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Abstract: Natural genetic transformation is a programmed mechanism of horizontal gene transfer
in bacteria. It requires the development of competence, a specialized physiological state
during which proteins involved in DNA uptake and chromosomal integration are produced.
In Streptococcus pneumoniae, competence is transient. It is controlled by a secreted peptide pheromone,
the competence-stimulating peptide (CSP) that triggers the sequential transcription of two sets of
genes termed early and late competence genes, respectively. Here, we used a microfluidic system with
fluorescence microscopy to monitor pneumococcal competence development and transformation,
in live cells at the single cell level. We present the conditions to grow this microaerophilic bacterium
under continuous flow, with a similar doubling time as in batch liquid culture. We show that perfusion
of CSP in the microfluidic chamber results in the same reduction of the growth rate of individual
cells as observed in competent pneumococcal cultures. We also describe newly designed fluorescent
reporters to distinguish the expression of competence genes with temporally distinct expression
profiles. Finally, we exploit the microfluidic technology to inject both CSP and transforming DNA in
the microfluidic channels and perform near real time-tracking of transformation in live cells. We show
that this approach is well suited to investigating the onset of pneumococcal competence together
with the appearance and the fate of transformants in individual cells.
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1. Introduction

Natural genetic transformation is a programmed mechanism of horizontal gene transfer entirely
dependent on proteins encoded by the recipient bacteria [1,2]. It involves the uptake of DNA from
the environment and its integration into the bacterial chromosome by homologous recombination.
Considerable knowledge has accumulated on this mechanism since its discovery in 1928 by Frederick
Griffith in the human pathogen Streptococcus pneumoniae (the pneumococcus) [1–3]. The number
of species known to be naturally transformable is less than a hundred, but phylogenetic analysis
indicated that transformability is spread throughout the main taxa, including both Gram-positive
and Gram-negative bacteria [1]. In most transformable bacteria, the ability to transform is transient.
It requires the development of the differentiated state of competence, during which cells can import
DNA for genetic diversity or repair their chromosome [1,2]. As such, in S. pneumoniae, natural
transformation allows acquisition of pathogenicity islands, antibiotic resistance and promotes vaccine
escape via capsule switching [4].

A unique feature of pneumococcal competence is its populational character, as all cells
develop competence for about 25 min at the onset of the exponential phase of planktonic growth.
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This coordination of competence in the growing cell population relies on a secreted peptide pheromone,
the Competence-Stimulating Peptide (CSP) that spreads through the population by cell–cell contact [5].
Importantly, synthetic CSP externally added into pneumococcal cultures efficiently induces competence
in a broad range of conditions and culture media [6]. It triggers the transcriptional activation of a global
regulon comprising approximately 100 genes [7–10]. This regulon is made of two classes of genes with
distinct temporal expression profiles defined as ‘early’ and ‘late’ com genes. The early class includes
genes necessary for the activation of the competence regulatory cascade, while the genes required
for the uptake of DNA and its processing into recombinants are part of the late class. The kinetics of
recombinant formation indicate that integration of internalized DNA into the recipient chromosome
occurs in less than 15 min [11,12]. Integration can occur into either strand of the recipient DNA
with equal probability [13–15]. The resulting heteroduplex is subsequently resolved by replication
and segregation, producing one daughter chromosome identical to the recipient genome and one
containing the donor sequence. The time needed for the phenotypic expression of the donor DNA is
thus impacted by whether it was integrated on the coding or non-coding strand.

Most of the information acquired on pneumococcal competence and transformation comes from
population data with approaches ranging from classical molecular genetics and biochemistry, to modern
high throughput techniques based on genomics, transcriptomics and proteomics. These methods are
powerful to analyze the average behavior of competent cells, especially given that all pneumococcal
cells are able to develop competence in a coordinated manner. More recently, single cell analyses using
fluorescence microscopy have been used to detect competent cells [16–20], to localize transformation
proteins [12,15,21], to analyze the binding of transforming DNA at the surface of competent cells
and to visualize transformants [12,15]. The development of the droplet microfluidic technology
to study transformation also allowed the characterization of the genetic outcome of individual
cell–cell interactions. However, heterogeneity in the population and more specifically, the tracking
of an individual cell developing competence and undergoing the process of transformation are still
poorly studied.

Here, we present a method to visualize the entire transformation process in live pneumococcal
cells at the single cell level. Our strategy is based on a combination of microfluidics and time-lapse
fluorescence microscopy. It provides a unique opportunity to monitor the onset of competence induction
and to follow the different steps leading to the phenotypic expression of pneumococcal transformants.

