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Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple
organ dysfunction resulting from the production of multiple autoantibodies and adaptive
immune system abnormalities involving T and B lymphocytes. In recent years,
inflammasomes have been recognized as an important component of innate immunity
and have attracted increasing attention because of their pathogenic role in SLE. In short,
inflammasomes regulate the abnormal differentiation of immune cells, modulate
pathogenic autoantibodies, and participate in organ damage. However, due to the
clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and
thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a
foundation for the development of such therapeutic strategies, in this paper, we review
the role of different inflammasomes in the pathogenesis of SLE and their correlation with
clinical phenotypes and propose some corresponding treatment strategies.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of
autoantibodies and multisystem damage. The main pathophysiological factors involve adaptive
immune system abnormalities, manifested by an imbalance of T cells, excessive B-cell activation,
and the production of pathogenic autoantibodies. At present, SLE treatment mainly involves
hormonal and immunosuppressant therapies. The resulting immunosuppression is nonspecific,
associated with multiple side effects, and its efficacy is uncertain. A better understanding of SLE
pathophysiology would help us develop more targeted drug therapies.

Given that abnormal differentiation of T and B cells is critical to the pathogenesis of SLE, most drug
development has targeted these cells, their cytokines, and key signal transduction pathways. However
clinical translation in large-scale trials has often failed; the main reason for this seems to be that SLE is a
clinically and pathologically heterogeneous disease (1). Therefore, a clearer understanding of SLE
pathophysiology and more accurate patient phenotyping should result in a more accurate selection of
appropriate targeted therapeutic drugs that achieve better clinical outcomes.

Although SLE involves abnormal adaptive immunity, the normal interactions between the innate and
adaptive immune systems (2, 3) have attracted interest in how the former is involved in the pathogenesis
of SLE. Inflammasomes are oligomeric complexes that make up a critical component of innate immunity
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as major driving forces for inducing inflammation via activation of
pathogen-recognition receptors (PRRs). Activated inflammasomes
promote the production and secretion of inflammatory cytokines
such as IL-1 and IL-18 and play an important role in regulating
immune response. Because inflammasomes affect the differentiation
of T and B cells (4, 5), they also participate in SLE pathogenesis. In
fact, it has been reported that inflammasome-dependent cytokines
including IL-1 and IL-18 are involved in the pathogenesis of SLE
(6). In patients with SLE, free IL-18 is significantly higher than in
controls and is correlated with disease activity (7) related to active
kidney disease (8); serum IL-18 can be used as a predictive
biomarker for the long-term prognosis of renal function in
patients with SLE (9).

SLE is characterized by the production of multiple
autoantibodies and multiple organ damage. This is dominated
by renal damage and vasculitis. Inhibition of caspase-1 or NLRP3-
mediated inflammasome signaling in murine models has
demonstrated that inflammasome pathways contribute to SLE
pathogenesis by promoting autoantibody production, endothelial
dysfunction, and nephritis (10–14). Abnormal activation of the
inflammasome was shown to not only be involved in SLE
pathogenesis but also be an important risk factor in some SLE
patients. It has been reported that inflammasome polymorphisms
are associated with susceptibility to SLE (15, 16). Therefore,
targeted inflammasome therapy appears to offer a particularly
attractive target.

Given the heterogeneity of SLE and a desire for targeted
inflammasome inhibition, it will be necessary to select appropriate
inflammasome inhibitors for specific SLE patients to achieve
maximal efficacy. So far, many proteins that belong to the nucleus
binding domain leucine-rich repeat (NLR) family such as NLRP1,
NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, and AIM2
(absent in melanoma-2) have been reported to initiate assembling
the formation of an inflammasome and in recent years have
attracted a lot of attention (17). Each inflammasome is activated
in response to different stimuli These inflammasomes play different
pathogenic roles. Understanding these roles and their correlation
with clinical phenotypes underlies our ability to correctly select
matching inhibitors for individual patients. In this review, we will
summarize the role and clinical characteristics of the different
inflammasomes and put forward a strategy for the targeted
inhibition of inflammasomes in the treatment of SLE. We believe
that this work will provide an important reference for clinical
research and drug development.
INFLAMMASOMES ARE INVOLVED IN THE
PATHOGENESIS OF SLE

