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Abstract: In this paper, a review of the compatibility of polymeric membranes with lignocellulosic
biomass is presented. The structure and composition of lignocellulosic biomass which could
enhance membrane fabrications are considered. However, strong cell walls and interchain
hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These
shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed
pretreatment methods, including physical and chemical methods, before incorporation into a
single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic
biomass and polymeric membranes, as well as to investigate membrane materials and how the
separation performance of polymeric membranes containing lignocellulosic biomass can be influenced.
Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement
become necessary in producing mixed matrix membranes (MMMs). In general, the present study has
shown that future membrane generations could attain high performance, e.g., CO2 separation using
MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.

Keywords: mixed matrix membranes (MMMs); carbon dioxide; lignocellulosic biomass;
pretreatment; mechanism

1. Introduction

The world population as estimated in 2020 was about 7.7 billion, with projected increases of about
30% by 2050 and around 2100, to 9.7 billion and 11.2 billion, respectively [1]. Enormous challenges
accompany this. Of our primary concerns are polluting gases from different processes and industries
that are emitted into the atmosphere. The well-known group of gases, greenhouse gases, includes
carbon dioxide, methane, ozone, carbon fluorocarbons, and nitrous oxides as the main ones. If present
in the atmosphere, these gases trap and radiate heat and absorb infrared radiation. The effects of these
actions are evidenced in the climate problem and retention of heat during nighttime. The comparisons
made among these gases have led to the recognition of the adverse effects from the amount of released
carbon dioxide and have made it the main acid gas to be investigated to reduce greenhouse gases’
effects [2–4].

According to the report from the Global Monitoring Laboratory of Earth System Research
Laboratories at the National Oceanic and Atmospheric Administration, CO2 emission on a daily
average basis for some locations is represented in Figure 1, which shows the average global levels.
About 450 ppm concentration of CO2 is present in the atmosphere [5]. Consistent rise in the emission
of CO2 from energy use, of about 10%, based on the different scenarios of transition evolving around

Membranes 2020, 10, 370; doi:10.3390/membranes10120370 www.mdpi.com/journal/membranes

http://www.mdpi.com/journal/membranes
http://www.mdpi.com
https://orcid.org/0000-0002-1504-0107
https://orcid.org/0000-0003-1612-3032
http://www.mdpi.com/2077-0375/10/12/370?type=check_update&version=1
http://dx.doi.org/10.3390/membranes10120370
http://www.mdpi.com/journal/membranes


Membranes 2020, 10, 370 2 of 29

us, will continue until 2040, based on the claims of the Energy Outlook from BP [6,7]. The introduction
of carbon compounds in billions of tons into the atmosphere from the beginning of the industrial
revolution until now will require a robust approach to mitigate. At present, CO2 elimination in the
atmosphere is not exceeding half of the emitted amount, while the destruction of ozone layers and
global temperature rise are among the harmful effects of leftover CO2. Prompt actions are required to
solve this CO2 menace because it is affecting industrial activities such as reduction of flue gas heating
values, industrial catalyst deterioration and poisoning, and transfer pipeline corrosion [8]. Therefore,
a comprehensive and collective approach will be required for CO2 separation from the flue and natural
gases with high purity and efficiency. Also, international laws and regulations must be enforced as
mitigation measures while researchers are busy working on carbon capture, storage, and utilization.
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Figure 1. Recent trends in CO2 globally; reproduced from Reference [5].

An agreement was signed at the climate change convention held in Paris (2016) to increase the
awareness of the negative impacts of CO2 on changes in the climate and to ensure that the temperature
rise is limited to below 1.5 ◦C. The decision was made based on the outcomes from the earlier
conventions on climate change and the Kyoto conventions held in 1992 and 1997 [9–11]. Natural gas
purification by the removal of acid gases especially has passed through different separation processes
such as absorption, adsorption, membranes, and cryogenic distillation. A description of each method
can be found elsewhere [12,13]. Yang et al. [14] carried out the economic comparison for the power
plant flue gas CO2 capture. They posited that the most cost-effective method is chemical adsorption and
suggested that improving the performance of membranes can be an alternative for future promising
gas separation. Preference given to membrane technologies in gas separation is revealed in Table 1.
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Table 1. Comparisons of Natural gas (NG) separation processes.

Separation
Process Merits Demerits Ref.

Absorption

1. Acid gases (CO2 and H2S) removed
simultaneously
2. Processing capacity and product
purity is high
3. Efficiency is 50–100%

1. Physical solvent usage requires high partial
pressure. As such, it is not cheap
2. Chemical solvent usage requires low partial
pressure, which makes acid gas purification
take a longer time
3. Operating units’ efficiency is low, especially
using the amine absorption process

[15–18]

Adsorption

1. Can produce an output of high purity
2. Remote field relocation of adsorbent,
at the time of equipment sizing
challenge, is easy
3. Simple process

1. Lower product recovery despite the high
amount of used adsorbent
2. Single pure product is most favored
3. Poor performance at low pressure
4. Adsorbent regeneration is expensive

[19–22]

Membrane

1. Simplicity, versatility, low capital
investment, and easy operation
2. High-pressure stability
3. Product recovery is high
4. Optimized weight and space
5. Environmentally friendly

1. Permeate can be recompressed
2. Permselectivity trade-off
3. Purity is moderate as its capacity is low
4. Available membranes are thermally unstable

[23–26]

Cryogenic

1. Compared to other techniques,
recovery is relatively higher
2. Product purity is also relatively high
3. Operation is possible at high volume
and high pressure

1. Regeneration requires energy of high
intensity
2. Scale-down is not economical
3. Being a closed system that is highly
integrated, different feed streams operation is
challenging

[27–30]