2. Materials and Methods

2.1. Bacterial Strains, Culture and Transformation Conditions

S. pneumoniae strains, plasmids and primers used in this study are described in Supplementary
Table S1. S. pneumoniae strains were all constructed in the R1501 background, which is derived
from strain R800 [22]. This strain contains the ∆comC mutation and cannot develop competence
spontaneously [7]. Stock cultures were routinely grown at 37 ◦C to OD550~0.3 in Todd-Hewitt medium
(BD Diagnostic System, Sparks, MD, USA) supplemented with 0.5% Yeast Extract (THY) or C+Y
medium [23]; after addition of 15% (vol/vol) glycerol, stocks were kept frozen at −70 ◦C. For the
monitoring of growth, pre-cultures grown in C+Y medium to OD550~0.3 were inoculated (1 in 50) in
C+Y medium complemented or not with catalase (300 U/mL) and distributed into a 96-well microplate
(300 µL per well). OD values were recorded throughout incubation at 37 ◦C in a Varioskan luminometer
(ThermoFisher Scientific Oy, Vantaa, Finland). For the study of competence development, cells were
incubated in C+Y medium with synthetic CSP.

CSP-induced transformation was performed as described previously [24]. Measurement of
transformation efficiency was carried out as described [18,19], with R304 chromosomal DNA carrying
the rpsL41 point mutation conferring resistance to streptomycin (SmR). Antibiotic used for the selection
of S. pneumoniae transformants were: kanamycin for strain constructions (250 µg/mL, and streptomycin
for transformation assays (200 µg/mL).
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2.2. Strain Constructions

Strains harboring transcriptional fusions of the gfp (strain R4254), mTurquoise2 (strain R4255) and
mCherry (strain R4256) reporter genes under the control of the promoter of the early competence operon
comCDE, PE, were obtained by transformation of strain R1502 with plasmid pIM122 and strain R1501
with plasmids pIM123 and pIM124 respectively. These plasmids are integrative plasmids derived
from pCEPE [25]. pCEPE allows chromosomal integration of a gene at CEP (Chromosomal Expression
Platform) and its expression under the control of the CSP-inducible, ComE-dependent promoter
PE. To generate pIM122, the gfp(Sp) gene with codons optimized for S. pneumoniae was amplified
with the oMB2 and oCN87 primer pair using the pUC57-gfp(Sp) plasmid as template [16]. To create
pIM123, the mTurquoise2(Sp) gene with codons optimized for S. pneumoniae was amplified with the
oIM78 and oIM79 primer pair using the pUC57-mTurquoise2(Sp) plasmid as template [23]. To obtain
pIM124, the gene encoding mCherry was first synthesized with codons optimized for S. pneumoniae
strain R6 (http://gib.genes.nig.ac.jp/) and cloned into pUC57 by Genscript USA to generate plasmid
pUC57-mCherry(Sp). The mCherry gene was then amplified with the oIM80 and oIM81 primer pair
using pUC57-mCherry(Sp) plasmid as template. All PCR products were subsequently cut with NcoI
and BamHI, and inserted into pCEPE between NcoI and BamHI to generate plasmids pIM122 (i.e.,
pCEPE-gfp(Sp)), pIM123 (i.e., pCEPE-mTurquoise2(Sp)) and pIM124 (i.e., pCEPE-mCherry(Sp)).

2.3. Time-Lapse Microfluidic Microscopy

Microfluidic experiments were performed using the CellASIC® ONIX Microfluidic Platform and
B04A microfluidic plates for bacterial cells (Merck-Millipore, Billerica, MA, USA). To completely remove
PBS, microfluidic chambers and loading channels were first washed with C+Y medium complemented
or not with catalase (300 U/mL) with 5 psi for 5 min at 37 ◦C, and further incubated for 30 min under
continuous pressure (0.25 psi). Note that according to the indications of the manufacturer, a pressure
of 0.25 psi corresponds to a theoretical flow rate of 0.3 µL/h. Moreover, given the dimensions of the
CellASIC® ONIX microfluidic chamber, the time necessary to completely renew the solutions in the
chamber should be 52 s at a flow rate of 0.3 µL/h (0.25 psi/1.72 kPa), 1.6 s at 10 µL/h (3 psi/20.68 kPa)
and 0.7 s at 23 µL/h (6 psi/41.37 kPa).

