E, Feng D. Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv 2017.
8Li KM, Li EC. Skin lesion analysis towards melanoma detection via end-to-end deep learning of convolutional neural networks. arXiv 2018.
9Rezvantalab A, Safigholi H, Karimijeshni S. Dermatologist level dermoscopy skin cancer classification using different deep learning convolutional neural
networks algorithms. arXiv 2018.
10Chang H. Skin cancer reorganization and classification with deep neural network. arXiv 2017.
11Mirunalini P, Chandrabose A, Gokul V, Jaisakthi S. Deep learning for skin lesion classification. arXiv 2017.
12Murphree DH, Ngufor C. Transfer learning for melanoma detection: participation in ISIC 2017 skin lesion classification challenge. arXiv 2017.
13Vasconcelos CN, Vasconcelos BN. Convolutional neural network committees for melanoma classification with classical and expert knowledge based
image transforms data augmentation. arXiv 2017.
14Sousa RT, de Moraes LV. Araguaia medical vision lab at ISIC 2017 skin lesion classification challenge. arXiv 2017.
15Yang X, Zeng Z, Yeo SY, Tan C, Tey HL, Su Y. A novel multi-task deep learning model for skin lesion segmentation and classification. arXiv 2017.
16Goyal M, Hassanpour S. A refined deep learning architecture for diabetic foot ulcers detection. arXiv 2020.
17Galdran A, Carneiro G, Ballester MAG. Convolutional nets versus vision transformers for diabetic foot ulcer classification. arXiv 2022.

5 Kamulegeya LH, Okello M, Bwanika JM, Musinguzi D, Lubega W, Rusoke D,

et al. Using artificial intelligence on dermatology conditions in Uganda: a case for

diversity in training data sets for machine learning. bioRxiv 2019.

HK Jeong et al.
A Systematic Review of Deep Learning Algorithms in Dermatology
for training CNNs to avoid bias and overestimation of model
performance.

Data quality and imbalance. The quality of the images can
be a cause for concern, especially with nonpublic institu-
tional datasets, because clinical image quality can vary
depending on the device and the operator capturing the
images. For dermoscopic images, the images are taken with a
designated device, and thus the quality may not vary as
much. Quality control of images in large datasets is a chal-
lenging task. This issue is compounded by overall lack of
large image repositories in dermatology; hence, we note that
the largest body of literature is in the melanoma binary
classification and diabetic foot ulcer models, given the
availability of standardized and publicly available datasets.
Increasing the diversity of images in datasets and the devel-
opment of tools to assess image quality and remove duplicate
data are solutions needed to improve model development in
the future.

Generalizability of models

Although these studies show a potential use of AI models in
dermatology, it should be noted that the majority of papers
are largely proof of concept, trained, and tested on retro-
spective datasets. The limitation in generalizability can be
broken down into three categories: lack of datasets in gen-
eral, lack of diversity in datasets, and lack of patient infor-
mation. The barriers to generalizability would be the data
imbalance across age, sex, ethnicity, skin tone, disease type,
and disease prevalence, which if not sufficiently addressed
could lead to poor performance of the models when tested
outside of their training and test population. For reference,
image label splits are noted in Table 2 for standardized,
publicly available datasets for comparison with disease
prevalence in real-world clinical settings.

One study reported that several ML algorithms may
underperform on images from patients with skin of color
because the datasets used to train these models such as the
ISIC challenge archive have been collected heavily from fair-
skinned patients in the United States, Europe, and Australia
(Adamson and Smith, 2018). A case study in Uganda showed
that only 17% of the images from Fitzpatrick 6 skin (black‒
dark) type were correctly diagnosed dermatological condi-
tions through First Derm’s Skin Image Search algorithm,
indicating that the model was mainly trained on Caucasian
skin types (Kamulegeya et al., 20195). Similarly, Han et al.
(2020a) and Winkler et al. (2019) acknowledged the valida-
tion of one race (Asian, Caucasian) in one region (South
Korea, Germany). Haenssle et al. (2020) stated that their
dataset did not include some other benign, malignant, or
inflammatory skin lesions and that the dataset consisted of
images from the Caucasian genetic background. Together,
these results show that the models will likely not generalize
across nonwhite skin types and populations with skin lesion
types not included in the dataset used to construct the tested
www.jidinnovations.org 11
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Table 2. List of Publicly Available Datasets