2. Membrane Materials and Gas Separation Mechanism

The membranes for gas separation are two phases that are adjacent to each other acting as an
interphase or selective barrier regulating the transport of gas mixtures. Membrane separation is an
environmentally friendly process projected to be necessary as a solution to environmental problems,
because the separation technique has an excellent downsizing footprint and easy operation. The gas
separation process using membranes depends on the choice of materials to be used for membrane
fabrications. The types of selected materials will affect the permeability, the structure/thickness of
the membrane, and the choice of the design module. The module design configuration can be flat
or hollow [31]. A significant gas separation using membrane technology favors the separation of
gas molecules with different molecular sizes. Investigations have been intense to separate some
perfluoro compounds (e.g., SF6) and the following combinations: CO2/CH4, CO2/N2, O2/N2, etc.
In nanometers (nm), the kinetic diameters of the common gases H2, CO2, N2, and CH4 are 0.29,
0.33, 0.36, and 0.38, respectively. These values indicate the influence of the spherical size of the gas
molecules, which is related to the mean free path of molecules in a gas. The mean free path of gas
molecules connotes the average distance travelled by a particle without collision. Thus, a smaller
kinetic diameter means a higher likelihood or possibility of collision between a gas molecule and
another molecule [32,33]. The practical application of polymeric membranes has been established with
other separation technologies such as dialysis and reverse osmosis. However, this field of membrane
technology demands further development to achieve excellent separation performances [34].

Performance superiority of membranes is determined by the permeability level and selectivity
for a targeted gaseous species during gas processing operations. Application is given significant
consideration among other factors such as cost, feed solution composition, goals of separation,
parameters of operation, and membrane fabrication technology compatibility before choosing between
an inorganic or organic barrier. The polymeric membrane material development is inevitable, since the
desired separation performance is yet to be achieved.

An important class of membrane materials that have received a lot of attention is the mixed matrix
membrane (MMM) material. Composite (mixed matrix) membranes are obtained when a filler material
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(usually in solid phase) is integrated into a continuous matrix of the polymer [35]. The filler can be
either an organic or inorganic material. The main aim is to capitalize on the micropores of inorganic
fillers that may provide better interaction with any of the gas components, because not all inorganic
fillers have good interaction with targeting gases [36]. Thus, by incorporating an organic or inorganic
filler into a continuous polymer matrix, researchers can exploit the characteristic synergy that results
from the nature of the microstructures of both materials.

The continuous polymer matrix and the organic fillers (which can be either synthetic or natural)
are glassy and rubbery polymers of varying properties (Table 2) [37]. Glassy polymers are chemically
and thermally stable. In turn, these properties reflect in their processability and permselectivity results.
Polyethersulfone, polyetherimide, polycarbonate, poly(2,6-dimethyl-1,4-phenylene oxide), polymers
of intrinsic microporosity (PIMs), polyimide, sulfonated poly(ether ketone), and cellulose acetate are
some examples of glassy polymers [32]. The common rubbery polymers are polydimethylsiloxane and
propylene oxide–amide copolymers. Therefore, careful selection of the polymer to be used demands
thorough investigations.

Stereoisomerism, the polarity of functional group, rigidity, and interaction of chains must be
considered to make the right choice of polymers for the manufacture of organic membranes. Two or
more monomers can be polymerized to synthesize artificial polymers. The polymerization could be
by using either of the three configurations: linear (e.g., polyethene), branching (e.g., polysulfone),
or crosslinking (e.g., phenol–formaldehyde) chains/structures. Linear-chained polymers (also called
thermoplastic polymers) are easy to mold at high temperatures and dissolve readily in organic solvents.
However, the increasing temperature does not soften crosslinked polymers (also called thermosetting
polymers) and gives slight dissolution in organic solvents. Ceramics and metals constitute the
inorganic barriers. Ceramic membranes entail titanium or aluminium metals and carbides, nitrides,
and oxides of nonmetals. These ceramic membranes possess inert properties that enhance their
applications in environments that are overly acidic or basic. Cracking of these membranes due to
their high-temperature sensitivity is a downside. As for metallic membrane formation, powdered
stainless steel, palladium, or tungsten metals are deposited and sintered on a porous substrate. The best
combinations of polymer, solvent, and nonsolvent are reported elsewhere for gas separations [23,38–40].
Figure 2 represents the dope formation and post-treatment flow chart to obtain defect-free membranes.
In general, for organic membranes, it is very challenging to clean the fouling surface, as it is chemically
and thermally unstable and the material is prone to degradation by microorganism. In contrast to
organic membranes, inorganic membranes require differences in pressure drop to be accounted for by
ensuring a specified thickness is fabricated, which usually results in a higher cost [41].

Table 2. Examples of organic and inorganic membrane classifications [40,42–44].

Organic Membranes Inorganic Membranes

Synthetic Natural Ceramic Metal

Polytetrafluoroethylene Rubber Silica membrane Palladium membrane
Polyvinylidene difluoride Cellulose Silicon membrane Tungsten membrane

Polyamide–imide Wool Zeolite Palladium alloy membrane
Polysulfone, etc. Leather Carbon Nonpalladium membranes