Exponential growing cultures (OD550 0.3) were diluted 50-fold in C+Y medium complemented
or not with catalase (300 U/mL) and incubated at 37 ◦C to an OD550 of 0.1 (~108 cells/mL). Cells were
subsequently loaded into the microfluidic chamber according to manufacturer’s protocol. Note however
that the concentration of the cell suspension used for loading was about 10 times higher than the
concentration recommended by the manufacturer, which is 1 to 20 × 106 cells/mL. We found that
pneumococcal cells were preferentially immobilized into the fifth trap (trap height of 0.7µm). Cells were
routinely maintained at 37◦C in a thermostated chamber with a constant flow rate of 0.3 µL/h (0.25 psi)
in C+Y medium supplemented with catalase (all figures, except Figure 1 and Figure S1). Competence
induction was achieved by injecting CSP diluted at a concentration of 500 ng/µL in C+Y medium and
catalase under pressure (2 min at 6 psi, followed by 6 min at 3 psi).

Images were captured and processed using the Nis-Elements AR software (Nikon Instruments
Europe BV, Amsterdam, The Netherlands). Phase contrast and fluorescence microscopy were performed
with an automated inverted epifluorescence microscope Nikon Ti-E/B equipped with the “perfect
focus system” (PFS, Nikon), a phase contrast objective (CFI Plan Apo Lambda DM 100X, NA1.45),
Semrock filters sets for Green Fluorescent Protein (GFP) (Ex: 482BP35; DM: 506; Em: 536BP40), CFP
(Ex: 438BP24; DM: 458; Em: 483BP32) and mCherry (Ex: 562BP40; DM: 593; Em: 641BP75), a LED light
source (Spectra X Light Engine, Lumencor, Beaverton, OR, USA), and sCMOS camera (Neo sCMOS,
Andor, Belfast, UK), and a thermostated chamber at 37 ◦C. All fluorescence images were acquired with
a minimal exposure time to minimize bleaching and phototoxicity effects. Acquisition settings were
500 ms for the transcriptional fusion to GFP using 50% power of a LED light source at 470 nm, 800 ms
for the transcriptional fusion to mCherry and 600 ms for the transcriptional fusion to mTurquoise,
using 20% power of a LED light source at 555 nm and 440 nm excitation wavelengths, respectively.

http://gib.genes.nig.ac.jp/
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GFP, mCherry and mTurquoise fluorescence images were respectively false colored green, red and
blue, and overlaid on phase contrast images.
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Figure 1. Growth of Streptococcus pneumoniae in the CellASIC® ONIX microfluidic device. (a) Still
images from time-lapse microscopy of R1501 (∆comC) cells grown at 37 ◦C under a flow rates of 0.3 µL/h
in C+Y medium supplemented (bottom panel) or not (top panel) with catalase (300 U/mL). Images
were captured at 5-min intervals during 5 h. Representative phase contrast images captured during the
two first hours are shown. Time is indicated in minutes. G1 to G5 and arrows indicate successive cell
division events. Scale bar, 1 µm; (b) Histograms indicating the variation of the generation time over
successive cell division events. Generation times were calculated by manually monitoring individual
cells lineages over 7 rounds of division (G1 to G7). Note that cell growth stops after 5 cell division
events without catalase. A minimum of 50 cell lineages were analyzed in each condition for each
experiment. Values and standard deviations are based on data from three independent experiments.

2.4. Image Analysis

The quantification of the fluorescence was performed as follows. The outlines of single cells
were first detected using the phase contrast images and the threshold command from Nis-Elements.
The fluorescence levels were corrected for background fluorescence. For this, we used wild-type cells
as negative controls to monitor autofluorescence and set detection thresholds. The object measurement
tool was used to obtain the total fluorescence and the total volume of the cells for each image, in
order to calculate the average fluorescence intensity per µm2. This procedure was repeated for each
time point and the average fluorescence intensity (in arbitrary unit) was plotted as a function of time.
Note that although more than 200 cells were counted for each replicate, a strict segmentation of single
cells was not necessary for this analysis.

To measure doubling times, we manually tracked single cell lineages up to seven generations
using phase-contrast time-lapse microscopy images. Alternatively, we used overlaid phase contrast
and fluorescence images of cells harboring a functional FtsZ-GFP fusion as a marker for cell division,
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as previously described [21]. A minimum of 50 cell lineages were analyzed per experiment and the
experiments were repeated 2 to 4 times.