Many studies have proposed a pathogenic role for inflammasomes
in SLE. Upregulation of inflammasome gene expression and activity
has been found in both human and murine lupus (14, 18–21). Due
to the interaction between inflammasomes and acquired immunity
(22), inflammasomes participate in the pathogenesis of SLE mainly
by regulating the abnormal differentiation of immune cells,
mediating the pathogenicity of a variety of pathogenic
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autoantibodies, affecting the pathogenicity of IFN-I, and
abnormally activating various signaling pathways including those
involved in inflammation. As such, inflammasomes have direct and
indirect effects on immune function and thus play a critical role in
the pathogenesis of SLE.

Inflammasomes Regulate the Abnormal
Differentiation of Immune Cells
SLE patients have disordered Th1/Th2 and Treg/Th17 balance,
which is related to disease activity (23). Inflammasomes help
mediate T-cell differentiation. For example, various animal and
human studies have shown that NLRP3, NLRP1, NLRC4, and
AIM2 may regulate Th1, Tfh, and Th17 cell-mediated immune
responses through different pathways, in different immune
disorders (24–28). Although there has been no direct evidence
showing that inflammasomes mediate T-cell differentiation in SLE,
it has been shown that leptin promotes Th17 cell differentiation in
lupus erythematosus mice by activating the NLRP3 inflammasome
and thus participating in the pathogenesis of SLE (29).

In addition to disordered T-cell balance, abnormal B-cell
activation is also critically important in the pathogenesis of SLE.
Studies have shown that B cells constitutively express the NLRP3
inflammasome in the cytoplasm, which is activated by typical
pathogen-associated molecular products (PAMPs) (30). The
expression and activation of NLRP3 in B cells help to maintain
B-cell homeostasis and humoral immune responses and are
independent of IL-1b participation (31). Given the role of
NLRP3 inflammasome in maintaining B-cell homeostasis, it
has been suggested that the regulation of B-cell inflammasomes
is also an important mechanism in SLE. In addition to NLRP3, it
has been found that AIM2 is highly expressed in B cells from SLE
patients, promoting B-cell differentiation by regulating the Bcl-
6–Blimp-1 axis; this provides a novel target for SLE
treatment (32).

Because the primary focus has long been set on the adaptive
immune system, the role of neutrophils in SLE-related
inflammation has been neglected. However, in recent years, it
was discovered that neutrophil extracellular traps (NETs) are
critical in driving autoimmune responses (33) and that they are
involved in the pathogenesis of SLE (34, 35). In fact, a vicious
SLE pathogenic cycle appears to be at play: NETs activate the
NLRP3 inflammasome (20) while inflammasomes induce the
formation of NETs (36, 37).

Inflammasomes Mediate the Pathogenicity
of Autoantibodies
SLE is characterized by the production of numerous autoantibodies.
An interaction between autoantibodies and inflammasomes is
involved in the pathogenesis of SLE. As mentioned earlier,
inflammasomes are involved in the production of interferon-
induced autoantibodies (10), and in turn, autoantibodies produce
pathogenicity through inflammasomes.

Production of anti-dsDNA antibodies, diagnosed via the
antinuclear (ANA) test, is characteristic of SLE and is related
to disease activity. In addition to forming immune complexes
with dsDNA to produce pathogenicity, anti-dsDNA antibodies
May 2022 | Volume 13 | Article 894847

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Targeting the Inflammasomes in SLE
also activate the NLRP3 inflammasome and induce human
monocytes to secrete IL-1b, triggering a downstream immune
cascade and thus participating in the pathogenesis of SLE
(18, 19). Anti-dsDNA also promotes lupus nephritis (LN)
through the PKCd–NLRC4 axis (38).