Name of
Dataset Dataset Description Access

ISIC challenge

2016 (melanoma)

Task 1: Lesion Segmentation

Training Data: 900 dermoscopic lesion images in JPEG format, with EXIF data stripped

Training Ground Truth: 900 binary mask images in PNG format

Test Data: 379 images of the same format as the training data

Task 2: Detection and Localization of Visual Dermoscopic Features/Patterns

Training Data: 807 lesion images in JPEG format and 807 corresponding superpixel masks in PNG

format

Training Ground Truth: 807 dermoscopic feature files in JSON format

Test Data: 335 images of the exact same format as the training data

Task 3: Disease Classification

Training Data: 900 lesion images in JPEG format

Training Ground Truth: 900 entries of gold standard malignant status

Test Data: 379 images of the exact same format as the training data

Image Label Split: Task 3 (727 benign, 173 malignant)

https://challenge.isic-archive.com/data/

ISIC challenge

2017 (melanoma)

For all three tasks:

Training Dataset: 2,000 lesion images in JPEG format and 2,000 corresponding superpixel masks

in PNG format, with EXIF data stripped

Training ground truth: 2,000 binary mask images in PNG format, 2,000 dermoscopic feature files

in JSON format, 2,000 entries of gold standard lesion diagnosis

Validation Dataset: 150 images

Test dataset: 600 images

Image Label Split: Melanoma 374, seborrheic keratosis 254, other (benign): 1,372

https://challenge.isic-archive.com/data/

ISIC Challenge

2018 (melanoma)

For Tasks 1 and 2:

Training Dataset: 2,594 images and 12,970 corresponding ground truth response masks (five for

each image).

Validation Dataset: 100 images

Test dataset: 1,000 images

For Task 3 (HAM10000 Dataset):

Training Dataset: 10,015 images and 1 ground truth response CSV file (containing one header row

and 10,015 corresponding response rows). 10,015 entries grouping each lesion by image and

diagnosis confirm the type.

Training ground truth: 2,000 binary mask images in PNG format, 2,000 dermoscopic feature files

in JSON format, and 2,000 entries of gold standard lesion diagnosis

Validation Dataset: 193 images

Test dataset: 1,512 images

Image Label Split: Actinic keratoses and intraepithelial carcinoma/Bowen’s disease (327 images),

basal cell carcinoma (514 images), benign keratosis-like lesions (1,099 images), dermatofibroma

(115 images), melanoma (1,113 images), melanocytic nevi (6,705 images), and vascular lesions

(142 images)

ISIC Dataset: https://challenge.isic-archive.com/

data/HAM10000 Dataset: https://dataverse.

harvard.edu/dataset.xhtml?persistentId¼doi:1

0.7910/DVN/DBW86T

ISIC challenge

2019 (melanoma)

Training Set: 25,331 JPEG images of skin lesions and metadata entries of age, sex, and general

anatomic site with gold standard lesion diagnosis

Test Set: 8,238 JPEG images of skin lesions and metadata entries of age, sex, and general anatomic

site.

Image Label Split: Actinic keratoses and intraepithelial carcinoma/Bowen’s disease (867 images),

basal cell carcinoma (3,323 images), benign keratosis‒like lesions (2,624 images),

dermatofibroma (239 images), melanoma (4,522 images), melanocytic nevi (12,875 images), and

vascular lesions (253 images)

https://challenge.isic-archive.com/data/

ISIC challenge

2020 (melanoma)

Training Set: 33,126 DICOM images with embedded metadata and metadata entries of patient ID,

sex, age, and general anatomic site with gold standard lesion diagnoses.

Test Set: 10,982 DICOM images with embedded metadata and metadata entries of patient ID, sex,

age, and general anatomic site.

