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Lymphocytic choriomeningitis virus (LCMV), 
whose natural host is the mouse, is widely used 
to study cellular and humoral immunity.  Similar 
to other poorly or noncytopathic viruses that 
infect humans such as hepatitis B virus (1), 
hepatitis C virus (2), or HIV-1 (3), LCMV-
neutralizing antibodies only become detectable 
at late time points after infection. Yet, such an-
tibodies are important for long-term control of 
the virus (4, 5) and enhance protection against 
further virus challenge (6, 7). In contrast, non-
neutralizing antibodies, which exhibit specifi c-
ity for various LCMV proteins in ELISA (8, 9),
are induced early after infection. Although it is 
generally believed that such antibodies do not 
play a role in the clearance of acute LCMV infec-
tions (10), the absence of B cell responses can 

result in the failure to clear high doses of virus 
(5, 10) or in increased virus titers (11).

Although the biological function of neu-
tralizing antibodies is well recognized, the 
 biological role of nonneutralizing antibodies 
remains unclear. Nonneutralizing antiviral an-
tibodies can be divided into those that bind to 
the intact virion surface and “debris-specifi c” 
antibodies. Antibodies belonging to the fi rst 
group either recognize epitopes on the intact 
virion surface diff erent than those of neutraliz-
ing antibodies or bind the same antigenic site as 
neutralizing antibodies, but they do so with 
low affi  nity/avidity and therefore fail to neu-
tralize the virus (12). The second group of non-
neutralizing antibodies binds to other antigenic 
moieties and comprises the majority of non-
neutralizing antibodies. These antibodies ex-
hibit specifi cities for (a) internal viral proteins 
that are not accessible on intact virions or infec-
ted cells (e.g., viral nucleoproteins) (13, 14); 
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(b) proteins that have been denatured,  degraded, incompletely 
translated, or processed (e.g., cleavage or glycosylation) (15–17); 
or (c) proteins that are not properly oligomerized (18). Such 
nonneutralizing antibodies are likely to be induced as a side 
eff ect of antiviral immune responses and appear to have no 
obvious protective function. Nevertheless, nonneutralizing 
antibodies have occasionally been reported to exhibit antiviral 
activity if combined with other eff ector mechanisms of the 
immune system (19–26). In contrast, it has been reported that 
nonneutralizing antibodies may compete with neutralizing 
antibodies for the same epitope and, thus, prevent complete 
virus inactivation by neutralizing antibodies (27).

To examine the possible biological role of early, low af-
fi nity antibodies against LCMV, we infected CTL-defi cient 
TgH(KL25) mice with LCMV-WE and isolated virus escape 
variants at various time points thereafter. TgH(KL25) mice 
expressing the VH-D-JH of the LCMV-neutralizing mAb 
KL25 and mounted a very focused, but not monoclonal, 
neutralizing antibody response within 4 d after infection with 
LCMV-WE. By day 8 after high-dose viral infection, all vi-
rus isolates had gained resistance to antibody-mediated neu-
tralization (ID50 > 300 μg/ml); however, a subset of these 
escape variants retained the ability to bind to the selecting 
neutralizing antibody. In contrast, virus variants isolated at 
late time points (day 32 after infection) were resistant to neu-
tralization and did not bind to the selecting antibody. These 
data indicate that binding, but nonneutralizing, antibodies 
can exert a selective pressure on the virus. Indeed, infection 
of naive TgH(KL25) mice with the early virus isolates exhib-
iting antibody binding activity resulted in enhanced virus 
clearance compared with infection with late viral isolates, 
which could not bind KL25. The observed accelerated virus 
clearance was partially dependent on complement. From 
these data we conclude that nonneutralizing antibodies bind-
ing to the neutralizing antigenic site on the LCMV surface 
glycoprotein (GP) can exert an important biological function 
by limiting early virus replication and spread.

RESULTS

Viral escape in CTL-defi cient TgH(KL25) mice

Mice exhibiting diminished or absent CD8+ T cell numbers 
have diffi  culties in eliminating LCMV and can only tran-
siently control viremia (28, 29). CTL-defi cient mice are also 
prone to the selection of LCMV variants that are resistant 
against neutralization by the endogenous antibody response 
(29–31). We used mice defi cient in transporter associated 
with antigen processing (TAP−/−) but transgenic for the 
KL25 heavy chain (TgH(KL25)) (32) to select for KL25-
 neutralizing antibody escape variants. TgH(KL25)xTAP−/− 
have very low CD8+ T cell numbers and are unable to mount an-
tiviral CTL activity (33). However, because of the presence 
of the KL25 heavy chain, TgH(KL25)xTAP−/− mice are able 
to mount a strong LCMV-WE–neutralizing antibody re-
sponse by day 4 after infection.