2.5. Direct Visualization of Transformation Assay

The protocol described previously to track the formation of transformants in live cells [12],
was adapted to visualize all steps from the onset of competence development. We used strain R3708
harboring the gfp coding sequence joined in frame to the 3′ end of ftsZ but separated from it by a stop
codon (TAA) as a recipient strain [12]. Cells cultivated in C+Y medium supplemented with catalase
were loaded into the CellASIC® microfluidic chamber and incubated under a constant flow rate of
0.3 µL/h (0.25 psi), for 30 min. Competence was induced by exchanging the medium in the chamber
with C+Y medium containing CSP (see above), immediately followed by perfusion of C+Y medium
containing donor DNA (30 ng/µL) during 5 min at 10 µL/h (3 psi). Donor DNA consisted in a 2.7-kb
PCR fragment encoding the functional ftsZ-gfp fusion amplified from strain R3702 chromosomal DNA
using the OMB94-OMB97 primer pair. Transformed cells were detected by monitoring FtsZ-GFP
expression. R4256 cells containing the PE-mCherry transcriptional fusion were used as a control to
verify effective development of competence in the microfluidic chamber. Cells were imaged every
4 min for 2.5 h. Acquisition settings were 400 ms for GFP using 50% power of a LED light source at
470 nm excitation wavelengths and 800 ms for mCherry using 20% power of a LED light source at
555 nm. Note that mCherry images were acquired every 10th time point.

3. Results

3.1. Optimisation of Pneumococcal Growth in Microfluidic Chambers

To maintain the growth of pneumococcal strains overtime, and to observe the induction of
competence and the transformation process in real time, we used the CellASIC® ONIX microfluidic
platform (see Section 2.3). Our first attempts at cultivating cells under a constant flow rates of 0.3 µL/h
(0.25 psi) or 2.5 µL/h (1 psi) were unsuccessful. These flow rates were sufficient to renew the growth
medium inside the microfluidic chamber every 52 and 6 s, respectively. However, the generation
time gradually increased and cells stopped dividing after a few divisions (Figure 1). Fluidic flows
within microsystems are known to generate shear stress and to raise the concentration of dissolved
oxygen [26]. S. pneumoniae is a microaerophile bacterium, which can grow in the presence of low levels
oxygen. Under aerobic conditions, it produces high concentrations of hydrogen peroxide (H2O2) and
necessitates the addition of scavengers to the culture for optimal growth rate [27]. We considered that,
while a higher flow rate may increase oxygen in the microfluidic chamber, it could also help wash
out or reduce the amount of H2O2 produced. Consistent with this hypothesis, an augmentation of
the flow rate to 6 µL/h (2 psi) allowed cells to proliferate for at least 7 to 8 generations (Figure S1A).
Similarly, quenching H2O2 by adding catalase in the medium promoted cell growth up to confluence
with a steady doubling time of 24 min (Figure 1, see Sections 2.1 and 2.3). Notably, the presence of
catalase enhanced growth in batch liquid culture and lessened cell lysis (Figure S1B, and as previously
shown [27]), but had no effect on the transformation efficiency (Figure S1C). Based on these results,
and with the objective of limiting shear stress, we performed all subsequent experiments with slow
flow rates (0.3 µL/h) and catalase (300 U/mL).

3.2. Robust Competence Development in Microfluidic Chambers

To monitor the development of competence in individual cells, we used a strain expressing the GFP
under the control of the promoter of the early comCDE operon (PE, strain R4254). For this, we directly
recorded the fluorescent signal in real time upon perfusion of growth medium supplemented with
CSP in the microfluidic chamber. Synthetic CSP, which is a small 17 amino-acid peptide containing
hydrophobic patches [28,29], tends to be absorbed into the polydimethylsiloxane (PDMS) matrix
composing the microchannels [30]. A potential solution to circumvent this difficulty and ensure
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medium exchange was to perfuse CSP at high flow rate for a short time period. Nevertheless, we found
that increasing the flow rate more than a 75-fold (23 µL/h, 6 psi) was not sufficient to obtain rapid and
efficient competence induction at CSP concentrations used in batch cultures (125 ng/µL, Figure S2).
Indeed, although fluorescence was detected in most of the cells, the signal intensity remained barely
above background for the first 10 to 15 min and did not reach the highest expected levels, even after
30 min. However, increasing the concentration of CSP 4-fold allowed full competence induction.
Within 10 min, all cells showed high fluorescence levels that continued to accumulate during the
next 20 min. The duration of CSP perfusion also impacted the detection time and the intensity of the
fluorescent signal (Figure 2a). Altogether, optimal conditions to achieve rapid and efficient competence
induction involved perfusing CSP at a concentration of 500 ng/µL for 8 min in two sequential steps.
CSP was first added for 2 min at a high flow rate of 23 µL/h to initiate medium exchange, followed
by 6 min at 10 µL/h before switching back to standard growth medium (without CSP) and flow rate
(0.3 µL/h).
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Figure 2. Competence-stimulating peptide (CSP)-dependent competence induction in microfluidic
chambers. (a) Kinetics of expression of PE-gfp (strain R4254) in response to CSP addition at a
concentration of 500 ng/µL and a flow rate of 23 µL/h (6 psi) for 5 min (open square), 8 min (green
square) and 10 min (black square). Average fluorescence intensities per µm2 are based on time-lapse
microscopy images and shown in arbitrary units (A.U.). More than 200 cells were analyzed per time
point and per experiment. Time zero corresponds to the onset of CSP perfusion. Averages of three
replicates are shown. Error bars show standard deviations. Some of the error bars are too small
to be shown. Selected fluorescence microscopy images acquired at 30 min are shown on the right
side. Overlays between phase contrast (gray) and Green Fluorescent Protein (GFP) (green) are shown.
Scale bar, 1 µm; (b) Still images from fluorescence time-lapse microscopy of R3702 cells producing a
functional FtsZ-GFP fusion. Cells were grown in two parallel microfluidic chambers and induced
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(+CSP) or not (−CSP) to develop competence by CSP perfusion 30 min after the beginning of the
time-lapse acquisitions (see Section 2.3 for details). Overlays between phase contrast (grey) and GFP
(green) are shown. Scale bar, 1 µm; (c) Histograms indicating the variation of the generation time of
strain R3702 before, during and after CSP perfusion. Time-lapse microscopy images were captured at
5-min intervals. Generation times were calculated by manually monitoring individual cells lineages
over 3 rounds of division (G1 to G3), with G1 corresponding to the generation before CSP perfusion,
and G2 to the generation starting at the time of CSP perfusion. A minimum of 75 cell lineages were
analyzed in each condition. Values and standard deviations are based on data from 2 independent
experiments. Scale bars, 1 µm (note that the magnification is not identical with and without CSP).