Image Label Split: Benign keratosis-like lesions (37 images), Lentigo (44 images), solar lentigo (7

images), melanoma (584 images), melanocytic nevi (5193 images), seborrheic keratoses (135

images) and other/unknown (benign) (27,124 images)

https://challenge.isic-archive.com/data/

MED—NODE

Database

Image Label Split: 100 dermoscopic images: 80 melanomas and 20 nevi

100 nondermoscopic images: 80 melanomas and 20 nevi

https://skinclass.de/mclass/

PH2 Database Image Label Split: 200 dermoscopic images of melanocytic lesions, including 80 common nevi,

80 atypical nevi, and 40 melanomas

https://www.fc.up.pt/addi/ph2%20database.

html

DermIS Database Image Label Split: 43 macroscopic photographs with lesions diagnosed as melanoma and 26

diagnosed as nonmelanoma

http://www.dermis.net

DermQuest Image Label Split: 76 images of melanoma lesions and 61 images of nonmelanoma lesions http://www.dermquest.com

Interactive Atlas

of Dermoscopy

The dataset includes over 2,000 clinical and dermoscopy color images, along with corresponding

structured metadata

Image Label Split: basal cell carcinoma (42 images), nevi (575 images), dermatofibroma (20

images), lentigo (24 images), melanoma (268 images), miscellaneous (8 images), seborrheic

keratoses (45 images), and vascular lesion (29 images)

Only 1,011 labels are shown in the dataset

https://derm.cs.sfu.ca/

(continued )
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Table 2. Continued

Name of
Dataset Dataset Description Access

DFUC 2020

Dataset

4,000 images, with 2,000 used for the training set and 2,000 used for the testing set. An additional

200 images were used for sanity checking. The training set consists of DFU images only, and the

testing set comprised images of DFU and other foot/skin conditions and images of healthy feet.

The dataset is heterogeneous, with aspects such as distance, angle, orientation, lighting, focus,

and the presence of background objects all varying between photographs.

Image Label Split: Not reported unless requested

https://dfu-challenge.github.io/dfuc2020.html

DFUC 2021

Dataset

15,683 DFU patches, with 5,955 training, 5,734 for testing, and 3,994 unlabeled DFU patches

Image Label Split: Training set (2,555 infections only, 227 ischemia only, 621 both infection and

ischemia, and 2,552 without ischemia and infection)

https://dfu-challenge.github.io/dfuc2021.html

Abbreviations: DFU, diabetic foot ulcer; ISIC, International Skin Imaging Collaboration.

Table 3. Types of Datasets

Types of Images

Clinical Dermoscopy

Data
Availability

Open
source

[4][20][50‒54][57]
[60]
[65]

[1,2][5‒13][15‒20]
[23‒33]

[35‒37][39‒41][55]
[59,60]
[64]

Institutional [3][14][38][42][44] [3][14][16][19][21,22]

HK Jeong et al.
A Systematic Review of Deep Learning Algorithms in Dermatology
models. To solve these challenges, studies deploying models
for prospective validation in real-world settings in which the
models will be used are needed. Rigorous validation of
models in real-world settings, with training and test data
mirroring pretest probability of disease conditions and de-
mographics, will help in generalizability. It should be noted
that in current literature, there is a lack of calibration metrics
for these AI models. If disease prevalence in the population is
known, the model threshold may need to be altered to create
a most favorable outcome of data that can meaningfully
inform the clinical decision process.

Importance of true labels and ground truth

In larger datasets (MNIST, CIFAR, and ImageNet), deep
learning models are able to generalize from training data
when true labels far outnumber the incorrect labels (Rolnick
et al., 20176). However, in medical datasets, because of the
typical smaller sample sizes, it is unclear whether this holds
true. For example, neural network training for true melanoma
detection from pigmented lesion biopsies by dermatologists
is only 9.60 (95% confidence interval ¼ 6.97‒13.41) by
meta-analysis (Petty et al., 2020). This highlights the impor-
tance of using histopathological reports as ground truth for
important tasks such as melanoma detection, given that
incorrect labels by experts can dilute the dataset, hence
creating an inferior model performance. Quantification tasks
pose unique challenges such as determining ground truth
when there is inter-rater variability from multiple experts,
especially in quantification tasks such as inflammatory (urti-
caria, eczema, etc.) or pigmentation (melasma, post-
inflammatory hyperpigmentation) tasks.

Role of clinical information

Most current models are only trained with skin images
without consideration of other clinical information related to
the patients. Given that physicians usually make clinical
decisions with additional information other than imaging,
such as with chart reviews, adding this information to the
deep learning model could lead to better classification per-
formance. Haenssle et al. (2020) showed that with the
addition of the clinical information, there is an increase in
the sensitivity of dermatologists’ management decisions
(89.0‒94.1%) and the sensitivity and specificity of diagnostic
performance (sensitivity of 83.8‒90.6%, specificity of 77.6‒
6 Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to massive label

noise. arXiv 2017.
82.4%). Thus, it is predicted that deep learning models can
benefit from the inclusion of patient metadata.