TgH(KL25)xTAP−/− mice were infected with 2 × 106 
PFU LCMV-WE, and viremia as well as neutralizing antibody 
responses against the immunizing virus were monitored. As 
a control, the parental TAP−/− or TgH(KL25) mouse strains 
were infected with the same dose of virus. As depicted in 
Fig. 1, TAP−/− animals failed to control viremia and mounted 
a weak neutralizing antibody response between days 28 and 
46 after infection. Concomitantly with the emergence of 
neutralizing antibodies, viremia was reduced or temporarily 
controlled to a point below the detection level (for two out 
of three animals at day 67 after infection). As expected (32), 
TgH(KL25) mice controlled viremia effi  ciently and mounted 
a strong neutralizing antibody response by day 4. In contrast, 
TgH(KL25)xTAP−/− mice failed to control viremia despite 
the simultaneous presence of high titers of neutralizing anti-
bodies, suggesting that the persisting viruses were not sensi-
tive to neutralization by the endogenous antibody response. 
Indeed, virus isolates from these mice were not neutralized 
by 100 μg/ml KL25 in infectivity reduction assays (Fig. 2 A).
A low-dose (200 PFU) infection of TgH(KL25)xTAP−/− 
mice also selected for antibody  escape variants and resulted 

Figure 1. Rapid selection of antibody escape variants after in-

fection of CTL-defi cient TgH(KL25) mice. Blood viremia (top) and 

neutralizing antibody responses (bottom) in TAP−/−, TgH(KL25), or 

TgH(KL25)xTAP−/− mice after i.v. infection with 2 × 106 or 200 PFU 

LCMV-WE. The dashed line indicates the detection level for blood virus 

and neutralizing IgG titers. Error bars represent the mean ± SD 

(n = 2–3 mice each). One representative out of two independent 

 experiments is shown.
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in persistent infections, but this selection was delayed, with 
viremia only being detected after day 12 (Fig. 1).

These data demonstrate that increased LCMV replication 
in the absence of CTL was suffi  cient to select for variants that 
have escaped a concomitantly present oligoclonal neutraliz-
ing antibody response.

Analysis of virus isolates resistant to KL25-mediated 

neutralization revealed differences in their ability 

to bind KL25

Loss of sensitivity for KL25-mediated neutralization has 
 previously been associated with a loss of antibody binding 
(30, 34). We therefore analyzed the ability of the  neutralization-
sensitive virus isolates from TAP−/− mice to bind to KL25 
and compared these with neutralization-resistant isolates from 
TgH(KL25)xTAP−/− mice. The mAb KL25 was used for 
this analysis, as the neutralizing antibodies induced early in 
TgH(KL25) mice are known to be closely related to KL25 
and are recognized by idiotypic antibodies specifi c for mAb 
KL25 (32).

Binding of KL25 to MC57G cells infected with diff erent 
virus variants was determined by fl ow cytometry. We cor-
rected for diff ering GP surface expression levels by normaliz-
ing fl ow cytometric measurements with parallel stainings 
using mAb WEN1.3, which binds equally well to the GP of 
either WT or KL25 escape variants (30, 34). Three categories 
of virus isolates could be identifi ed: (a) strong-binding iso-
lates, which were defi ned as those variants whose KL25 mean 
fl uorescence intensity (MFI) was measured to be 50–100% of 
the MFI measured for WEN1.3; (b) low-binding isolates, de-
fi ned as those whose MFI percentiles ranged from 10 to 50; 
and (c) nonbinding isolates, defi ned as those having <10% 
KL25 binding.

A total of 59 single-round subcloned virus isolates obtained 
from 8 TAP−/− and 55 single-round subcloned virus isolates 
obtained from 8 TgH(KL25)xTAP−/− mice were analyzed. 
As expected, all neutralization-sensitive isolates from TAP−/− 
mice retained strong binding to KL25 (Fig. 2 B, left), indicat-
ing that in TAP−/− mice the polyclonal antibody response did 
not exert a selective pressure against the epitope recognized 
by KL25. In contrast, several neutralization- resistant LCMV 
variants isolated from TgH(KL25)xTAP−/− mice had lost 
binding to KL25 (Fig. 2 B, right). Yet, we were able to iso-
late two neutralization-resistant variants from day 8–infected 
TgH(KL25)xTAP−/− mice that retained strong binding to 
KL25. In addition, a considerable fraction of the neutraliza-
tion-resistant clones isolated from TgH(KL25)xTAP−/− mice 
on days 12 and 20 exhibited low binding to KL25. Thus, 
in TgH(KL25)TAP−/− mice most of the virus isolates had 
escaped KL25 neutralization by day 8; however, some anti-
body (KL25)–binding activity remained. More interestingly, 
the presence of such antibody-binding isolates was observed 
to diminish over time, indicating the presence of a selective 
pressure against such isolates.

