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Abstract

Background: Modelling of longitudinal biomarkers and time-to-event data are important to monitor disease
progression. However, these two variables are traditionally analyzed separately or time-varying Cox models are used.
The former strategy fails to recognize the shared random-effects from the two processes while the latter assumes that
longitudinal biomarkers are exogenous covariates, resulting in inefficient or biased estimates for the time-to-event
model. Therefore, we used joint modelling for longitudinal and time-to-event data to assess the effect of longitudinal
CD4 count on mortality.

Methods: We studied 4014 patients from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)
who initiated ART between June 2004 and August 2013. We used proportional hazards regression model to assess the
effect of baseline characteristics (excluding CD4 count) on mortality, and linear mixed effect models to evaluate the
effect of baseline characteristics on the CD4 count evolution over time. Thereafter, the two analytical approaches
were amalgamated to form an advanced joint model for studying the effect of longitudinal CD4 count on mortality.
To illustrate the virtues of the joint model, the results from the joint model were compared to those from the
time-varying Cox model.

Results: Using joint modelling, we found that lower CD4 count over time was associated with a 1.3-fold increase in
the risk of death, (HR: 1.34, 95% CI: 1.27-1.42). Whereas, results from the time-varying Cox model showed lower CD4
count over time was associated with a 1.2-fold increase in the risk of death, (HR: 1.17, 95% CI: 1.12-1.23).

Conclusions: Joint modelling enabled the assessment of the effect of longitudinal CD4 count on mortality while
correcting for shared random effects between longitudinal and time-to-event models. In the era of universal test and
treat, the evaluation of CD4 count is still crucial for guiding the initiation and discontinuation of opportunistic
infections prophylaxis and assessment of late presenting patients. CD4 count can also be used when immunological
failure is suspected as we have shown that it is associated with mortality.
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Background
Until the era of test-and-treat, CD4 count was by far
the most widely used biological marker for antiretroviral
therapy (ART) eligibility and HIV (human immunodefi-
ciency virus) progression [1]. However, the introduction
of universal test and treat has put less emphasis on the
importance of CD4 count and only viral load is now used
to monitor HIV disease progression and virologic failure.
Arguably, the role of CD4 count in the current era of HIV
monitoring is still crucial, particularly for patients pre-
senting late to care as they are at high risk of presenting
with opportunistic infections and also in areas where viral
load testing is not affordable [2, 3].
Although CD4 count testing is no longer recommended

for stable virologically suppressed patients in South
Africa, however, the CD4 count still plays an important
role in stratifying the risk of death among patients with
low CD4 count who are failing first line ART regimen [4].
In South Africa, it was estimated that 7.9 million people
of all ages were living with HIV in 2017 [5]. The country
has the largest ART programme in the world with 4.7 mil-
lion on lifelong ART treatment and these efforts have been
largely financed from its own domestic resources [6]. Con-
sidering that South Africa is not a rich resourced country,
managing such high volume of ART patients requires
resources and different biomedical strategies using dif-
ferent longitudinal biomarkers at different stages of the
disease.
In our setting, it has been shown that patients who

started ART with low CD4 count have an increased risk
of death [7] and it is in keeping with research from other
settings [8]. Even though longitudinal CD4 count was
not used in these findings, one can deduce that these
patients’ CD4 count recovery over time would have been
slow and hence they died. Statistical models of the asso-
ciation between longitudinal CD4 count and mortality
have been carried out using time-varying Cox models
[9]. The counting process formulation of the time-varying
Cox model has a distinct flexibility that not only allows
for time-dependent covariates but also for left trunca-
tion, multiple time scales, multiple events per subject
and various forms of case-cohort models, among others
[10]. However, this model assumes that time-dependent
covariates are (i) measured without error and (ii) are exter-
nal or exogenous (that is, the value of the covariate at a
future time point is not affected by the occurrence of the
event). The second assumption is not valid for endoge-
nous covariates (such as clinical biomarkers) [11], since
the repeatedly measuredmarker like CD4 count is directly
related to the mortality mechanism. Longitudinal and
time-to-event outcomes are traditionally analyzed sepa-
rately, however this approach leads to inefficient or biased
results for the time-to-event model [12], due the fact
that this type of modelling fails to recognize the shared