AI versus human performance

Several studies show comparable diagnostic classification
results of AI with those of human experts. However, several
algorithms suffer from poor generalizability because of the
variable performance of the models when tested outside its
experimental conditions (Du-Harpur et al., 2020; Gomolin
et al., 2020). This leads to cases of faulty AI, which can
have a detrimental impact on the trust and promise that re-
searchers and clinicians have for AI in the realm of
dermatology.

Although AI-based classification systems cannot replace
human experts, they can cooperate with experts and
empower them to make accurate skin diagnoses (Garg et al.,
2005, Han et al., 2020a; Hekler et al., 2019). For example,
with their CNN model trained on over 200,000 images from
four datasets that were further validated on two external
datasets, Han et al. (2020b) reported that their model was
able to improve the top one accuracy of four dermatologists
by 7% in multiclass classification of 134 skin conditions and
increase the sensitivity and specificity of malignancy pre-
diction of 47 dermatologists/dermatology residents by 12 and
1%, respectively. Hekler et al. (2019) trained a CNN model
using over 11,000 dermoscopic images to perform multiclass
classification of five skin conditions and found that the mean
combined AI‒human accuracy was 83%, which was 1.4%
higher than AI alone and 40% higher than experts alone.

AI cannot only assist dermatologists directly but could also
be helpful in triage and referral workflow. One study devel-
oped a risk-aware neural network model augmented with
[46,47]
[49][56][61][63]

[34]
[43][45][48][58][62]
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Bayesian deep networks that showed a 90% prediction ac-
curacy in the diagnosis prediction of seven types of skin le-
sions and made referrals to experts for only 35% of the tested
cases (Mobiny et al., 2019). Another study evaluated the
impact of AI in assisting primary care providers to diagnose
skin conditions (Jain et al., 2021). A total of 40 board-certified
clinicians were tasked with diagnosing over 1,000 cases with
and without AI assistance, and their results were compared
with the reference diagnoses made by dermatologists. The
study showed that diagnostic agreement for the primary care
physicians increased by 10% and that for nurse practitioners
increased by 12% with AI assistance.

Regulatory pathway for approval

The Food and Drug Administration (FDA) is the regulatory
entity for approval of any models, typically using the Soft-
ware as a Medical Device (SaMD) 501K regulatory pathway.
FDA has different marketing pathways further explored at
https://www.fda.gov/medical-devices/device-advice-
comprehensive-regulatory-assistance/how-study-and-market-
your-device. Most models are marketed as class II (moderate
risk), including those that are CDS tools. Devices that make a
definitive diagnosis are often class III (highest risk). The more
impact the software has on the healthcare diagnosis/treat-
ment decision, the higher the class attributed to it, a concept
that is further explored in the IMDRF software as a medical
device risk framework (International medical device
regulators, 2014). For approval, the FDA is currently pilot-
ing a program for precertification. The proposed concept
entails that an FDA review will change on the basis of the risk
level of the device; whether it is an initial product review,
major change, or minor change; and depending on the
organizational experience. All organizations would have to
undergo an organizational excellence review to use this
program (U.S. Food & Drug Administration, 2021a).

Traditionally, after FDA approval and before marketing, the
SaMD must be locked, prohibitive to the adaptive nature of
AI/ML software. A discussion paper proposing a novel
framework outlining when to submit SaMD modifications
can be found (U.S. Food & Drug Administration, 2019). An
FDA database (U.S. Food & Drug Administration, 2021b)
may be useful to review a current list of approved AI/ML
devices.

CONCLUSION AND FUTURE DIRECTIONS
Deep learning has immense potential in dermatology as an
assistive diagnostic tool for skin diseases, with promising
value in assisting diagnostic and disease quantification tasks.
Clinical use spans clinical care, teledermatology, triaging
care, and clinical trials among others. The most pressing
challenge preventing AI from being more widely used in
dermatology is the lack of diversity in datasets and general-
izability studies. Working together with physicians and
healthcare providers, these AI algorithms can provide more
accurate diagnoses and better care, reduce labor costs and
workload, and benefit the healthcare industry overall.
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