In addition to anti-dsDNA, U1-snRNP antibodies are also
important in SLE. It has been found that this antibody activates
the NLRP3 inflammasome in monocytes, thereby contributing to
the pathogenesis of SLE (39, 40).

Inflammasomes Affect the Pathogenicity
of the IFN-I Pathway
It is recognized that IFN-I plays an important role in SLE (41).
Genetic variations of the IFN-I signaling pathway have been
shown to increase the risk of SLE in humans and mouse models
(42–44).

IFN-I regulates immune responses by activating
inflammasomes. For example, in influenza A virus-infected cells,
IFN-I signals activate the NLRP3 inflammasome through the
TLR3 pathway (45). During streptococcus pneumonia infection,
the IFN-I signaling pathway regulates the activation of the AIM2
inflammasome (46). Thus, in SLE induced by IFN-I,
inflammasome activation may be an important component of its
pathogenicity. Caspase-1 knockout (Casp1−/−) mice demonstrate
strong protection against prion-induced autoantibody production
and IFN-I responses, indicating that caspase-1 is likely to be
necessary for IFN-I-induced lupus (10). IFN regulatory factor 1
induced by IFN-I was shown to upregulate inflammasome activity
and participate in the pathogenesis of SLE (47).

How IFN-I regulates the inflammasome is incompletely
understood and is dependent on the signaling pathway. For
example, IFN-I activates the NLRP3 inflammasome through the
RIG-I/TLR3 pathway (45), while the STAT1 transcription factor
inhibits the activity of the NLRP1 and NLRP3 inflammasomes
(48). In addition, the inflammasome itself also affects the
expression of IFN-I, mainly playing a negative regulatory role.
Studies have found that mice lacking inflammasome sensor
AIM2, NLRP3, or adapter caspase-1 produce high levels of
IFN-I cytokines, and the activated inflammasome negatively
regulates IFN-I signal transduction through MyD88-IRF7 (49).

Therefore, the interaction between the inflammasome and IFN-I
is complex, and unexpected results often appear in clinical studies.
Clinical studies have shown that expression of the NLRP3/NLRP1
inflammasomes was significantly downregulated in PBMCs
obtained from patients with SLE compared with healthy controls;
further analysis showed that IFN-I levels were significantly inversely
correlated with the expression of NLRP3/NLRP1 inflammasomes,
suggesting a negative regulatory effect between IFN-I and the
inflammasome in SLE (50).

Inflammasomes Interact With Various
Signaling Pathways
The pathogenesis of SLE is extremely complex and involves many
signaling pathways such as NF-KB (51–54), JAK/STAT (55–57),
mTOR (58, 59), PI3K/AKT (55), RhoA-ROCK (60), and NETs
(34, 35, 61). Direct or indirect evidence has shown that different
Frontiers in Immunology | www.frontiersin.org 3
inflammasomes and various pathways play important roles
[(20, 38, 55, 56, 58, 60–99) Supplementary Table]. Although
most of these findings have not been verified in SLE and the
specific mechanisms underlying the interactions have not been
made clear, we need to recognize the potential importance of their
role. This also highlights the great complexity inherent in the
involvement of the inflammasome in the pathogenesis of SLE. For
example, NLRP3 (62, 63), NLRP1 (64), and AIM2 (65)
inflammasomes are upregulated by NF-KB signaling, while the
NF-KB pathway is upregulated by the NLRP3 and NLRP1
inflammasomes (66, 67); these interactions again show the
complexity of these mechanisms.
DIFFERENT ROLES OF INFLAMMASOMES
IN THE PATHOGENESIS OF SLE

As stated, inflammasomes promote the pathogenesis of SLE
through different mechanisms, among which NLRP3 has the
most direct evidence. It has been shown that NLRP3 mediates
the pathogenicity of autoantibodies and IFN-I, interacts with
NF-KB and other pathways to regulate the differentiation of T
and B lymphocytes, and participates in the pathogenesis of SLE
(Figure 1). However, in its interaction with IFN-I, IFN-I exerts
different effects on NLRP3 through different signaling pathways
(45, 48), and NLRP3 inhibits IFN-I signal transduction (49).
Therefore, it is not certain what role NLRP3 plays in SLE patients
with highly abnormal IFN-I activation.