random-effects from the two processes. The longitudinal
model accounts formeasurement error by postulating that
the observed level of the longitudinal outcome equals the
true level plus a random error term. Thus joint models
are preferred over separate analyses and time-dependent
models because they account for the special features of
endogenous covariates and non-random dropout in a lon-
gitudinal data analysis context [11, 13].
Joint models of longitudinal and time-to-event data

have received much attention in the literature dating back
to the past two decades [14–16], and have been considered
within the HIV context [17–21], however its application is
limited when data from the sub-Saharan African region is
used for modelling.
In view of the shortcomings of time-varying Coxmodels

and separate analyses of longitudinal and time-to-event
processes, our objective is to use a joint modelling strategy
to assess the effect of longitudinal CD4 count onmortality
among patients initiated on ART.

Methods
Source of data and description
In this analyses we use data from the Centre for the AIDS
Programme of Research in South Africa (CAPRISA). The
CAPRISA AIDS Treatment (CAT) programme enrolled
HIV positive patients and initiated them on ART between
June 2004 and August 2013. Eligibility criteria was in
accordance with the Department of Health guidelines
throughout. Males and females at least 14 years of age
from urban (eThekwini) and rural (Vulindlela) sites were
enrolled. Routine demographic and clinical data were
recorded at baseline and at follow-up visits. Laboratory
safety assessments and CD4 counts and viral loads were
conducted at baseline and every 6 months or as clini-
cally indicated. Patients were regarded as lost to follow-up
if they missed 3 consecutive scheduled visits and if all
attempts to track them telephonically and physically had
failed. Information on the deaths was based on hospi-
tal chart notes, death certificates or oral reports from
patient’s relatives.
The eThekwini and Vulindlela sites initiated the first

patient on ART in October 2004 and June 2004 respec-
tively. Patients at the eThekwini site were recruited from
the Prince Cyril Zulu Clinic of Communicable Disease
which is the chest clinic adjacent to the CAPRISA clinic
and sometimes patients presented themselves for HIV
testing. Patients at the Vulindlela site were recruited from
the Mafakatini clinic which is situated near that site or
similarly presented themselves seeking health care.

Statistical analysis
In our setting it has been shown that gender is associ-
ated with both CD4 count and mortality [7]. Therefore,
descriptive data, which was stratified by gender were



Mchunu et al. BMC Infectious Diseases          (2020) 20:256 Page 3 of 9

presented as medians with interquartile range, percent-
ages and graphical exploration was used where applicable.
Unpaired t-test or the Wilcoxon rank sum test was used
to compare continuous demographics and clinical data for
men and women. Fisher’s exact test was used for the com-
parison of categorical data. Poisson regression was used to
calculate 95% confidence intervals (CI) for mortality rates
and F-test was used for their comparisons.
Baseline predictors of mortality were assessed through

both univariable and multivariable proportional hazards
regression. The linear mixed effects models were used to
assess the effect of baseline characteristics on the CD4
count evolution post ART initiation, where the individual
patient and time post ART initiation were used as random
effects. All multivariable models were adjusted for the fol-
lowing baseline covariates: gender (male or female), age
(in years), clinic site (urban and rural), log10 viral load and
tuberculosis (TB) status. A square root transformation
was applied to the data to normalize the CD4 count.
Proportionality was assessed by the Schoenfeld propor-

tional hazards test which provides proportional hazards
test for individual covariates and a global test for the
model with all variables combined. Variables that violated
the proportional hazards assumption were not included in
the proportional hazards model.
Thereafter the longitudinal and time-to-event models

were coupled to form a joint model. To illustrate the
virtues of the joint model we compared it to the time-
varying Cox model. Analyses were conducted using SAS,
version 9.4 (SAS Institute INC., Cary) and R version 3.5.1.
The JM package by [11] was used to fit the joint model.