To further test the robustness of these perfusion parameters for competence development,
we analyzed a visual morphological feature of pneumococcal competent cells. We have shown
previously that competent cells undergo a CSP-dependent cell division delay [21]. Using a strain
harboring an FtsZ-GFP fusion (strain R3702) as a marker for cell division in the microfluidic device, we
confirmed that CSP perfusion resulted in a reduction in the growth rate of individual cells (Figure 2B).
For this experiment, cells were loaded in two parallel chambers of the microfluidic device. Growth
medium containing CSP was flushed in one chamber according to the protocol indicated above. At the
same time, and with similar flow rates, medium without CSP was introduced into the second chamber.
Measuring the doubling time of individual cells from the beginning of the perfusion demonstrated that
CSP instantly causes a delay of the division process (Figure 2B,C). Non-competent cells maintained a
doubling time of 28.4 ± 3.5 min, even at higher flow rates. In contrast, the doubling time of competent
cells increased to 40.2 ± 5.6 min, in line with the values reported in previous work [21]. Importantly,
this analysis also verified that daughter cells derived from CSP-treated cells immediately recovered
doubling times similar to non-competent cells (Figure 2C, [21]). Altogether, these results validate the
use of the microfluidic technology to study pneumococcal competence development in time and at the
single cell level.

3.3. Temporal Visualization of Early and Late Com Genes Expression

With the aim of studying the temporal expression of different competence genes, we developed
several fluorescent reporter strains. We first choose three spectrally distinct fluorescent proteins with
minimal or no cross talk, namely, GFP, the blue fluorescent protein mTurquoise and the red mCherry
protein. To test the suitability of these proteins for simultaneous visualization in pneumococcal
cells, we constructed transcriptional fusions between the early competence promoter PE and the
coding sequences of the corresponding genes. Notably, all these sequences were codon optimized
for expression in S. pneumoniae. To compare the kinetics of expression of the reporter genes, each
strain was incubated in distinct chambers of the microfluidic device and simultaneously induced
to develop competence upon CSP perfusion. Figure 3 shows that the three reporters were readily
expressed and emitted fluorescence. Importantly, the analysis of the whole fields of view of the camera
indicated that all cells develop competence, which suggests that CSP diffused throughout the entire
microfluidic chambers (Figure S3A). The fluorescent signal was, however, not detected at the same
time after CSP perfusion in the three strains (Figure 3A and Video S1). This difference can be explained
by the inherent properties of each fluorophore. Indeed, the brightness of a fluorophore is defined by
two parameters, the extinction coefficient (quantity of light absorbed) and the quantum yield (number
of emitted photons per photon absorbed). It is also known that fluorescent proteins must undergo
a maturation step to become fluorescent and that maturation times are highly variable for different
fluorescent proteins [31]. In agreement with the published values of these parameters [31,32], the GFP
signal was first detected in our experiments, followed by mTurquoise and then mCherry (Figure 3 and
Figure S3B, and Video S1). Interestingly, we found that the mTurquoise and mCherry fluorescence
accumulated in daughter cells, suggesting that proteins synthesized during competence continued to
mature and became visible well after competence shutoff (Figure S3C and [25]). Altogether, these results
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Figure 3. Comparison of the kinetics of expression of PE-gfp (strain R4254), PE-mTurquoise (strain
R4255) and PE-mCherry (strain R4256) in response to CSP addition. (a) Still images from time-lapse
microscopy of a mixed culture containing equal densities of all 3 strains. Images were captured at
2min intervals during 1 h. The starting point of the time-lapse corresponds to the beginning of CSP
perfusion. First image shown corresponds to the 17th min. Every second image is shown. Time is given