Characterization of four viral isolates

Four escape variants, no longer susceptible to neutralization 
by KL25, were chosen for a more detailed analysis based 
either on their KL25 binding properties or on the mutations 
identifi ed by sequencing (Table I). The variants chosen con-
sisted of one strong-binding (cl12.1, Asn121Lys), two low-
binding (20#8p2.1, Asn119Asp and 8#1p1.1, Asn171Asp), 
and one nonbinding (10.1.1, Asn119Ser) isolates. Infectiv-
ity of these isolates could eventually be decreased with in-
creasing concentrations of KL25; however, the amount of 
KL25 required was at least 60-fold higher compared with 
WT LCMV-WE (Table I). These high ID50 scores likely 
indicate a drastically decreased affi  nity of KL25 for the func-
tional GP multimers on the viron surface. All mutations ob-
served involved replacement of a single Asn residue, which 
has previously been associated with antibody escape by 
LCMV (29–31). Moreover, the Asn171Asp mutation found 
in the isolate 8#1p1.1 abolished N-linked glycosylation at 
the same glycosylation site that is absent in Armstrong iso-
lates sensitive to neutralization by GP-1D epitope-specifi c 
antibodies (35).

Figure 2. Characteristics of viruses isolated from TAP−/− and 

TgH(KL25)xTAP−/−. (A) Neutralization sensitivity of single-round subcloned 

virus isolates obtained from TAP−/− and TgH(KL25)xTAP−/− mice. A total of 

75 and 55 viral isolates, respectively, from TAP−/− and TgH(KL25)xTAP−/− 

mice were incubated with KL25 at a concentration of 100 μg/ml or mock 

treated with the same volume of medium, and twofold serially diluted. 

LCMV-WE was used as a positive control. The difference in viral titers be-

tween the antibody and mock-treated preparation are depicted as  ∆titer 

values. Isolates displaying ∆titer values of >1 titer step were considered 

neutralization sensitive. Solid lines indicate the means. Each point represents 

an individual isolate. (B) The MFIs of mAb binding to MC57G cells infected 

with the indicated virus isolates were determined for KL25 and WEN1.3 

(which also binds to the GP of KL25 escape variants). Each symbol represents 

an individual isolate (59 isolates from 8 LCMV-infected TAP−/− and 55 iso-

lates from 8 TgH(KL25)xTAP−/− mice are depicted). Values represent the 

background-corrected MFI of KL25 as a percentile of the background-cor-

rected MFI of WEN1.3. Open circles represent KL25 neutralization–sensitive 

isolates, and closed circles represent neutralization-resistant isolates. The 

MFI of LCMV-WE–infected cells is shown for comparison.
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To confi rm that the fl ow cytometric data could be di-
rectly correlated with the detected mutations, and to deter-
mine the avidity of KL25 for dimeric mutant GP-Fc fusion 
proteins, the extracellular portion of GP from WT and/or 
mutant LCMV isolates was recombinantly expressed as a fu-
sion protein with human immunoglobulin Fc. Equal amounts 
of recombinant proteins were then immobilized on anti–
 human-Fc–coated plates, and the binding of titrated amounts 
of KL25 assessed. As a control to ensure equal amounts of 
correctly folded fusion proteins were present, the binding of 
WEN3.1 (a diff erent mAb that recognizes WT and mutant 
GP with equal effi  ciency) was also assessed (depicted as OD405 
values in Fig. 3). All neutralization escape variants displayed 
comparable binding to WEN3.1. Consistent with the fl ow 
cytometric data, we observed no binding of KL25 to the GP 
fusion protein from the nonbinding isolate LCMV-10.1.1, 
but intermediate binding to GP fusion proteins constructed 
from isolates 20#8p2.1 and 8#1p1.1 (Fig. 3). Moreover, the 
GP fusion protein carrying the Asp121Lys mutation from the 
strong-binding LCMV isolate cl12.1 exhibited the highest 
degree of binding to KL25 (Fig. 3). Collectively, these data 
confi rm that the mutations found in the GP of the KL25 es-
cape variants were directly responsible for the diff erent de-
grees of KL25 binding observed. These data also demonstrate 
that KL25 has a lower avidity for neutralization-resistant, 
compared with neutralization-sensitive, GP variants. These 
diff erences in avidity, however, were less than would have 
been predicted from the neutralization data. This may indi-
cate that the escape mutations aff ect KL25 binding more se-
verely in its functional multimeric form on the virion surface 
than for the recombinant form. Indeed, a similar phenome-
non has been observed for gp120 of HIV (36).

Residual binding to KL25 correlated with accelerated virus 

clearance and immunogenicity in vivo

The observed disappearance of KL25-binding virus variants 
in TgH(KL25)xTAP−/− mice over time suggested that neu-
tralization-resistant viruses that retain binding to KL25 have 
a selective disadvantage in these hosts (Fig. 2). To determine 

whether surface binding of nonneutralizing antibodies could 
contribute to viral clearance, C57BL/6 and TgH(KL25) mice 
were infected with 200 PFU of LCMV-WE, cl12.1, 8#1p1.1, 
20#8p2.1, or 10.1.1 virus isolates.