The separation of gases across membranes is driven by the pressure differences between the feed
(inlet raw material) and the product (outlet). If the system is a gas–fluid phase with the gradient of
partial pressure as the driving force, the membrane structure should be dense/porous for efficient gas
permeation evaluation [45,46]. Permeability and selectivity influence membrane performance. The size
of the penetrants will affect the diffusion coefficient and permeability because the gas molecules will
have sufficient space to move, as the polymer has free volume and its chains are flexible. The membrane
selectivity is a function of the ratio of the membrane’s permeability for relevant gases. Therefore,
understanding the properties of the gas transport mechanism for a gas–fluid system is essential.
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The mechanistic approach to transport (mass or energy) through a membrane depends on the
module used. A module, also called the separation unit, is the specified smallest unit for packing
membrane area. Installation of a membrane requires that the module is given priority, and using
a single module is the simplest design. The permeate and retentate streams are separated feed
streams that pass through as distance increases, which results in the decrease in both flow rate and
concentration inside the module (Figure 3). Flat (e.g., spiral-wound and plate-and-frame modules) and
tubular (e.g., hollow fiber, capillary, and tubular modules) configurations of membranes are used by
researchers to design various modules [47]. The diameter of fiber size (in mm) influences the choice
of a module; if the diameter is less than 0.5, between 0.5 and 10.0, or more than 10.0, the module
choice will be hollow fiber, capillary, or tubular, respectively. A detailed description of these modules
can be found elsewhere for spiral-wound [48–50], plate-and-frame [51–53], hollow fiber [24,54–59],
capillary [60–64], and tubular [65–73] module configurations. The membrane module in the equipment
receives the pumped gas, and the diffusivity and solubility differences enhance the targeted gas
separation transport mechanism. In general, a module could be dead-end or crossflow (Figure 3).
Microfiltration is frequently carried out using the dead-end module. In this, the membrane experiences
feed forced on it, while the rejected component concentrations at the feed increase and permeate
quality decreases with time. For instance, the downstream and upstream sides during ambient air
gas separation using membrane produced nitrogen and oxygen, respectively [74]. The solubility
coefficient (Si) is estimated by dividing the gas concentration in the polymer with the gas partial
pressure in contact with it (Equation (1)), and its contributions to membrane transport mechanisms
cannot be ignored.

Si = Ci(pi)
−1 (1)

The primary transport mechanisms are Knudsen diffusion and molecular sieving for pored
membranes, and solution diffusion for dense membranes. Molecular sieving is designed to prevent
specific larger molecules from passing through its small pores. Knudsen diffusion is applicable when
pressure is low while the pore size of the material is relatively large and smaller molecules move faster
through the pores than the larger ones. Both molecular sieving and Knudsen diffusion mechanisms are
not practicable for gas separation because their molecular flow is convective and driven by pressure
through a capillary and can be estimated using Darcy’s law. The solution-diffusion mechanism is
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the most appropriate for gas separation (Figure 4). The diffusion coefficient (Di) is described using
Fick’s law (Equation (2)). Therefore, the product of Equations (1) and (2) can be used to evaluate the
permeability (Equation (3)), where Ci can be the gas concentration for the feed or the permeate sides as
Ci, i and Ci, f , respectively; while pi can be the partial pressure for the feed or the permeate sides as pi,i,
and pi, f , respectively.

Di = Jil(Si 4 P)−1 (2)

where Ji is flux from Fick’s law, l is the thickness of the membrane, and 4P
(
pi,i − pi, f

)
is the difference

in partial pressures from the feed and permeate sides.

Pi = DiSi (3)
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Permeability is mostly expressed in barrer (1 barrer = 1 × 10−10 cm3
STP cm

cm2 s cmHg ). In SI units, the

expression for 1 barrer = 3.35 × 10−16 mol m
m2 s Pa . However, the penetrant gas molecular weight (Mr in
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mol/g) must be accounted for while using the centimeter-gram-second (cgs) unit to estimate 1 barrer
(Equation (4)).

I barrer = Mr × 3.35 × 10−13 cm g
cm2 s bar

(4)

Gas permeance (Pi/l), permeability divided by membrane thickness, is also commonly expressed

in gas permeance units (GPU), where 1 GPU = 1 × 10−6 cm3
STP

cm2 s cmHg = 1 × 10−12 m3
STP

m2 s Pa and Mr (in mol/g)
must be incorporated for the penetrant gas molecular weight for the SI unit conversion (Equation (5)).

1 GPU = Mr × 3.35 × 10−10 mol
m2 s Pa

(5)

The membrane selectivity (second vital parameter) (αx/y) is the membrane’s separating ability,
and it depends on the diffusion rate of the specified gas molecules. In this situation, it implies the

ratio of the permeability of penetrants x and y (Equation (6)). Dx
(
Dy
)−1

and Sx
(
Sy
)−1

represent the
diffusivity and solubility selectivities, respectively. The ratio of the size of the molecules influences the
diffusivity selectivity (dominant) in glassy polymers. As for rubbery polymers, solubility selectivity
gives the major contribution. However, for both glassy and rubbery polymers, when the fractional free
volume is similar, they exhibit the same diffusivity and selectivity. Table 3 presents the permeability
and selectivity trade-off for some polymers. In ideal situations, the upper bound lines are used for
determining the best materials for membranes based on their separation performances [76–78].

αx/y = Px Py
−1 = DxSx

(
DySy

)−1
= Dx

(
Dy
)−1

Sx
(
Sy
)−1

(6)

For a low-recovery system, assuming temperature and permeability coefficients are constant, the
gas separation conditions will be similar to the counter-flow. The feed side experiences plug flow
while the permeate side is completely mixing, and it implies that mixing is thorough at the feed and
permeate sides. The area of the membrane can be estimated by using Equation (7).

A =
qp,i

Ji
=

qp xp,i

Ji
(7)

while Ji can be obtained from Equation (2), qp, and qp,i are the permeate total mass flow rate and the
mass flow rate of component i in the permeate, respectively.
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Table 3. CO2/CH4 diffusion selectivities for some polymers.

Polymers Permeability PCO2

(Barrer)
Diffusion Coefficient DCO2

(10−8 cm2 s−1)
Total Selectivity αCO2/CH4 Diffusion Selectivity DCO2 /DCH2 Ref.