In addition, AIM2 has a unique dual role in the pathogenesis
of SLE. In terms of the IFN pathway, AIM2 inhibits DNA-
induced IFN signals and plays a protective role in SLE. For
example, in LN, IFN-I induced AIM2 negatively regulates the
IFN-I response (100), suggesting that AIM2 may play a
protective role in IFN-induced SLE. However, this effect is
affected by p202. Studies have shown that increased expression
of p202 inhibits AIM2, thus mediating the pathogenicity of IFN
in SLE (101); murine studies have also confirmed that p202
inhibits the activation of the AIM2 inflammasome (102, 103).

The expression of AIM2 and p202 proteins differ by cell type
and sex (104, 105); AIM2 is mainly expressed in male patients
and innate immune cells, and the p202 protein is mainly
expressed in female patients and adaptive immune cells.
Therefore, in terms of the impact on IFN signals, AIM2 has
stronger pathogenicity in male SLE patients and may be
protective in female patients.

Unlike its effect on the IFN signaling pathway, AIM2
promotes SLE through other signaling pathways. AIM2
mediates DNA-induced macrophage functional maturation
and SLE pathogenesis (106). AIM2 promotes the Th17 cell
contributions to SLE (28) and inhibition of AIM2 expression
significantly improves the SLE syndrome in mice (106).

In general, AIM2 promotes SLE. Bioinformatics analyses have
found significant differences in the gene expression of the AIM2
inflammasome complex in SLE (107). AIM2 mRNA levels were
found to be upregulated in the liver, PBMCs, and the spleen of
SLE patients compared with healthy individuals (108). Using the
May 2022 | Volume 13 | Article 894847
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AIM2 inhibitor class C1 decoy oligodeoxynucleotides (ODNs) in
lupus-prone (NZB x NZW) F1 mice resulted in a delayed onset
of glomerulonephritis and prolonged survival (109).

In addition to NLRP3 and AIM2, the NLRC4 and NLRP1
inflammasomes are also involved in the pathogenesis of SLE. For
example, genetic evidence shows that NLRP1 gene
polymorphisms are associated with SLE (15, 110) and NLRC4-
mediated LN caused by anti-dsDNA antibodies (38). However,
the few available relevant studies are unable to clearly explain
their exact roles in SLE.
THE ROLE OF INFLAMMASOMES IN SLE
ORGAN DAMAGE

SLE is a heterogeneous autoimmune disease characterized by
multiple organ damage. Various inflammasomes are involved in
the pathogenesis of SLE through a variety of mechanisms, resulting
in different pathophysiologies and clinical manifestations of
SLE (Figure 2).