Neutralizing antibody titers were then determined against 
both WT LCMV-WE and the infecting LCMV variants. 
As expected from previous studies demonstrating an origi-
nal antigenic sinlike behavior of LCMV (29, 31), infection 
of TgH(KL25) mice with LCMV variants other than WE 
readily induced neutralizing antibodies against LCMV-WE 
(Fig. 4 A). This induction of WE-neutralizing antibodies was 
most effi  cient with the strong-binding isolate cl12.1 and the 
low-binding isolate 8#1p1.1, but was marginally delayed for 
the low-binding isolate 20#8p2.1. Interestingly, the non-
binding isolate 10.1.1 not only induced a delayed WE-specifi c 

Figure 3. Binding of WEN3.1 and KL25 to recombinantly ex-

pressed WT and mutant GP. The extracellular portion of WT or mutant 

GP was recombinantly expressed as a fusion protein with the Fc portion 

of human IgG1. Purifi ed recombinant protein was immobilized on anti–

human-Fc–coated plates before titrated amounts of unlabeled WEN3.1 

and biotinylated KL25.8 were added, starting at an antibody concentra-

tion of 6 μg/ml. After detection using horseradish peroxidase–labeled 

goat anti–mouse IgG (WEN3.1) or streptavidin (KL25) in combination with 

ABTS substrate, OD405 values were determined and plotted as a function 

of the dilution. Error bars represent the mean ± SD of duplicate wells. 

Results are representative of at least two separate experiments.

Table I. Overview of the LCMV isolates used

LCMV 

isolate Mutation

Neutralization 

by KL25b

Binding of 

KL25c

ID50 

(𝛍g KL25/ml)d Kd (KL25)/Kd (WEN1.3)
e

WE None Yes ++++ 6 1.84

cl12.1a Asn121Lys No +++ 386 6.67

20#8p2.1a Asn119Asp No + 2,063 33.27

8#1p1.1a Asn171Asp No + 1,289 16.83

10.1.1a Asn119Ser No − >5,500 1,150.80

aViruses isolated from blood of LCMV-WE–infected TgH(KL25)xTAP−/− mice on day 8 or 20 after infection.
bNeutralization as determined by the ability of purifi ed mAb KL25 (100 μg/ml) to reduce viral infectivity as described in the Materials and methods.
cAccording to fl ow cytometric measurement of infected cells stained with FITC-labeled KL25 at a concentration of 15–20 μg/ml.
dID50 of KL25-mediated infectivity reduction as determined in Materials and methods presented as the arithmetic mean from four values determined in two independent 

experiments for WE, cl12.1, 8#1p1.1, and 10.1.1, and from two values in a single experiment for 20#8p2.1.
eEvaluation of the data shown in Fig. 3. OD405 values were plotted against the logarithm of the antibody concentration. Best-fi tting Hill curves were then iterated with 

software (Prism 3; Graphpad Inc.) using the average OD405 of the blank samples as fi xed bottom values. To obtain an accurate fi t for 10.1.1, KL25 iterations also used the 

extrapolated top value for WE-Fc as constant top value. Kd values were then determined as exponentiated LogEC50 values and are depicted as fractions of each other.
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IgM antibody response but also failed to induce a normal 
anti–LCMV-WE IgG neutralizing antibody response. Ana-
lysis of the antibody response against the infecting variants 
revealed that only isolates cl12.1 and 8#1p1.1 were able to 
induce low (1:40–80) neutralizing titers against themselves 
in TgH(KL25) mice (Fig. 4 A). The other two variants were 
unable to induce autologous neutralizing titers within the 
observation period of 28 d. Collectively, these data demon-
strated that the early antibody response of TgH(KL25) mice 
against escape variants is largely constituted of binding, but 
nonneutralizing, antibodies.

Viral titers within the spleens of C57BL/6 and TgH(KL25) 
mice were determined at day 4 or 6 after infection with 200 
PFU of LCMV-WE, cl12.1, 8#1p1.1, 20#8p2.1 or 10.1.1. 
In TgH(KL25) mice, the neutralization-sensitive WE strain 
of LCMV was the most susceptible to antibody-mediated 
suppression (Fig. 4 B). This was in clear contrast to the 
 neutralization-resistant and KL25-nonbinding isolate 10.1.1, 
which displayed splenic virus titers that were comparable in 
C57BL/6 and TgH(KL25) mice on both days 4 and 6. The 
neutralization-resistant, but strong-binding, isolate cl12.1 be-
haved similarly to the WE strain. In TgH(KL25) mice, this 

isolate also exhibited reduced maximal virus titers on day 4 
that became undetectable by day 6. In contrast, the range of 
viral titers in C57BL/6 mice at this time point was still 
102–103 PFU/organ. The low-binding isolates (8#1p1.1 and 
20#8p2.1) displayed only minor diff erences in splenic organ 
virus titers between C57BL/6 and TgH(KL25) mice.