The joint model formulation
Formulating a standard joint modelling framework, fol-
lows a typical setup where you have a linear mixed-effects
(LME) model for the longitudinal data and a Cox propor-
tional hazards (PH)model for the time-to-event data, with
the two models sharing some random effects [22]. This is
the so called shared parameter model approach.

The longitudinal sub-model
Assume bi ∼ N(0,�b) then

yij = Xi[ tij]
′
β + b0i + b1itij + εij (1)

with mutually independent error εij ∼ N(0, σ 2
ε ). Fur-

thermore εij is taken as independent of the random inter-
cept b0i and slope b1i.

The survival sub-model
The Cox proportional hazards model with a covariate
described by the random effects model given above is
written as

λ(t|bi, yi)=λ(t|bi)=λ0(t) exp{(Xi[ t]
′
β+b0i+b1it)γ }.

(2)

Estimates for this semi-parametric approach are
obtained by the Expectation-maximization (EM)
algorithm [15].

The joint likelihood
Assuming non-informative censoring and a measure-
ment schedule tij, that is independent of the random
effects and covariate history, the joint likelihood L(θ) =
L(β , b,�b, σ 2

ε , λ0) for event time data and longitudinal
measurements is given by

L(θ) =
k∏

i=1

[ ∫ { ni∏

j=1
f (yij|bi, ti, σ 2

ε )

}

× f (τ ∗
i , δi|bi, ti, λ0,β)f (bi|�b)dbi

] (3)

where f (yij|bi, ti, σ 2
ε ) and f (bi|�b) are the densities of yij

and N(0,�b) respectively and

f (τ ∗
i , δi|bi, ti, λ0,β) = {λ0(τ̃ ∗

i (β , yi)) exp[ yi(τ ∗
i )β] }δi

× exp
{
−

∫ τ̃∗
i (β ,yi)

0
λ0(t)dt

}

(4)

with τ̃ ∗
i (β , yi) = ∫ τ∗

i
0 exp[ yi(s)β] ds.

Results
Exploratory data analysis at ART initiation
There were 4014 patients enrolled whose ages range from
14–76 (with an overall mean age of 34.6 years). Out of
the 4014, 2557 (63.7%) were females. TB prevalence was
higher in men compared to women (32.1% vs. 19.7%).
Moreover, women initiated ART with slightly higher CD4
count than men (132.0 vs. 113.0 cells/mm3, p<0.001)
(Table 1), and this pattern persisted over time (Fig. 1) and
matches the probability of death (Fig. 2). Patients from the
urban site have a lower probability of death when com-
pared to those from the rural site (Fig. 3) in addition,
patients presenting without TB at ART initiation have a
lower survival prognosis compared to those with preva-
lent TB (Fig. 4). Figure 5 depicts an increasing trend of
CD4 count over time after ART initiation for 22 randomly
selected patients. What can be observed is that generally
there is evidence of between subjects variability as well
as within subject variability. The subjects have large CD4
count evolutions over time, this suggests that perhaps
linear mixed models with random intercepts and slopes
could be plausible starting points.
There were 161 (11,1%) and 235 (9.2%) men and women

lost to follow-up respectively, with men having higher lost
to follow-up rates in our cohort in keeping with reports
from published literature [23–25].Moreover, patients who
were lost to follow-up had a mean of 33.0 years of age and
had on average, a CD4 count of 135.8 cells/μL compared
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Table 1 Baseline characteristics of patients initiated on ART

Characteristic Women (N= 2557) Men (N= 1457) p-value

Age (years), median (IQR)a 32.0 (28.0-39.0) 35.0 (30.0-41.0) < 0.001

Site, n (%): < 0.001

Rural 1507 (58.9) 692 (47.5)