in minutes. Arrows indicate the initial time at which the fluorescence signal is visually detected for
GFP (green), mTurquoise (blue) and mCherry (red). Overlays between GFP (green), mTurquoise (blue)
and mCherry (red) are shown. Scale bar, 2 µm; (b) Quantification analysis of fluorescence signal based
on time-lapse microscopy images. Strains R4254, R4255 and R4256 were grown in parallel microfluidic
chambers and induced to develop competence by CSP perfusion. Time zero corresponds to the onset of
CSP perfusion. Images were captured at 2 min intervals. Average fluorescence intensities per µm2 are
shown in arbitrary units (A.U.). More than 200 cells were analyzed per time point and per experiment.
Lines and confidence bands represent means of three replicates and standard deviations, respectively.
GFP (green), mTurquoise (blue) and mCherry (red) fluorescence images acquired at 60 min are shown
on the right side. Scale bar, 1 µm.

An alternative to overcome the inherent difficulties of using a combination of fluorophores, was to
generate distinct reporters based on the same fluorescent protein. To estimate the lag between the
expression of early and late com genes at the single cell level, we used a gfp transcriptional fusion with
the early com promoter PE (strain R4254), and a gfp translational fusion with the gene encoding the late
competence protein DprA (strain R3728, to be published elsewhere). These reporters can be easily
distinguished according to their cellular localization. Free GFP driven by the PE promoter produced
a diffused cytoplasmic fluorescent signal while DprA-GFP concentrated into bright discrete foci in
competent cells (Figure 4 and Video S2). Strains containing these constructions were loaded into the
same microfluidic chambers and induced to develop competence upon CSP perfusion. Note that we
did not introduce the two reporters in the same strain to avoid potential difficulties to detect the onset of
DprA-GFP synthesis in cells expressing diffused GFP. In accordance with previous work indicating that
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late com genes expression is delayed by several minutes compared to early genes [7,10,33], we measured
an interval of 4 to 5 min between the detection of the GFP signal in the cytoplasm and the formation
of foci. This interval appeared slightly longer than the lag of 2 min formerly determined using
transcriptional fusions with the Firefly luciferase gene [33]. We attribute this difference to the influence
of the translational fusion with DprA that perturbs the folding of GFP, and therefore increases the
maturation time compared to free GFP produced from a transcriptional fusion, and/or to the time
needed to generate these foci. We reasoned however that the lag between the expression of early and
late com genes was in good agreement with previously reported data [7,33]. We conclude that this
method can be used as a readout to study the expression of early and late com genes at the single
cell level.
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Figure 4. Comparison of the kinetics of expression of early (PE-gfp, strain R4254) and late (dprA-gfp,
strain R3728) competence genes. (a) Still images from time-lapse microscopy of a mixed culture
containing equal densities of the two strains. Images were captured at 50 s intervals during 2 h.
Every third image is shown. The starting point of the time-lapse corresponds to the beginning of CSP
perfusion. Time is shown in minutes. Green Arrows indicate the initial time at which the fluorescence
signal is visually detected for cytoplasmic GFP (dark green) and DprA-GFP foci (light green). Overlays
between phase contrast (grey) and GFP (green) are shown. White arrows point at DprA-GFP foci;
(b) Quantification analysis of fluorescence signal based on time-lapse microscopy images. Strains R4254
and R3728 were grown in parallel microfluidic chambers and induced to develop competence by CSP
perfusion. Images were captured at 50 s intervals during 2 h. Time zero corresponds to the onset of CSP
perfusion. Average fluorescence intensities per µm2 are shown in arbitrary units (A.U.). More than
500 cells were analyzed per time point and per experiment. Averages of three replicates are shown.
Error bars show standard deviations.