Collectively, these data demonstrate that viruses that are 
not sensitive to KL25-mediated neutralization in vitro, but 
retain the ability to bind to KL25, are more immunogenic in 
TgH(KL25) mice and more effi  ciently cleared than virus var-
iants that display no residual antibody binding.

Accelerated viral clearance mediated by binding, 

but nonneutralizing, antibodies is partially dependent 

on complement

We next assessed the role of complement in accelerated vi-
rus clearance because complement has been shown to aug-
ment the antiviral activity of nonneutralizing antibodies 
(19, 21, 23). C57BL/6 and TgH(KL25) mice were infected 
with 200 PFU of cl12.1 and treated daily with 2 U of cobra 
venom factor (CVF) from Naja naja i.p. to deplete C3 and 
C5 complement components (37). Nontreated C57BL/6 

Figure 4. Accelerated viral clearance by nonneutralizing anti-

bodies. (A) Neutralizing antibody response of TgH(KL25) mice infected 

with 200 PFU of the indicated variants of LCMV. (top) Heterologous neu-

tralizing antibody titers induced against WT LCMV-WE. (bottom) Autolo-

gous neutralizing antibody titers induced against the infecting viral 

variant. Error bars represent mean ± SD (n = 3 mice). Complement pre-

sent in sera was not heat inactivated before the assay. (B) Viral titers in 

spleen of C57BL/6 and TgH(KL25) mice infected with 200 PFU of LCMV-

WE or the indicated variants of LCMV. Each symbol represents the viral 

titer measured for a single mouse on the indicated day. The solid line 

indicates the mean of the experimental group, and the dashed line indi-

cates the detection level of the assay.
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and TgH(KL25) mice were used as controls. As depicted in 
Fig. 5 A, four out of fi ve complement-depleted TgH(KL25) 
mice failed to control the viral infection by day 6, whereas all 
nontreated animals displayed virus titers below the detection 
level. Injection of CVF had no infl uence on the kinetics of 
viral clearance in C57BL/6 mice, excluding a role for other 
antibody-independent eff ector functions of complement dur-
ing viral clearance (not depicted).

Similar results were obtained when 3 × 107 TgH(KL25) 
splenocytes were adoptively transferred into C57BL/6 or 
complement C3-defi cient mice (38) before infection with 
200 PFU of LCMV cl12.1 i.v. Maximal virus titers in the 
spleen at day 4 were almost 10-times greater in C3-defi cient 
compared with C57BL/6 recipient mice. On day 6, virus 
was below detection level in two out of three C57BL/6 re-
cipient mice compared with the presence of 102–103 titers in 
C3-defi cient mice (Fig. 5b). These results indicate that non-
neutralizing antibodies specifi c for the GP of LCMV partially 
mediate virus clearance by activating complement.

Accelerated viral clearance mediated by binding, 

but nonneutralizing, antibodies does not require 

the presence of specifi c B cells

To investigate whether the accelerated virus clearance only 
requires antibodies, or whether specifi c B cells need to be 
present, passive immunization experiments were performed. 
Splenic viral titers were assessed in three groups of C57BL/6 
mice at days 4 and 6 after infection with 200 PFU of LCMV 
cl12.1 i.v. To investigate the role of increased natural an-
tibody titers, the fi rst group received 750 μl of pooled na-
ive TgH(KL25) serum 20 min before infection. For analysis 
of the role of the early nonneutralizing antibodies, a second 
group of mice received 200 μg of purifi ed mAb KL25 1 d 

 after infection, whereas a third group of mice remained non-
treated. The amount of passively transferred antibody was 
chosen according to the maximal volume suitable for i.v. 
injection (naive serum), or as determined by previous exper-
iments (6).

As depicted in Fig. 6, transfer of naive TgH(KL25) serum 
or mAb KL25 decreased splenic virus titers on days 4 and 6. 
This reduction was more prominent after transfer of mAb 
KL25 compared with transfer of TgH(KL25) serum, probably 
as a result of neutralizing antibody dose and half-life.  However, 
both sets of data demonstrate that accelerated clearance can be 
mediated by nonneutralizing antibodies alone and does not 
require the presence of LCMV-GP–specifi c B cells.