Kapton polyimide 2.7 0.56 46.0 11.9 [79]

Polysulfone 5.6 2.00 22.0 5.9 [79,80]

Polycarbonate 6.8 3.20 19.0 4.7 [79]

Polystyrene 12.4 8.50 15.8 5.5 [79]

Poly(ethylene terephthalate) 17.2 4.46 27.3 7.8 [79]

Polyisoprene 153.0 125.00 5.1 1.4 [79]

Silicone rubber 3800.0 2200.00 3.2 1.1 [79]

Sulfonated poly(aryl ether ketone)
(SPEEK) 15.0 4.89 26.5 2.8 [81]

Thermally rearranged polymers 186.6 15.40 27.8 4.0 [82]

Polymers of intrinsic microporosity
(PIMs) 3672.0 172.00 10.6 3.9 [82]

Cellulose acetate 218.0 - 13.8 - [83]

Perfluoro polymers (Teflon AF 2400) 2200.0 - 5.6 - [84]

Poly(ether-block-amide) (Pebax®) 187.5 - 7.3 - [85]
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It is worth mentioning that a membrane unit’s capital cost can be reduced by reducing membrane
thickness or modifying the chemistry of the membrane, which will result in membrane system size
reduction and higher permeance. More so, the membrane system operating cost will be reduced since
it is related to the required energy and the energy consumption depends on membrane selectivity.
The majority of polymers used for membrane fabrications contain both crystalline and amorphous
fractions. However, higher crystallinity results in higher resistance to diffusion. Reducing the amount
of crystallinity in the membrane will affect the flux, diffusion rate, and transport mechanism of the
membrane (Equation (8)).

Di = Di,0 B−1 ψn
c (8)

where ψc (<0.1) is the crystalline amount present and n (<1) and B are an exponential factor and
constant, respectively. So, gas performance improvement could be improved by using some techniques
to pretreat the polymer membranes. These techniques are polymer backbone grafting [86,87],
porogens usage with polymerization template [88,89], thermal and crosslinking [90,91], blending
and copolymerization [92,93], phase inversion [94,95], polymer sulfonation [96–98], and the use of
PIMs [99,100].

As a form of polymer pretreatment, Kang et al. [101] suggested surface binding increment for CO2

on polymers to improve gas separation by tuning metal ions. Also, Fontaine et al. [102] posited that
CO2 with its Lewis acidic properties facilitates separation affinity, and Kundu et al. [103] stated that
the uptake of CO2 would be massive in the presence of polymers with hetero elements that are rich in
electrons, such as –C=O. Figure 5 shows the interaction of CO2 with polymers of pyridine and imidazole.
The chemistry is due to the lone-pair electron nucleophilic attack. Therefore, this is a justification
for the surface modifications to improve performances (permselectivity) by the incorporation of
organic/inorganic materials (fillers) such as lignocellulosic biomasses into polymers to enhance their
reaction mechanisms.
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3. Lignocellulosic Biomasses Retrospect

An annual estimation of total global agricultural waste materials produced in 2017 was about
37,522,440,479 kg, with lignocellulosic biomass topping the list, which implies that large quantities of
agro-wastes are available to be turned into resources [105]. The efficient use of lignocellulosic biomass
requires significant study, understanding, and separation of its major complex components. Weak
Van der Waals and hydrogen bonds hold these three components (lignin, hemicellulose, and cellulose)
together within the plant cell walls [106].

The middle lamellae of opposite cell walls contain lignin, and it serves as the hydrophobic surface
for water transport in plants to about 100 m height. Lignin also gives trees exceptional mechanical
support of almost two kilometric tons and prevents invasion of pests and pathogens due to its
chemical and physical properties [107–111]. However, high-value utilization of biomass has been
faced with challenges attributed to rigidity, which leads to deconstruction resistance and recalcitrance
affecting technological and economic conversion applications. Lignin poses a physical obstacle to
direct access to cellulose, and biological and enzyme activities on biomass are diminished due to
this recalcitrance [112–115]. Biofuels, paper, and pulp productions will increase if lignin presence in
biomass can be effectively reduced. Nonproductive enzyme-to-lignin binding is another undesirable
mechanism showing adverse effects of lignin on catalyst applications. This interaction between lignin
and enzymes can be quantified by using the Langmuir adsorption isotherm analysis [116,117].

Different parts of trees contain varying lignin content with variable compositions: the shoots
and wood have low and high lignin content, respectively [118,119]. There are three lignin subunits
(Figure 6): First, guaiacyl units (G) form softwood lignin and its polymer is derived from the monomers
of coniferyl alcohol. Second, syringyl units (S) are formed from the polymerization of the monomer
of sinapyl alcohol. Third, p-hydroxyphenol (H) phenylpropanoid is a mixed S and G unit, which is
common in hardwoods depending on the S/G ratio [119]. Lignin also contains aromatic units (inset of
Figure 6), namely coumaryl (a), coniferyl (b), and sinapyl (c) alcohols. The plant species have different
units, and the bonding also differs. All plant species, especially softwoods, contain coniferyl alcohol.
Crops and grasses mainly consist of coumaryl alcohol. About 40% of alcohol units in hardwoods are
sinapyl units. Powerful C–C bonds and ether linkages keep the lignin structure together, which makes
lignin insoluble in water. The reaction mechanism of lignin is challenging because its structure is
highly complicated. Researchers are working on different routes to lignin breakdown. Some of these
routes are ionic liquid usage, lignin esterification, supercritical carbon dioxide, and pyrolysis [120–123].
Hemicellulose and cellulose are less energy-intensive compared to lignin, as we will discuss next.
Kumar et al. [124] established that lignin removal increases hemicellulose and cellulose accessibility,
which will enhance their OH groups’ availability for different applications. Wang Y. et al. [125] and
Wang S. et al. [126] studied the effects of pretreatments on breaking lignin structural linkages to increase
accessibility by increasing internal surface area.



Membranes 2020, 10, 370 11 of 29

Membranes 2020, 10, x FOR PEER REVIEW 10 of 31 

 

recalcitrance affecting technological and economic conversion applications. Lignin poses a physical 

obstacle to direct access to cellulose, and biological and enzyme activities on biomass are diminished 

due to this recalcitrance [112–115]. Biofuels, paper, and pulp productions will increase if lignin 

presence in biomass can be effectively reduced. Nonproductive enzyme-to-lignin binding is another 

undesirable mechanism showing adverse effects of lignin on catalyst applications. This interaction 

between lignin and enzymes can be quantified by using the Langmuir adsorption isotherm analysis 

[116,117]. 