Urban 1050 (41.1) 765 (52.5)

Prevalent TB?, n (%): < 0.001

No 2052 (80.3) 990 (67.9)

Yes 505 (19.7) 467 (32.1)

Body mass index (kg/m2),

median (IQR)b 24.2 (21.0-28.1) 21.0 (19.0-23.2) 0.415

CD4 count (cells/μL),

median (IQR)c 132.0 (69.0-202.0) 113.0 (47.0-177.0) < 0.001

CD8 count (cells/μL),

median (IQR)d 818.5 (533.5-1197.5)736.0 (462.0-1123.0)< 0.001

Viral load (log10 copies/ml),

mean (SD)e : 4.9(0.9) 5.0 (0.9) < 0.001

CD4:CD8 ratio, median(IQR)f0.2 (0.1-0.2) 0.1 (0.1-0.2) < 0.001

a4 patients had missing age, b237 patients had missing BMI, c382 patients had
missing CD4 count, d1936 patients had missing baseline CD8 count, e488 patients
had missing baseline viral load, f 1929 patients had missing CD4:CD8 ratio

to a mean CD4 count of 140.7 cells/μL for patients who
were not lost to follow-up. In addition, patients were lost
to follow up at a median (IQR) of 1.7 (0.7-3.1) years, men
and womenwere lost to follow-up at amedian (IQR) of 1.5
(0.5–2.9) and 1.9 (0.9–3.2) years respectively (p = 0.118).
Out of the 4014 patients, 190 had only one CD4 mea-

surement and the baseline mean CD4 count among these
patients was 196.3 compared to a baseline mean CD4
count of 137.1 among patients with more than one CD4
count measurement. Of the 190 patients with only one
CD4 count measurement, 34 (17.9%) died soon after this

measurement was taken at a median time to death of
0.66 years. Among patients with only one CD4 count
measurement, 27 (14,2%) presented with WHO clinical
stage 1, 56 (29.5) presented with WHO clinical stage
2, 89 (46.8%) presented with WHO clinical stage 3 and
18 (9.5%) presented with WHO clinical stage 4. Among
patients with more than one CD4 count measurement,
552/3799 (14.5%) presented with WHO clinical stage 1,
750/3799 (19.7%) presented with WHO clinical stage 2,
2057/3799 (54.15%) presented with WHO clinical stage 3
and 440/3799 (11.6%) presented with WHO clinical stage
4.

Results from the longitudinal sub-model: random effects
multivariable model
Men started ART with low CD4 count (β= -1.90, S.E=
0.22, p<0.001) when compared to women. However, their
CD4 count evolution was not significantly different and
thus the interaction term between gender and time was
excluded in the model (Table S1). Patients presenting
without TB at ART initiation started ART with higher
mean CD4 count compared to those with prevalent TB
but their rate of increase in CD4 count was slower when
compared to those with prevalent TB (β= -1.27, S.E= 0.17,
p<0.001).

Mortality rates
There were a total of 414 deaths observed over 8195.87
person-years of follow-up. Mortality rates for men and
women were 6.7 (95% CI: 5.8- 7.8) and 4.3 (95% CI: 3.8-
4.9) per 100 person-years (p-y), respectively; mortality
rate ratio (MRR): 1.54 (1.27-1.88) p<0.001. In addition,
patients from the rural site had higher mortality rates
compared to those from the urban site, 4.8 per 100 p-y,
(95% CI: 4.3-5.4) vs. 5.6 per 100 p-y, (95% CI: 4.7-6.6);
MRR: 1.16, (95% CI: 0.95-1.42), p= 0.156.

Fig. 1Mean CD4 count (cells/μL) over time by gender
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Fig. 2 Kaplan-Meier curve for survival by gender

Results from the survival sub-model: modelling mortality
The multivariable proportional hazards regression anal-
ysis showed that men had a 62% significantly elevated
risk of death when compared to women, HR: 1.62, (95%
CI: 1.16-2.26), p= 0.005. In addition, patients who started
ART with a higher baseline viral load had a significantly
higher risk of death HR: 1.57, (95% CI: 1.26-1.96), p= 0.004
(Table S2).