DISCUSSION

We have assessed the biological function of antibodies that ex-
hibit binding, but not neutralizing, activity against the major 
neutralizing antigenic site (39) of LCMV-GP. For this pur-
pose we used LCMV isolates selected in CTL- compromised 
TgH(KL25) mice. Two distinct groups of escape variants 
were identifi ed among the neutralization resistant isolates. 
One group had lost both the ability to bind to the selecting 
antibody and sensitivity to antibody-mediated neutralization. 
The second group of escape variants was highly resistant to 
neutralization in vitro but still displayed antibody binding. 
Antibody-binding virus variants were only isolated at early 
time points after infection and were not found in later blood 
samples obtained from the same mice. This indicated that 
these binding antibodies were able to exert selective pressure 
on LCMV. Indeed, antibody- binding virus variants were 

Figure 5. Impact of complement on virus clearance of the high-

binding isolate cl12.1 in TgH(KL25) mice. (A) Virus titers in spleen of 

TgH(KL25) mice infected with 200 PFU of the cl12.1 isolate. To deplete 

activity of the C3 and C5 complement components, animals received 2 U 

of CVF i.p. before infection and every 24 h thereafter while the control 

group remained nontreated. Results are representative of at least two 

separate experiments. (B) Virus titer in spleens of C57BL/6 or C3-defi cient 

mice receiving 3 × 107 TgH(KL25) splenocytes 1 d before infection with 

200 PFU cl12.1 i.v. Each symbol represents an individual animal. The solid 

line indicates the mean of the experimental group, and the dashed line 

indicates the detection level of the assay. Results are representative of 

a single experiment.

Figure 6. Accelerated clearance of cl12.1 is mediated by soluble 

antibodies alone and does not require the presence of specifi c 

B cells. Virus titers in spleen of C57BL/6 mice infected with 200 PFU of the 

cl12.1 isolate. Mice received either 750 μl of naive TgH(KL25) serum i.v. 

20 min before infection to simulate increased natural antibody titers, or 

200 μg of purifi ed mAb KL25 1 d after infection to simulate an early 

nonneutralizing antibody response. As a control, one group of mice did 

not receive antibodies. Each symbol represents the viral titer measured 

for a single mouse on the indicated day. The solid line indicates the mean 

of the experimental group, and the dashed line indicates the detection 

level of the assay. We estimated a maximal serum concentration of 

133 μg/ml KL25 in mice receiving purifi ed mAb, using a conservative 

assumption of a 1.5-ml blood volume (46) with no diffusion of antibody 

into the tissue.
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cleared more rapidly than nonbinding variants. This en-
hanced clearance was partially dependent on complement.

For all isolates exhibiting KL25 binding but not neutral-
ization, KL25 was eventually able to decrease infectivity in 
vitro; however, this required very high concentrations of 
 antibody. Yet, such antibody-mediated reduction of viral infec-
tivity would not be expected to contribute to the observed 
biological eff ects in vivo, as the serum concentration of KL25 
on day 4 after infection is ≤10% of the concentration re-
quired for in vitro neutralization. Moreover, passive transfer 
of 200 μg KL25 into C57BL/6 mice exhibited a clear bio-
logical activity against the cl12.1 isolate despite a calculated 
fi nal serum antibody concentration well below that required 
for the in vitro eff ect.

Interestingly, avidity of KL25 for mutant GP multimers 
on virions was more aff ected than for the multimeric form 
present in the Ig fusion proteins. This conclusion was drawn 
from the observations that the ID50 values measured for the 
WT or escape mutation viruses showed greater diff erences 
than did KL25-binding affi  nities (as detected by ELISA) 
for the same mutations present in GP-Fc fusion proteins 
( Table I). Moreover, because we observed binding of KL25 
to cells infected with the antibody-binding escape variants, 
it is possible that the observed biological activity of KL25 
against neutralization-resistant variants is mediated by anti-
body binding to unnatural mulitmerized GP variants present 
on infected cells. Subsequent complement activation might 
therefore be responsible for a considerable proportion of the 
observed antiviral activity. The residual antiviral eff ects may 
be attributed to antibody-dependent cellular cytotoxicity. 
Based on other reports investigating the role of natural anti-
bodies in viral clearance (40), we assume that this accelera-
tion is also improved by increased removal of virus in the 
marginal zone of the spleen and accelerated priming of the 
adaptive immune system. However, from our data it can-
not be excluded that complement-mediated lysis of virions 
and infected cells was also involved. Indeed, complement-
 dependent in vitro inactivation of HIV virions has been dem-
onstrated for nonneutralizing sera obtained from acute phase 
HIV patients (23). In addition, complement-deprived rhesus 
monkeys infected with the mac251 strain of simian immuno-
defi ciency virus were found to have higher virus titers during 
the acute phase of infection and an accelerated clinical course 
of disease compared with monkeys with a functional comple-
ment system (41).