Different parts of trees contain varying lignin content with variable compositions: the shoots and 

wood have low and high lignin content, respectively [118,119]. There are three lignin subunits (Figure 

6): First, guaiacyl units (G) form softwood lignin and its polymer is derived from the monomers of 

coniferyl alcohol. Second, syringyl units (S) are formed from the polymerization of the monomer of 

sinapyl alcohol. Third, p-hydroxyphenol (H) phenylpropanoid is a mixed S and G unit, which is 

common in hardwoods depending on the S/G ratio [119]. Lignin also contains aromatic units (inset 

of Figure 6), namely coumaryl (a), coniferyl (b), and sinapyl (c) alcohols. The plant species have 

different units, and the bonding also differs. All plant species, especially softwoods, contain coniferyl 

alcohol. Crops and grasses mainly consist of coumaryl alcohol. About 40% of alcohol units in 

hardwoods are sinapyl units. Powerful C–C bonds and ether linkages keep the lignin structure 

together, which makes lignin insoluble in water. The reaction mechanism of lignin is challenging 

because its structure is highly complicated. Researchers are working on different routes to lignin 

breakdown. Some of these routes are ionic liquid usage, lignin esterification, supercritical carbon 

dioxide, and pyrolysis [120–123]. Hemicellulose and cellulose are less energy-intensive compared to 

lignin, as we will discuss next. Kumar et al. [124] established that lignin removal increases 

hemicellulose and cellulose accessibility, which will enhance their OH groups’ availability for 

different applications. Wang Y. et al. [125] and Wang S. et al. [126] studied the effects of pretreatments 

on breaking lignin structural linkages to increase accessibility by increasing internal surface area. 

 

Figure 6. Subunits in the lignin structure; adapted from Reference [127]. Figure 6. Subunits in the lignin structure; adapted from Reference [127].

Hemicelluloses are the second most abundant renewable polymers in lignocellulosic biomass
after celluloses. Hemicelluloses are heterogeneous polysaccharides found in cell walls of plants.
They have short chains, and are found in varying substituents and proportions [128–130]. Various
applications can benefit from hemicellulose because they can be easily hydrolyzed, converted,
and transformed [131]. Nonetheless, hemicelluloses also contribute to the resistances to the valorization
of biomass. Cellulose extraction and quality of fiber and wood are affected due to hemicellulose
presence. From the reaction mechanism, hardwood has different proportions of hemicelluloses with
standard O-acetyl-4-O-methylglucuronoxylan components. At the xylopyranose backbone’s second
and third carbon, the hydroxyl group is about 70% [132,133]. O-acetylgalactoglucomannan is the main
component of hemicellulose in softwood. It consists of a 20% acetylated hydroxyl group, which was
substituted partially by acetyl groups at the mannose units C-2 and C-3 [134,135]. Figure 7 shows
hemicellulose sugar monomers that are of lower quantity in wood tissues and higher in some fruits’
soft tissues and the pulp of sugar beet.
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Cellulose is one of the main plant cell wall components, rendering the mechanical strength,
and is the most abundant due to the continuous photosynthesis process [137,138]. Several sources
of available routes to cellulose are known as agricultural waste and are yet to be fully maximized
for other applications. However, the manufacturing of textiles, cardboard, paper, pharmaceuticals,
biofuels, food, and nanocellulose materials have benefitted from the exciting chemistry of cellulose to
some extent [139–142]. Cellulose’s chemistry and mechanism depend on its high polydispersity. It is
closely connected to other biopolymers such as lignin and hemicellulose. These other biopolymers
have a challenging spatial arrangement. One glucose monomer in cellulose is called anhydroglucose
units. Cellulose is a linear isotactic polymer with 180◦ rotated neighboring monomer attachments.
The attachment is made up of two glucose units (called cellobiose, repeating units). The monomer of
glucose in cellulose is described as being in a chair conformation. The nonreducing end contains a
glycosidic bond within its carbon atoms, while the reducing end converts its carbon to aldehyde. These
two ends give balance (equilibrium) to cellulose [143–146]. The crystallinity and hydrogen bonding of
cellulose is impacted. This impact is attributed to the numerous hydroxyl (OH) groups present in its
metastructure (Figure 8).Membranes 2020, 10, x FOR PEER REVIEW 12 of 31 
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Therefore, pretreatment is vital for the production of value-added products from lignocelluloses.
It means that fractions of cellulose and hemicellulose should be made more accessible. The cellulose
digestibility should also be increased by following sets of steps. The targeted actions aim at fractions
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of lignin to be bond-broken, solubilized and removed (Figure 9) [148–150]. Physical, chemical,
physicochemical, biological methods and their combinations are the general pretreatment classification
processes [151]. Enzyme, feedstock, and organism compatibility influence the pretreatment choice.
The detailed lignocellulosic biomass pretreatments are beyond the scope of this review and can be
found elsewhere [152–155]. However, an overview is given in Table 4.
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Table 4. Comparison of methods of lignocellulosic biomass pretreatments.

Pretreatment Type Examples Uniqueness Ref.

Physical
Mechanical, ultrasonic,

high-temperature/energy pyrolysis,
electron radiation, and microwave

It requires high energy and cost to
reduce crystallinity and particle size [157–160]

Chemical
Pretreatments using alkali, organosolv,

acids (dilute and concentrated),
oxidation, and ionic liquids

The extraction of pure components is at
a high cost [161–163]

Physicochemical
CO2 explosion by Ammonia fiber
explosion (AFEX) method, steam
explosion, and electrical catalysis

Occurrences at high temperature and
pressure: hemicellulose solubilization,

lignin transformation, and cellulose
surface area increases.

[164,165]

Biological Enzymolysis
Despite low hydrolysis rate and energy
consumption, degradation of lignin and

hemicellulose is achievable
[166,167]

AFEX: Ammonia fiber explosion.