3.4. Near Real-Time Visualization of Pneumococcal Transformation

We previously developed an assay to observe the transformation process by fluorescence
microscopy in living cells grown on an agarose pad [12]. This assay consists of the transformation
of a recipient cell (strain R3708, ftsZ-stop-gfp), with a ‘ftsZ-gfp’ donor DNA fragment carrying a
mismatch of 3 bp and allowing expression of an FtsZ-GFP fusion upon integration into the chromosome
(see Section 2.5). Combined with time-lapse fluorescence microscopy, it reports the appearance of
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transformants in near real time, by tracking the fluorescent FtsZ-GFP signal. These experiments,
however, did not allow the observation of the development of competence. Indeed, competent cells
were incubated with donor DNA in batch cultures for several minutes before spotting on an agarose
pad and imaging [12]. We thus adapted this method with the microfluidic technology to be able to
visualize the transformation process from the very onset of competence induction to the expression
of newly acquired genes. To distinguish the timing of competence development from the timing of
the expression of transformants, we used a mixed culture. This culture contained cells from strain
R4256 (mCherry reporter strain for the development of competence) and strain R3708 (recipient strain
for transformation with an ftsZ-gfp donor DNA fragment). This mixed culture was loaded into the
microfluidic chamber and cultivated for one generation under a constant slow flow rate (0.3 µL/h).
We then induced competence by injecting CSP for 8 min at high flow rate (see above and Section 2.3),
subsequently followed by the addition of donor DNA for 5 min at 10 µL/h. It should be noted that in
these conditions, we used a concentration of 30 ng/µL of the donor PCR DNA fragment harboring
the ftsZ-gfp construct. This DNA concentration is 30-fold higher than the saturating amount of DNA
that we use for optimal transformation assays in batch liquid culture with PCR DNA fragments
carrying a single point mutation [12]. The requirement of a large amount of donor DNA to achieve
transformation in the microfluidic device could be caused by several factors impacted by the flow rate,
including a shorter contact time between the cells and the DNA and an increased shear stress on the
DNA molecules.

Image analysis showed that cells expressing mCherry or the FtsZ-GFP fusion were homogeneously
distributed in the microfluidic chamber (Figure S4, Videos S3 and S4). This result indicates that both
CSP and DNA were capable of diffusing into the microfluidic device. To evaluate the proportion
of transformed cells, we monitored, from the beginning of the DNA perfusion, the lineage of 107
individual cells that did not develop the mCherry fluorescence. We found that 29 of those cells
generated transformants. Notably, all transformants produced two daughter cells with a bright
FtsZ-GFP signal. The fluorescence intensity of these cells however, most often gradually disappeared
in one of the siblings by dilution of the fusion protein over successive cell divisions (Figure 5, white
arrows). This observation is most likely explained by an integration of the donor DNA into only one
chromosomal strand. In that case, expression of the newly acquired gene allows the accumulation
of the FtsZ-GFP fusion in the transformed cell and its transmission to the progeny by cell division.
Yet, as resolution of the transformation heteroduplex by replication generates one transformed and
one parental chromosome, only one daughter cell has the potential to give rise to a truly transformed
population, as previously observed [15,34,35]. The first transformants exhibiting the FtsZ-GFP signal
were detected before division of the transformed cell (17 cells, 59% of the transformed cells, Figure 5,
white arrowhead). Concretely, the first transformants were observed 20 min after the addition of donor
DNA. These results are consistent with an integration of the donor DNA into the non-coding strand
of the recipient chromosome since this strand can produce messenger RNA before replication has
occurred. We also detected 41 % of the cells expressing FtsZ-GFP only after division of the transformed
cell (Figure 5, yellow arrowhead). Altogether, and in line with earlier reports [13–15], these findings
indicate that either strand of the recipient chromosome can serve for transformation and that their
transformability is statistically comparable.
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Figure 5. Near real-time visualization of transformation. Time-lapse microscopy of a mixed culture
containing strain R3708 R3708 (ftsZ-stop-gfp) and strain R4256 (PE-mCherry). A time scale in minutes is
shown. Images were captured at 4min intervals during 2.5 h. White arrow indicates the perfusion
period of CSP (starting at 30 min after the beginning of the time-lapse), Green arrow indicates the
perfusion period of donor DNA (PCR fragment encoding functional ftsZ-gfp fusion) and green triangle
indicates the initial time at which the green FtsZ-GFP fluorescence signal (i.e., transformed cells) is
visually detected. Overlays between phase contrast (grey), GFP (green) and mCherry (red) are shown.
White arrowheads and arrow indicate transformed cells expressing FtsZ-GFP before the first cell
division event, yellow arrowheads and arrows point at transformed cells expressing FtsZ-GFP after
division. The data are representative of three biological replicates. Scale bar, 1 µm.