The nonneutralizing antibodies mediating accelerated 
 virus clearance in this study belonged to the group of nonneu-
tralizing antibodies that recognize the neutralizing epitope of 
LCMV-WE (GP-1A) (39) with low affi  nity. Nonneutraliz-
ing antibodies specifi c for other epitopes on the LCMV-GP 
(e.g., GP-1B or GP1C) (39) may also mediate some biologi-
cal activity, although this could not be addressed in the pre-
sented models. However, our data does suggest that affi  nities 
close to the neutralization threshold of 5 × 107 M-1 (12) are 
required for antiviral function of nonneutralizing antibodies. 
Indeed, we demonstrate that the biological eff ectiveness of 

nonneutralizing antibodies rapidly decreases with decreasing 
affi  nity of the LCMV-GP–antibody interaction (clearance of 
cl12.1 vs. 8#1p1.1 and 20#8p2.1). In contrast, even very 
high-affi  nity antibodies from the second group of debris-
 specifi c nonneutralizing antibodies may not exhibit such anti-
viral activity because their epitopes are unlikely to be present 
on infectious virions (17).

Sequence analysis of the GP gene of the isolated virus 
variants revealed that all neutralization-resistant viruses had 
single substitutions of Asn residues previously described to be 
involved in antibody escape of LCMV (29–31). Alteration 
of the glycosylation of viral surface proteins, as observed in 
variant 8#1p1.1, has been described previously as a mecha-
nism to escape antibody recognition (35, 42, 43). Because 
we have no evidence that KL25 directly contacts glycans 
and because it has been described that complete glycosyla-
tion is crucial for the correct folding of LCMV-GP (35), we 
believe that loss of glycosylation at Asn171 induced a slight 
conformational change in the protein backbone, resulting in 
impaired KL25 binding and neutralization. All other muta-
tions aff ected Asn119 or amino acids in close proximity. We 
therefore suspect that these amino acids are exposed within, 
or close to, the area contacted by KL25.

Antibody-binding escape variants like cl12 were only 
rarely isolated. This may result from LCMV cl12.1 having a 
decreased fi tness as compared with the other escape variants 
or the parental LCMV-WE strain. Indeed, LCMV cl12.1 
propagated less well in vitro (not depicted) and in vivo 
(splenic virus titers in C57BL/6 mice; Fig. 4 B), and was 
more effi  ciently controlled by nonneutralizing antibodies 
than the low- or nonbinding isolates (Fig. 4 B). Thus, it is not 
clear why such variants should arise. One might speculate 
that the mutation found in cl12.1 refl ects a preference of 
the RNA-dependent RNA polymerase for certain substitu-
tions, yet available sequence data provide no evidence for any 
particular sequence motif or preferred substitution (29–31). 
A two-phase model for the selection of escape variants may 
help to explain selection of viruses like LCMV-cl12.1. First, 
viral variants that have liberated the receptor-binding site of 
GP from the neutralizing activity of antibodies would be 
 selected. These viruses would propagate locally by infecting 
neighboring cells, with their exposure to antibodies conse-
quently being very limited. Such early variants could there-
fore aff ord to exhibit decreased viral fi tness and to bind 
antibodies. However, during a second and later phase, viruses 
that propagate well and can disseminate via blood without 
being captured by binding antibodies and complement would 
be selected.

We do not believe that the fi ndings presented in this 
study represent an isolated phenomenon specifi c for the 
transgenic mouse model used. First, all mutations found have 
previously been associated with antibody escape of LCMV in 
WT mice. Second, there are other reports that nonneutraliz-
ing antibodies may have a benefi cial role in other viral infec-
tions (19–24). However, nonneutralizing antibodies may 
only be important for the clearance of viruses that induce 



2040 BIOLOGICAL FUNCTION OF NONNEUTRALIZING ANTIBODIES | Hangartner et al.

 delayed and weak neutralizing antibody responses, such as 
HIV, hepatitis C virus, or hepatitis B virus. For viruses elicit-
ing an early and strong neutralizing antibody response, the 
presence of binding, but nonneutralizing, antibodies is un-
likely to play a substantial role in viral clearance.

To date, the biological function of nonneutralizing anti-
bodies specifi c for the LCMV-GP has been poorly under-
stood. Yet, circumstantial evidence that such antibodies may 
be of biological relevance has come from studies using B cell–
defi cient mice that exhibit impaired control of high-dose 
LCMV (5, 10, 11). We now provide direct in vivo evidence 
that antibodies that bind to the neutralizing epitope of LCMV, 
but do not mediate viral neutralization, are able to accelerate 
virus clearance in a complement-dependent manner. In sum-
mary, we demonstrate that antibodies that arise early during 
the immune response and exhibit binding activity against 
 viral surface proteins can play an important biological role 
by reducing early spread.

MATERIALS AND METHODS
Mice. All mice carried the respective mutation on a C57BL/6 background, 

and were bred and maintained under specifi c pathogen-free conditions at the 

University of Zürich’s Institute of Laboratory Animal Science. All animal 

experiments were performed according to institutional guidelines and Swiss 

federal regulations, and were approved by the veterinary offi  ce of the canton 

of Zürich.