Finally, complex components of lignocellulosic biomasses can be solubilized by combining these
pretreatment methods. The outputs from physical and chemical pretreatments were relatively good
even though they were attributed to severe pollution and strict equipment requirements. Although
they release less pollution compared to other methods and have lower energy consumption, biological
processes are time-consuming and expensive. Li et al. [168] studied different techniques to alter the
lignin contents in crops to improve cellulose and hemicellulose accessibility. The primary outcome of
their study was that genetic engineering of lignin biosynthesis relied on monolignol pathway up- or
down-regulation. Plant fitness, viability, and biofuel applications will be disfavored when total lignin



Membranes 2020, 10, 370 14 of 29

is reduced. Finally, plant manipulation to ease enzyme or alkaline hydrolysis of lignin linkages will
improve biomass applications.

4. Perspective and Prospects for CO2 Separation

Lignocellulosic biomass pretreatment becomes necessary. The necessity is due to an increase in the
accessible surface area and the hydroxyl groups, lignin removal, and cellulose decrystallization. One
of the ways to solve the trade-off of polymeric membranes is the incorporation of organic/inorganic
materials to produce mixed matrix or composite membranes [169,170]. The lignocellulosic
biomass-based MMM hybrid system begins with the targeted gas molecules being sorbed by the
membrane. The adsorption occurs at high pressure due to the interaction with the filler (lignocellulosic
biomass), diffuses through the membrane and then desorbs at the low pressure. The thermodynamic
parameter (solubility coefficient) and the kinetic parameter (diffusivity coefficient) control this
mechanism. As discussed in earlier sections, gas separations and other applications have benefitted
from these concepts. This review examines the compatibility of polymers and lignocellulosic biomass.
Cellulose extraction has been performed by solubilizing lignin, followed by incorporation into a
polymer matrix after improving its intermolecular and intramolecular bonding [171]. These easily
accessed OH groups will aid carbon dioxide capture because of the mechanism between CO2 and OH
radicals. Table 5 presents the extraction techniques of cellulose.

Table 5. Cellulose sources and extraction techniques [172].

Cellulose Sources Preparation Techniques Particle Size Remarks Reference

Pineapple peel juice Spray coating NA Enhanced spread factor [173]

Trunks and fronds of oil
palm, okra Alkaline, electrospinning Less than 500 nm Binding and antioxidant

activities increased [174]

Canola straw nanowelding 53 ± 16 nm High transparency and
biodegradability [175]

Rice husk
Hydrothermal approach,

acid–alkali treatment,
mechanical disruption

30–40 nm Thermally stable [176]

Corn TEMPO-mediated oxidation NA
High strength, elastic

modulus, and value of
water retention

[177]

Achira Acid hydrolysis, high-pressure
homogenization 13.8–37.2 nm

Mechanically stable,
biodegradable, and
highly crystalline

[178]

Paper waste residue Etherification of pulp,
mechanical disintegration 10–100 nm Thermally stable with

high fibrillation potential [179]

Banana peel Chemical treatment,
high-intensity ultrasonication NA Highly thermally stable

with high crystallinity [180,181]

Poplar wood powder,
culms of Moso bamboo,

rice straw, corn straw

Chemical pretreatment,
high-intensity ultrasonication,
high-pressure homogenization

5–20 nm Highly crystalline and
thermally stable [182,183]

Seagrass species balls
and leaves

Chemical treatment,
fibrillation

5–21 nm and
2–15 nm

Transparent and
biodegradable [184]

Tomato peels Acidified sodium chlorite,
chlorine-free alkaline peroxide 260 ± 79 nm, Highly crystalline [185]

TEMPO: catalyst used in organic synthesis as an oxidant.

Mixed matrix membranes for various applications have been fabricated by incorporating cellulose
extracted from natural agro-based sources into polymers, carbon, etc. (Table 6). A search of electronically
available literature with keywords such as lignocellulose and membranes revealed that most biorefining
research works are focused on biofuel, bioethanol, etc. The forerunner in the valorization of
lignocellulosic biomass is the ChemPubSoc Europe organization. This organization constitutes
16 chemical societies. It shows the importance of lignocellulosic biomass as an alternative feedstock for
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energy, environmental, and crude oil substitute applications. The valorization will open the doors for
interdisciplinary collaborations with colleagues working on catalysis and reaction engineering, among
others. So, its usage as fillers in membrane fabrications cannot be overemphasized.

The polymer forms the continuous phase, while the cellulose forms the dispersed phase. Therefore,
the polymer and filler must be carefully selected, since a defective morphology is obtained when the
rigidification of the surrounding polymer matrix occurs due to the effect of the dispersed phase causing
a void at the continuous and dispersed interface. Gas separation, water purification, tissue engineering,
food packaging, etc. enjoy the remarkable properties of the mixed matrix membranes from cellulose
due to their excellent mechanical strength. Elrasheedy et al. [186] reviewed water applications
of membranes. Also, O’Harra et al. [187] fabricated composite membranes for gas separation.
Supercapacitor electrodes are produced from carbon nanotube and cellulose combinations. Researchers
are working on modifications of polymers and extracted cellulose for environmental, gas separation
benefits, etc., including modifying cellulose to reduce its crystallinity and particle size to the nanoscale,
increase its tensile strength and access to its hydroxyl group radicals, and use several functional groups.
Polymers have been modified using different functional groups, such as amine [188], aniline [189,190],
methacrylate [191–193], polyvinyl alcohol [194,195], and polyethylene oxide [196].

Table 6. Cellulose-based mixed matrix and other details.

Mixed Matrix Composition Cellulose Source Preparation Method Particle Size Remarks Ref.