Results from the joint model of longitudinal and
time-to-event data
The joint model finds a significantly strong association
between the CD4 count and the risk of death, with a

unit decrease in the square root CD4 count correspond-
ing to a 1.3-fold increase in the risk of death (HR: 1.34,
95% CI: 1.27-1.42). These results are statistically signifi-
cant indicating that indeed CD4 count is a good predictor
of mortality and in fact confirms that an increase in CD4
counts is associated with better survival (Table 3). These
results were compared with those from the time-varying
Cox model and we also observe a strong association
between the longitudinal CD4 count and the risk of death.
In particular a unit decrease in the square root CD4 count
corresponds to a 1.2-fold increase in the risk of death (HR:
1.17, 95% CI: 1.12-1.23) (Table 3). Previous research and
simulation studies have shown that the time-varying Cox

Fig. 3 Kaplan-Meier curve for survival by site
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Fig. 4 Kaplan-Meier curve for survival by TB status

model underestimates the true association size of markers
[11].

Discussion
Results from the longitudinal sub-model (random effects
multivariable model), showed no statistical difference
between the urban and rural sites in terms of the CD4
count improvement over time, with patients from the
urban site having a higher rate of change. This finding

reaffirms the results obtained by [7, 26, 27]. Men and
older people on average initiated ART with significantly
lower CD4 counts. These results support those obtained
by [28, 29]. Patients presenting without TB at ART initia-
tion started ART with high mean CD4 count compared to
those with prevalent TB but their rate of change in CD4
count was significantly less compared to those with preva-
lent TB. These results are similar to those found by [7] in
the same study.

Fig. 5 CD4 count trajectories over time
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Results from the survival sub-model (Cox proportional
hazards regression analysis) showed that patients from the
urban site had a higher survival prognosis compared to
those from the rural site, however this was not significant
at 5% level of significance. Patients presenting without
TB at ART initiation had an elevated risk of dying com-
pared to those with prevalent TB. These results reaffirms
the results obtained by [26]. Prevalent TB was also previ-
ously shown to be associated with low mortality, maybe
related to TB care being an access point to earlier ART
initiation [7, 26]. Published literature has cited that undi-
agnosed TB is higher among patients accessing ART than
in the general population; with themajority of incident TB
diagnosed in the early weeks of ART initiation being TB
prevalent but missed at baseline screening [30]. In addi-
tion male patients, older people or those with a higher
mean baseline viral load had a significantly elevated risk
of death (refer to Table S2). This finding is in consonance
with previous research which showed that men and older
patients were at an increased risk of mortality due to
HIV/AIDS [26, 28, 31].
The joint model was advantageous for answering multi-

variate questions at the same time (in our case CD4 count
and mortality). The most appealing feature of joint mod-
els is its ability to capture or take into consideration the
association between the survival time and repeated mea-
surement of a risk factor variable [11]. The joint model
showed a significantly strong association between CD4
count and the risk for death, implying that CD4 count
is a good predictor of mortality. The joint model also
helped assess the correlation between the two response
variables and gave ample opportunity to see predictors of
the two response variables simultaneously. The results in
this study indicated that CD4 count change due to ART
and mortality had been influenced jointly by some of the
covariates like gender, age, baseline viral load, time (in
years) and by the interaction effects of time (in years) with
TB status and baseline viral load (refer to Tables 2 and
3). Research findings from a longitudinal study by [13]
also showed that CD4 count change was affected by these
covariates.
The joint model for longitudinal and time-to-event data

has several advantages especially in clinical trials. In a sur-
vival analysis setting, where the covariate of interest is
time-dependent, either the entire history of the covari-
ate for every subject, or, minimally, measurements of the
covariate at each time of disease occurrence for all sub-
jects in the corresponding risk set, are necessary. This
extensive measurement of covariate is rarely, if ever, exe-
cuted and the values obtained are typically subject to
measurement error. Thus bymodelling the covariates over
time, we can enhance the survival analysis since we can
interpolate covariate values between the observed mea-
surements to the specific times of disease occurrence,