Virus. LCMV strain WE was originally obtained from F. Lehmann-Grube 

(Heinrich-Pette-Institut, Hamburg, Germany) and propagated on L929 cells.

For isolation of mutant viruses from the blood of infected animals, 

blood was diluted 1:10 in BSS containing 0.02% (vol/vol) heparin and pre-

amplifi ed on 106 MC57G cells infected with 50 μl of the BSS-diluted blood. 

Supernatants were harvested after 48 and 72 h, and stored at −70°C for fur-

ther analysis (polyclonal virus preparations).

For subcloning, preamplifi ed virus was serially diluted 1:10 in MEM 

containing 2% FCS and added to 4–8 × 105 MC57G cells. After incubation 

of cells under an overlay of 3 ml DMEM containing 5% FCS and 1% low-

melt agarose (SeaPlaque; Cambrex Bio Science) for 2–3 d at 37°C/5%CO2, 

small turbid plaques became detectable that were further visualized by addi-

tion of 0.04% (wt/vol) neutral red in MEM plus 2% FCS to the top of the 

agar overlay for 2–4 h. Isolated plaques were picked and added to 1.6 × 106 

MC57G cells for amplifi cation. A single round of subcloning was used for 

most virus isolates, except for 20#8p2.1, 10.1.1, cl12.1, and 8#1p1.1, which 

were subcloned three times.

Flow cytometric analysis of KL25 binding to the surface of infected 

cells. To assess binding of KL25 to LCMV-GP expressed on infected cells, 

the method described by Seiler et al. was used (30). In brief, cells were in-

fected at a multiplicity of infection of 0.001–0.01, incubated for 48 h at 

37°C/5%CO2, and harvested using 1 mM EDTA in PBS as a cell-detaching 

reagent. For each virus, one sample was stained with purifi ed WEN1.3 at a 

concentration of 15–20 μg/ml to determine LCMV-GP surface expression, 

and one was stained with purifi ed KL25.8 at a concentration of 15–20 μg/ml 

to determine KL25 binding. The MFI of stained but noninfected samples 

was used to determine background staining, which was then subtracted from 

the corresponding MFI measured for the infected samples.

LCMV infectious focus formation, neutralization assays, and deter-

mination of ID50 of KL25. Virus and neutralizing antibody titers were de-

termined as described previously (14, 32, 44). For determination of ID50 

values, twofold serial dilutions of 11 mg/ml purifi ed KL25 or PBS were pre-

pared in MEM containing 2% FCS and mixed with the same volume of 

 medium containing 50–150 PFU of the LCMV variant. The concentration 

of antibody reducing the number of plaques by half was determined as ID50.

Recombinant expression of mutant LCMV-GP. A detailed description 

of the construction and expression of recombinant LCMV-GP will be pub-

lished elsewhere. In brief, for the construction of the mutant LCMV-GP/

human Fc fusion protein, a PCR-based approach was chosen using a codon-

optimized GP–open reading frame as a template (provided by D. von Laer, 

Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, 

Hamburg, Germany). To prevent posttranslational processing of the fusion 

proteins into GP-1 and GP-2-hFc portions, Arg 262 was replaced by Ala as 

described by Beyer et al. (45). Proteins were expressed into the supernatant 

of human 293T cells and purifi ed on protein A columns. Protein concentra-

tion was determined by an anti–human-Fcγ1–specifi c ELISA using purifi ed 

human IgG1 as a standard.

Analysis of KL25 binding by ELISA. WT and mutant recombinant GP 

was immobilized on goat F(ab’)2 anti–human-Fcγ–coated plates (1:800; Jackson 

ImmunoResearch Laboratories) at 1.6 ng/ml. Threefold serial dilutions of 

biotinylated KL25 or unlabeled WEN3.1 were prepared starting at 6 μg/ml 

and added to the immobilized fusion proteins. Bound KL25 was detected 

using peroxidase-labeled streptavidin (1:1,000; Jackson ImmunoResearch 

Laboratories), whereas binding of WEN3.1 was revealed by horseradish 

 peroxidase–labeled goat anti–mouse IgG (1:1,000; Sigma-Aldrich).

Infectivity reduction assay. Virus was incubated with 5 μg KL25, or the 

same volume of PBS, for 1 h at 37°C/5% CO2. After preparing twofold 

 serial dilutions, virus was transferred to MC57G cells. Infectious foci were 

revealed by immunohistological staining after 2 d of incubation under a 1% 

methylcellulose overlay. Those titration steps giving >20 plaques were de-

termined, and the delta value (∆) was calculated as titer value of the mock-

treated virus minus the value of the KL25-treated virus. Viruses were 

considered as neutralization resistant if ∆ = 1 or 0.

We are grateful to Professor D. von Laer for providing the codon-optimized 

GP-ORF and the sequencing service of the University Hospital Zürich for their fast 

and accurate work.
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