4. Discussion

In this study, we used a microfluidic system and fluorescence microscopy to examine the growth
and the transformation process of the human pathogen S. pneumoniae in near real-time and at the
single cell level. This new approach represents a remarkable improvement to study the development
of competence concomitantly with the appearance of transformants. It also offers the opportunity
to reassess earlier findings based on genetic analyses or laborious and time-consuming methods
involving radioactive substrates. Among these is the fate of the transformed cells. We confirm
that transformed cells can express newly acquired genes before or after the first cell division event,
probably depending on which strand of the recipient chromosome was transformed. We also directly
visualized the phenomenon of non-genetic inheritance recently demonstrated in Vibrio cholerae and
S. pneumoniae [15,36]. This mechanism, for which genetic evidence was presented in the 60s [34,35],
involves the transient transmission of the transformed phenotype from the transformed cell to the part
of its progeny that is not genetically transformed. The duration of the transmission in the progeny
depends on the half-life and the amount of protein produced by the newly acquired gene before cell
division of the transformed cell. In our experiments, we found that the FtsZ-GFP protein is transmitted
over 2 generations.

Microfluidic systems, which allow the constant renewal of the culture medium and prevent
accumulation of metabolic waste products, have proven to be useful to ensure steady state conditions
for long-term observations of bacterial growth. Our results indicate that in the case of microaerophile
bacteria such as the pneumococcus, catalase may be added to the culture media to ensure optimal
growth in the microfluidic chamber. A major advantage of the microfluidic technology is also the
possibility to visualize, in real time, how cells respond to the onset of a stress or any changes in their
environments. Earlier reports, based on the measurement of the luciferase reporter enzyme activity,
have shown that the time to initiate transcription of early com genes following the addition of saturating
amounts of CSP in bulk cultures is about 2 min [33]. Similar measurements are not possible with
cells grown on an agarose pad. Indeed, the very short time window necessary to activate com genes
would make it technically challenging to observe the first cells entering competence without being
able to introduce the CSP during the microscopy observation. Here, we overcame this difficulty but
we found that the time required to detect the first cells expressing GFP under the control of an early
competence promoter was more than 8 min (Figure 2 and Figure S2). The larger delay measured in our
experiments can be explained by several factors including the time for the CSP to reach the microfluidic
chamber and the maturation rate of the GFP fluorescent protein. In contrast, the interval between the
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expression of early and late com genes is consistent with values recorded by other methods, including
RNA-seq analyses [9,10], and the use of luciferase or β-galactosidase reporters [7,8,33]. In addition,
we found that the first transformants exhibiting an FtsZ-GFP signal appeared about 35 min after the
onset of CSP perfusion. Considering that competence develops shortly after medium exchange with
CSP, and knowing that DNA uptake is maximal 10 min after competence induction [12], the kinetics
for the phenotypic expression of transformants are in line with results obtained from transformation
assays [34]. Interestingly, however, and in agreement with the fact that microfluidic systems are better
suited to continuous imaging than agarose pads, transformants were detected in the microfluidic
chamber about 15 min earlier than in agarose pad-based experiments [12].

These findings imply that once activated with CSP, and in the presence of donor DNA,
pneumococcal cells grown in microfluidic chambers undergo both the competence program and
the transformation process with the same kinetics as in bulk cultures. The method presented here is
therefore well suited to investigating the different steps of the transformation process in time, from the
development of competence to the integration of donor DNA into the recipient chromosome and the
phenotypic expression of the recombinants. The ability to perform these analyses at the single cell level
also provides the possibility to study how the transformation mechanism is integrated into the cell cycle.
This is particularly relevant as pneumococcal competence develops during exponential growth and is
accompanied by a cell division delay (Figure 2 and [25]). Measuring the doubling time of individual
cells over several generations confirmed that this arrest only takes place during the first division event
following CSP addition (Figure 2 and [25]). Importantly, cells readily recovered a steady doubling time
similar to exponential growth. This is in contrast with the growth arrest observed in Escherichia coli
cells in response to various stresses, which results in long filamentous cells that eventually recover with
shortened interdivision times [37]. Interestingly, exposure to DNA damaging agents and antibiotics can
induce competence in several pathogens, including S. pneumoniae [17,38,39]. The use of a microfluidic
device coupled with fluorescence microscopy, which has become an invaluable tool to study the
physiology of bacterial cells in response to antibiotics in real-time measurements [40,41], now offers
the possibility to further extend this field of research in the pneumococcus. In a broader perspective,
this work provides new bases for the study, at the single cell level and in real time, of cellular processes
that require optimal growth and long-term imaging of pneumococcal cells.
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