Table 2 Longitudinal process estimates from the joint model

β estimatea S.E. p-value

Intercept 18.26 0.73 < 0.001

Age (years) -0.02 0.01 0.052

Men (ref: women) -1.86 0.22 < 0.001

Urban site (ref: rural) -0.27 0.25 0.2735

Prevalent TB (ref: No prevalent TB) -0.57 0.29 0.047

Log10 viral load (copies/ml) -0.61 0.11 < 0.001

Time on ART (years) 1.89 0.37 < 0.001

Time ×Prevalent TB (ref: no prevalent TB) 1.26 0.16 < 0.001

Time × log10 viral load 0.19 0.07 0.007

aadjusted estimates; S.E.: standard error

with the use of the entire covariate history of the sub-
jects. Furthermore, according to [32], after accounting
for measurement error, the standard error of the rela-
tive risk estimate will reflect correctly the uncertainty
in the measurements of the covariate. Conversely, utiliz-
ing the survival data in the longitudinal model will yield
improved longitudinal parameter estimates by allowing
adjustment for informative right censoring of the repeated
measurements by the disease process. Furthermore, the
joint model allows for unequally spaced measurements,
or missing covariate data and censoring of survival times.
The fact that the joint model has the distinct advan-
tage of simultaneously modelling two response variables
(for example in this study, CD4 count and time-to-death)
allows the researcher some degree of flexibility.
We found that after ART initiation the CD4 count

increases and is influenced by measured covariates such
as age, gender TB status and baseline viral load. Fur-
thermore, gender and baseline viral load were found
to be significant predictors of all-cause mortality. The
joint model found a strong association between CD4
count measurement process and mortality which means
that the full CD4 count history is a predictor of mor-
tality. These results are in consonant with previous
research [11, 33, 34].

Conclusion
Joint modelling enabled the assessment of the effect of
longitudinal CD4 count on mortality while correcting for
shared random effects between longitudinal and time-
to-event models. In biomedical research where measure-
ments of various outcomes are taken over a time period in
an attempt to understand patients’ health or the risk of an
event occurring, the joint modelling approach will be the
most useful tool to consider in an effort to link the longitu-
dinal measurement process and time-to-event outcomes.
In the era of universal test and treat, the evaluation of
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Table 3 Event process estimates from the joint model and time-varying Cox model estimates

β estimate aHR (95% CI) S.E. p-value

Time-varying proportional hazards model

Longitudinal
√
CD4 count (per unit decrease) 0.16 1.17 (1.12-1.23) 0.03 < 0.001

Event Process

Age (years) 0.01 1.01 (0.99-1.03) 0.01 0.148

Log10 viral load (copies/ml) 0.37 1.45 (1.21-1.69) 0.12 0.002

Men (ref: women) 0.05 1.05 (0.70-1.40) 0.18 0.775

Urban site (ref: rural) -0.08 0.92 (0.49-1.35) 0.22 0.758

Prevalent TB (ref: no prevalent TB) -0.21 0.81 (0.34-1.28) 0.24 0.377

Association (per unit decease) 0.30 1.34 (1.27-1.42) 0.03 < 0.001

aHR: adjusted hazard ratios; S.E.: standard error

CD4 count is still crucial for guiding the initiation and dis-
continuation of opportunistic infections prophylaxis and
assessment of late presenting patients. The CD4 count can
also be used when immunological failure is suspected as
we have shown that it is associated with mortality.
The joint modelling approach is likelihood based and

assumes that the data is missing at random. Further work
will involve sensitivity analysis to determine the impact of
departures from this assumption.
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