Natural cellulose,
high-density polyethene

Needle leaf bleached kraft
pulp (NBKP)

Mechanical
disintegration, injection

molding
NA Mechanical strength increased [197]

Natural cellulose, polylactic
acid Wheat straw

Chemo–mechanical
treatment, high-speed

homogenization
NA High viscosity with increased

crystallinity [198]

Cellulose, starch Rice straw
A chemo–mechanical

method, film casting, salt
leaching, freeze-drying

49–90 nm Highly biodegradable [199]

Polyurethane, cellulose Rachis of the date palm
tree (Phoenix dactylifera)

Mechanical treatment,
high-intensity

homogenizing, solvent
exchange method

29 ± 9 nm Tensile strength, thermal
stability, high crystallinity [200]

Cellulose, hemicellulose Spruce sulfite pulp
(commercially obtained)

Enzyme treatment,
mechanical

disintegration, filtration,
drying

190 nm Moderate tensile strength with
high thermal stability [201]

Cellulose, starch Kenafbast fibers (Hibiscus
cannabinus) Solution casting NA Biodegradable and moderate

elasticity [202]

Cellulose, polyester resin Softwood (Pinus sp.) and
hardwood (Eucalyptus sp.) Mechanical treatment 70–90 nm Moderately crystalline and

highly thermally stable [198]

Unsaturated polyester,
cellulose

Never-dried wood pulp
(Nordic Paper, Sweden)

Mechanical treatment,
template-based

processing approach
100–200 µm

Highly sensitive to moisture
and thermally stable with a

high glass transition
temperature

[199]

Cellulose, amylopectin
Spruce sulfite pulp

(Nordic pulp and Paper,
Sweden)

Enzyme degradation,
mechanical treatment,
disintegration using a

microfluidizer

68 nm, 361 nm,
186 nm

Yield strength increased with
moderate Young’s modulus [200]

Cellulose, polyacrylamide
Fibrous cellulose powder

CF11 (commercially
obtained)

Acid hydrolysis NA
Hydrophilicity and high
mechanical strength with
favorable thermal stability

[203]

Cellulose, polyaniline, carbon
nanotubes

Bamboo powders from
Moso bamboo

Chemical treatment, in
situ chemical

polymerization
10–30 nm Foldable and flexible [204]

Cellulose, multiwalled carbon
nanotubes, polyaniline

Bamboo powder from
Moso bamboo

Chemical treatment,
solvent extraction, in situ

polymerization
10–30 nm High porosity and redox

reversibility [205]

Cellulose, carbon nanotubes,
TiO2 nanotubes Bamboo cellulose tissues Mechanical treatment 10–30 nm Increased mechanical strength

and porosity [206]

Cellulose, cadmium sulphate
(CdS) Natural cotton Electrospinning,

chemical bath deposition 100 nm
Photocatalytic activity is high
with characteristic amorphous

properties
[207]
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Table 6. Cont.

Mixed Matrix Composition Cellulose Source Preparation Method Particle Size Remarks Ref.

Titanium dioxide (TiO2),
cellulose, gold (Au), silver

(Ag)

Eucalyptus pulp (USDA
Forest Service, Forest
Products Laboratory,
Madison, WI, USA)

TEMPO-mediated
oxidation, mechanical

treatment
4–20 nm

Reusable, with improved
photocatalytic activities and

high tensile strength
[208]

Cellulose, quaternary
ammonium Softwood kraft pulp Mechanical treatment 10–40 nm Reusable and highly porous [209]

Polyethylene-b-poly(ethylene
glycol), cellulose

Cellulose nanofibers
(Commercially obtained)

Spray drying, surface
adsorption, extrusion NA High modulus tension [210]

Cellulose, polyvinyl alcohol Microcrystalline cellulose
(commercially obtained) Acid hydrolysis 10–65 nm Thermally stable and

water-resistant [211]

Cellulose, polylactic acid Cellulose nanofibers
(Commercially obtained) Solvent casting 28 ± 10 nm High elastic and tensile

strength and thermally stable [212]

Cellulose, poly(lactic acid) Nano Nevin polymer co.
(Iran) Solution casting method 21 nm

High degradation
temperature, thermal stability,

and crystallinity
[213]

Cellulose, starch, polyvinyl
alcohol

Microcrystalline cellulose
(commercially obtained)

Acid treatment, solution
casting 20–35 nm Excellent mechanical strength

with high stiffness [214]

Polyethene oxide, cellulose
nanocrystal

Microcrystalline cellulose
(commercially obtained)

Acid hydrolysis,
high-pressure

homogenization,
electrospinning

149 ± 49 nm
High glass transition

temperature and elongation at
break

[215]

Cellulose, copper (Cu2+)
Cellulose sludge

(commercially obtained)

Mechanical treatment,
TEMPO-mediated

oxidation
15–40 nm

Enhanced adsorption capacity
of Cu2+, wettability, and

hydrophilicity
[216]

Table 7 presents some filler effects on the CO2 separation performance in MMMs, and it establishes
that the filler compatibility with the polymer matrix was owing to their small particle sizes. Also,
the transport of CO2 was facilitated because the polymer chains’ free volume and packing were
influenced by the fillers.

Table 7. MMM performances for CO2 separation based on filler effects [32].

Organic Filler Particle Size
(nm)

Loading
(wt%) Polymer Feed

Gas
Operation
Conditions

CO2
Permeability
×1014/mol·m·m−2·s−1·Pa−1

CO2/CH4
Selectivity Ref.

Polyaniline
nanosheet

Thickness:
40–60 17 Poly(vinylamine) Pure gas

25 ◦C, 0.11
MPa, in

humidified
state

40.20 × lb 12–20 [217]

Polyaniline
nanorod

Diameter: 50
Length: 160 17 Poly(vinylamine) Pure gas

25 ◦C, 0.11
MPa, in

humidified
state

53.67 b 18–25 [218]

Nanohydrogels ~250 5,10,15,20 Matrimid® Pure gas

30 ◦C, 0.2 MPa,
in

humidified
state

4.56–9.31 52–61 [219]

Carboxylic
acid nanogels 400 5,10,15,20,30 Pebax® Pure gas

25 ◦C, 0.2 MPa,
in

humidified
state

29.82–67.87 19–33 [220]

PEGSS a 350–420 20 Matrimid® Pure gas 30 ◦C, 0.1 MPa 0.28 50.29 [221]

Hypercrosslinked
polystyrene 55 16.67 PIM-1 Pure gas 25 ◦C, 0.2 MPa 334.06 20.27 [222]

Microfibrillated
cellulose

Diameter:
5–15 0–4 Polyvinylamine Mixed

gas
35 ◦C,
8 bar 13.00 410 [223]

Nanocellulose

Length: 130 ±
67

Width: 15.9 ±
1.8

0.5,1,1.5,2 PSF Mixed
gas

25 ◦C,
8 bar 45.07 29 [223]

a PEGSS: poly(ethylene glycol)-containing polymeric submicrospheres. b Permeability is calculated by permeance
multiplied by the separation layer thickness, l: the separation layer thickness, µm.