Kidney Damage and Inflammasomes
Kidney damage is the most common organ damage in SLE. As
such, it is used as an indication of a successful disease model.
Studies have shown that various inflammasomes are involved in
this renal damage. For instance, animal experiments have
confirmed that activation of the NLRC4 and NLRP3
inflammasomes promotes kidney damage (38, 111–114).
Human experiments have also shown that activated NLRP3,
NLRP1, and AIM2 inflammasomes are associated with the
progression of LN, and that NLRP3 activation has a positive
correlation with the activity index (AI) score in LN (115, 116).
Frontiers in Immunology | www.frontiersin.org 4
Moreover, gene expression studies have confirmed that NLRP3
and NLRP1 gene polymorphisms are associated with the
development of LN (16, 110, 117) and that the acquired
functional variant rs10754558 (NLRP3) is more common in
patients with LN, strengthening the view that the NLRP3
FIGURE 1 | The NLRP3 inflammasome is involved in the pathogenesis of SLE: (1) interacts with SLE pathogenic signals, such as NF-KB, PI3K/AKT and mTOR; (2) mediates
the inflammation of pathogenic antibodies including anti-dsDNA; (3) IFN-I activates NLRP3 inflammasome through the TLR3 pathway and inhibits NLRP3 inflammasome
through the STAT1 pathway; NLRP3 inhibits the expression of IFN-I; (4) neutrophil NETs activate the NLRP3-associated inflammation, which, in turn, induces the formation of
NETs; (5) the NLRP3 inflammasome promotes the maturation and secretion of IL-1b and IL-18 through caspase-1; (6) the NLRP3 inflammasome promotes the proliferation
and activation of Th17, Tfh, and B cells to mediate the disorder of cellular immune balance and promote the production of antibodies.
FIGURE 2 | Inflammasomes are involved in SLE-related organ damage:
available evidence shows that (1) NLRP3, NLRP1, and AIM2 inflammasomes
are involved in erythrina; (2) NLRP3, NLRP1, NLRC4, and AIM2
inflammasomes are involved in LN, and the role of AIM2 inflammasome is
complex and may have a protective effect; (3) the NLRP3 inflammasome is
involved in the pathogenesis of NP-SLE; (4) the NLRP3 inflammasome may
play a promotive or inhibitory role in serositis; (5) the NLRP1 inflammasome is
involved in arthritis. *Indicates that this inflammasome has a dual role.
May 2022 | Volume 13 | Article 894847
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inflammasome plays a key role not only in lupus but also in renal
damage (16).

Among the many inflammasomes involved in the
pathogenesis of LN, the role of AIM2 is particularly uncertain.
Human and animal studies have suggested that the AIM2
inflammasome promotes the progression of LN (106).
However, from the perspective of the influence of AIM2 on
IFN-I signals, AIM2 may play a protective role in the
pathogenesis of LN (100). As such, at this stage, it is difficult to
explain the role of AIM2 in the pathogenesis of LN.

Erythema and Inflammasomes
SLE has a strong genetic background; two genetic association
studies revealed that variations in IL-1b and NLRP1 are
associated with SLE-related erythema in Brazilian cohorts (110,
118). IL-1b is a potent player in cutaneous inflammation and is
central in the development of a Th17 micro-milieu in SLE.
Studies have also confirmed that the Th17 micro-environment
also regulates NLRP1-dependent caspase-5 activity in skin
inflammation, suggesting that NLRP1 has an important
relationship with skin inflammation (25).

Serositis and Inflammasomes
Currently, there is inadequate direct evidence to support that
inflammasomes cause serositis in SLE. However, previous studies
had shown that the 489c > T polymorphism of the P2RX7 gene is
associated with the activation of the NLRP3 inflammasome and
an increased release of the pro-inflammatory cytokines IL-1b
and IL-18; this indirectly reflects that the NLRP3 inflammasome
may be involved in the pathogenesis of SLE complicated with
pericarditis (119). However, there have also been conflicting
findings; the expression and function of P2X7R were shown to be
decreased in SLE patients with lupus serositis (120). Therefore, it
is uncertain whether serositis is related to the activation of the
NLRP3 inflammasome.

Arthritis and Inflammasomes
Although the role of the inflammasome in the pathogenesis of
arthritis has attracted increasing attention (121), their effect on
SLE arthritis is not known. At present, it has only been confirmed
that NLRP1 gene polymorphisms are associated with SLE
arthritis at the genetic level (110).