Table 8 shows the performance results of the fabricated mixed matrix membranes. Pretreated
lignocellulosic biomass-based filler was loaded into the polyetherimide (PEI) matrix. A combination of
physical and chemical pretreatment techniques was used to obtain a functionalized filler. The powder
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X-ray diffraction showed a decrease in its crystallinity. In almost all cases, CO2 permeability increase
was more evident than that of CH4. The Langmuir model-governed transport mechanism ensures the
saturation of the free volume due to the CO2 and CH4 gases’ kinetic diameters.

Table 8. Biomass-based filler loading effects on membrane performance.

Filler Loading (wt%) Permeance (GPU) Selectivity
CO2 Permeability CH4 Permeability

0.00 1.25 0.10 23
0.25 1.60 0.10 32
0.50 1.80 0.05 43
0.75 - - -
1.00 1.75 0.05 40

GPU: gas permeance units. Source: Reference [224].

In contrast, the transport mechanism will be governed by Henry’s mode whenever CH4

permeability is favored over CO2, due to gas–polymer interaction increase and larger molecules being
easily condensable. The pure PEI membrane shows low permeance and selectivity compared to after
the filler was incorporated. However, 0.5 wt% filler loading results in the best permeability–selectivity
performance. n The permeability–selectivity decrease recorded for 1 wt% loading can be attributed to
less filler dispersion, and this can be resolved during doping preparation by including the sonication
step because that effect is attributed to the dispersed phase clogging of the interface of the two phases.
Considerations would be given to the shape and size of the particles and the preparation protocols.

Also, Wu et al. [225] worked on CO2 separation by incorporating biocellulose nanofiber (additive)
into polymeric membranes. A homogeneous composite membrane solution was obtained by speed
coating the additive using the spin coating method and oven drying of the membranes for half an hour
at 105 ◦C. The results showed that increasing polymeric solution concentration resulted in increasing
the thickness of the membranes. The performance (permeability and selectivity) for 3 wt% loadings
of the additive was chosen as the best. Zhang et al. [226] reported 139 barrer CO2 permeability from
composite membranes with incorporated cellulose nanofibrils, adopting chemical pretreatments to
enhance the chemical bonding for high performance.

As shown in Table 9 [36], it was posited that at 5 wt%, permeability was higher than at 2 wt%
loadings on polysulfone membranes because it was more amorphous, which was further confirmed by
the XRD results. Although, some of the selectivity results are not in line with established trends from
the Robeson upper bound curve: to have selectivity increasing as permeability decreases. The upper
bound trend shows a gradual decline in permselectivity. The addition of 2 wt% Lignocellulosic
biomass (LCB) to the polymer matrix increases the selectivity, which then started decreasing as loading
increased from 5 to 10 wt%. In general, the simultaneous decrease in permeability and selectivity can
be attributed to polar and nonpolar gases being separated based on the competitive sorption that
favors CO2 due to its polarity, which is one of the expected setbacks from the separation of gases
with close molecular diameters. CO2 is a polar gas molecule, while CH4 is a nonpolar gas molecule.
Lastly, Venturi et al. [227] used a combination of mechanical and enzymatic pretreatment techniques to
prepare nanofibrillated cellulose and incorporate it into polyinylamine (PVAm) to fabricate composite
membranes. Values of 135 and 187 barrer were reported for CO2/CH4 ideal selectivity and CO2

permeability, respectively.
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Table 9. Permselectivity of pretreated Lignocellulosic biomass (LCB) (date pits) loading on
CO2 separation.

LCB in Samples (wt%) Permeance (GPU) at 10 bar and 35 ◦C Selectivity
CO2 Permeability CH4 Permeability

0 240.292 318.229 0.755
2 13.957 11.957 1.261
5 94.949 115.697 0.821
10 445.658 705.246 0.632

LCB: Lignocellulosic biomass.

Finally, since the lignocellulose biomass contents are natural, degradation resistance and
stability can be made robust through the pretreatment techniques, which will also prevent fouling.
Thus, a thorough understanding of the lignification mechanism before incorporation into the polymer
matrix is vital. Prospectively, MMM fabrication by incorporating lignocellulosic biomass will be faced
with some challenges. The challenges include discovering an environmentally and cost-effective
benign delignification process. Furthermore, process condition optimization and improvement of
existing methods for the different pretreatments’ reaction mechanisms have not been thoroughly
explored. Multidisciplinary collaboration among material chemists, polymer scientists, and chemical
and material engineers is required. Such partnership will enhance worldwide acceptance of the
development of next-generation membrane materials, looking back to 1979 when Monsanto built the
first hollow-fiber polysulfone membrane separation system. The next-generation materials should
be able to withstand physical ageing, plasticization, etc. to increase their consideration for industrial
applications. Therefore, this review discusses the characteristics of membranes and lignocellulose
biomass, including the feasibility of solubilizing lignin. Some of the common challenges include
extracting or isolating cellulose and hemicellulose from several agro-based sources such as wood,
straws, grasses, etc. Thus, it is imperative to carefully choose an appropriate pretreatment technique(s)
for high purity, yield, and compatibility; and reducing the particle size to the nanoscale using mechanical
splintering will aid the reduction of the crystallinity zone for subsequent treatments. The OH group’s
characteristics are fundamental to lignocellulosic biomass performance and compatibility during
incorporation into the polymer matrix.
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