Nervous System Damage and
Inflammasomes
Neuropsychiatric symptoms of SLE (NP-SLE) are a common
manifestation and include psychosis, epileptic seizures, and
cognitive dysfunction in severe cases (122, 123). Gene-level
studies have shown that NLRP3 gene variations are associated
with susceptibility and neurological symptoms of SLE (117).
Inhibition of the NLRP3 inflammasome by procyanidin B2 has
been shown to be one of the neuropsychiatric symptoms found
in the systemic autoimmune MRL-LPR mouse (124), suggesting
that the damage to the nervous system may also be related to
NLRP3 inflammasome.
Frontiers in Immunology | www.frontiersin.org 5
STRATEGIES FOR SELECTING
INFLAMMASOME INHIBITORS IN SLE

Activated inflammasomes promote the production of IL-1 and
IL-18, and other inflammatory cytokines, thereby playing an
important role in regulating inflammation in SLE. In addition,
inflammasomes also interact with many signal pathways related
to the pathogenesis of SLE, regulate the differentiation of T, B,
and other immune cells, and participate in the pathogenesis of
SLE. Therefore, therapeutic inhibition of inflammasomes is a
promising direction for precision therapy of SLE. However, there
are no clinical, preclinical, or animal studies testing the treatment
of SLE with inflammasome inhibitors. Due to the previously
outlined disease heterogeneity, the specific inflammasome
inhibitors will need to match the underlying pathophysiology.
In clinical situations, we will need to comprehensively test which
inflammasomes are involved and select the corresponding
inhibitors to effect accurate treatment (Figure 3). Herein, we
propose such a therapeutic approach utilizing the targeted
inhibition of inflammasomes.

Selection of Inflammasome Inhibitors
Based on Clinical Characteristics
Different inflammasomes appear to be associated with different
organ damage in SLE (Figure 2). The NLRP3 inflammasome is
involved in erythema, nephritis, NP-SLE, and other organ
damage, so inhibition of the NLRP3 inflammasome may have
surprising effects. Since specific inflammasomes are related to
organ damage, the appropriate inflammasome inhibitor might be
selected according to the clinical picture based on organ
involvement in the specific patient. For example, an NLRP1
inflammasome inhibitor may be effective in patients with LN
complicated by arthritis or erythema; an NLRP3 inflammasome
inhibitor may be more effective in LN patients with NP-SLE.

Laboratory tests are helpful in the selection of inflammasome
inhibitors. During the onset of SLE, anti-dsDNA antibodies
activate the NLRP3 (18, 19) and the NLRC4 inflammasomes
(38), while anti-U1 snRNP antibodies activate the NLRP3
inflammasome (39, 40). Therefore, NLRP3 inflammasome
inhibitors should be selected when anti-dsDNA and anti-U1
snRNP antibodies are detected in patients.

Although the AIM2 inflammasome is involved in the
pathogenesis of SLE, it seems to be harmful only to male
patients (104, 105). The AIM2 inflammasome also has a
protective effect on the pathogenicity caused by IFN-I (100).
Therefore, AIM2 inflammasome inhibitors are likely more
suitable for male or non-IFN-I based SLE patients.

Selection of Inflammasome Inhibitors
Based on the Immune Cell Disorder
The strategy of selecting inflammasome inhibitors based on a
patient’s clinical presentation is relatively convenient and
straightforward in the average clinical setting. However, due to
the complexity of SLE, different mechanisms may underlie the
same clinical manifestation; SLE involves various immune cell
disorders that can be clinically similar. Disordered immune cell
May 2022 | Volume 13 | Article 894847
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function in SLE patients is regulated by the inflammasome.
Therefore, the selection of inflammasome inhibitors should be
based on the specific immune disorder.

NLRP3, NLRP1, NLRC4, and AIM2 inflammasome
inhibitors should be considered in SLE patients who show
disordered Th1/Tfh or Th17/Treg profiles; the NLRP3
inhibitors may be helpful for patients with dendritic cell
disorders (22). Because the expression of the AIM2
inflammasome is closely related to macrophage activation
(106) , th is inflammasome can promote Th17 ce l l
differentiation (28). Therefore, AIM2 inflammasome inhibitors
may be useful in patients with these cell disorders.
Selection of Inflammasome Inhibitors
Based on Inducing Factors
We lack effective methods to comprehensively profile immune
abnormalities in clinical settings. However, with an emerging
understanding of SLE pathogenesis, the immune abnormalities
caused by different inducing factors are becoming clearer.
Therefore, understanding the main mechanism involved in the
pathogenesis of SLE based on disease-inducing events can also
help in the selection of inflammasome inhibitors. For example,
virus infection is a common cause of recurrence or aggravation
and involves increased IFN levels. It is recommended not to use
AIM2 inflammasome inhibitors if there is a clear viral infection,
as the AIM2 inflammasome has a protective effect on IFN-I
(100). Ultraviolet radiation is a common factor that triggers SLE.
Studies have shown that ultraviolet radiation caused the onset of
SLE through abnormal activation of IFN-I signaling pathways
(125, 126). Likewise, it is recommended not to treat such cases
with AIM2 inflammasome inhibitors. In mice and human bone
marrow cells, it has been shown that bisphenol A (BPA)-induced
signals stimulate IFN-I signaling and further promote the
Frontiers in Immunology | www.frontiersin.org 6
pathogenesis of SLE (127). Therefore, SLE patients exposed to
BPA should not use AIM2 inflammasome inhibitors.
FUTURE PROSPECTS

The inflammasome is involved in the immune mechanism of
SLE, but it does not cause SLE. Considering that the
inflammasome is positively correlated with disease activity,
especially with inflammation related to IL-1 and IL-18, the
inflammasome plays an important role in the adaptive
immune imbalance. Therefore, inflammasome antagonists
could play an important role in controlling disease activity and
preventing recurrence.

Due to the paucity of relevant research and the fact that most
studies involve animal models, we are yet to fully understand the
role and clinical characteristics of inflammasomes in SLE. At
present, studies have mainly focused on the NLRP3
inflammasome but this does not dismiss the potential
effectiveness of other inflammasome antagonists in the
treatment of SLE. The evidence behind inflammasome
inhibitor selection is currently rudimentary but intended to
serve as a conceptual foundation to stimulate further research
in this field. Considering the complexity of SLE pathogenesis,
further clinical trials are needed. We also need to continue pre-
clinical mechanism-based research in parallel, which will
ultimately allow us to identify biomarkers of precision
treatments in the clinical–basic–clinical research cycle. In
addition, because inflammasomes are activated in many pathways
and interact with a variety of pathogenic signals in SLE, basic
research is more conducive to obtaining accurate and reliable data
for the selection of appropriate animal models (128, 129) and
adopting different blocking strategies (128) according to the
activation mechanism of the inflammasome.
FIGURE 3 | The selection strategies of targeted inflammasome inhibitors in SLE: existing evidence suggests that (1) inflammasomes mediate the pathogenicity of
autoantibodies; (2) different organ damage is related to the activation of corresponding inflammasomes; (3) inflammasomes affect the differentiation and proliferation
of immune cells and participate in SLE; (4) induced factors such as viral infection, ultraviolet rays, and BPA all play a role through IFN-I, while the AIM2 inflammasome
may play a protective role. In the selection of inflammasome inhibitors, many factors should be considered to screen out the inflammasome that plays the main
pathogenic role.
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The selection strategy of targeted inflammasome inhibitors
provided in this paper is not perfect, but it provides a clear
process for current clinical applications and research. Given the
heterogeneity of SLE, most of the targeted therapy drugs do not
perform well in clinical trials (1). A selection strategy of
inflammasome inhibitors based on specific mechanisms will
divide patients into clinical and pathophysiological subtypes,
ensuring several uniform pathogenesis groupings that should
improve the success rate of clinical trials and increase the efficacy
of patient treatments.
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