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Auto-segmentation for total
marrow irradiation

William Tyler Watkins*, Kun Qing, Chunhui Han,
Susanta Hui and An Liu

Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, United States
Purpose: To evaluate the accuracy and efficiency of Artificial-Intelligence (AI)

segmentation in Total Marrow Irradiation (TMI) including contours throughout

the head and neck (H&N), thorax, abdomen, and pelvis.

Methods: An AI segmentation software was clinically introduced for total body

contouring in TMI including 27 organs at risk (OARs) and 4 planning target

volumes (PTVs). This work compares the clinically utilized contours to the AI-

TMI contours for 21 patients. Structure and image dicom data was used to

generate comparisons including volumetric, spatial, and dosimetric variations

between the AI- and human-edited contour sets. Conventional volume and

surfacemeasures including the Sørensen–Dice coefficient (Dice) and the 95th%

Hausdorff Distance (HD95) were used, and novel efficiency metrics were

introduced. The clinical efficiency gains were estimated by the percentage of

the AI-contour-surface within 1mmof the clinical contour surface. An unedited

AI-contour has an efficiency gain=100%, an AI-contour with 70% of its

surface<1mm from a clinical contour has an efficiency gain of 70%. The

dosimetric deviations were estimated from the clinical dose distribution to

compute the dose volume histogram (DVH) for all structures.

Results: A total of 467contourswerecompared in the21patients. InPTVs, contour

surfacesdeviatedby>1mmin38.6%±23.1%ofstructures,anaverageefficiencygain

of 61.4%. Deviations >5mmwere detected in 12.0%± 21.3% of the PTV contours. In

OARs,deviations>1mmweredetectedin24.4%±27.1%ofthestructuresurfacesand

>5mm in 7.2% ± 18.0%; an average clinical efficiency gain of 75.6%. In H&N OARs,

efficiency gains ranged from 42% in optic chiasm to 100% in eyes (unedited in all

cases). In thorax, average efficiency gainswere >80% in spinal cord, heart, and both

lungs. Efficiency gains ranged from60-70% in spleen, stomach, rectum, and bowel

and75-84% in liver, kidney, andbladder.DVHdifferencesexceeded0.05 in 109/467

curves at any dose level. Themost common 5%-DVH variationswere in esophagus

(86%), rectum (48%), and PTVs (22%).

Conclusions: AI auto-segmentation software offers a powerful solution for

enhanced efficiency in TMI treatment planning. Whole body segmentation

including PTVs and normal organs was successful based on spatial and

dosimetric comparison.

KEYWORDS
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total marrow lymphoid irradiation
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1 Introduction

Segmentation of human anatomy on medical images is a

critical component of targeted radiation therapy (RT).

Delineations are used to design radiation therapy treatment

plans including conformal avoidance in 3D-conformal RT

(3DCRT) and as input to optimization algorithms for intensity

modulated radiation therapy (IMRT). These delineations are

typically performed by clinicians utilizing manual contouring

software, which allows for drawing structures on medical images

and tools including smoothing, interpolation, and intensity-based

thresholding. The accuracy of the delineation is perceived as a

critical element of modern IMRT and currently serves as a safety

mechanism for monitoring dose to organs at risk (OARs). The

3D-dose distribution is evaluated using a 2-dimensional dose

volume histogram (DVH) of proximal OARs and targets, and the

results of many studies reports “safe”DVH levels for OARs based

on clinical trials and clinical experience to guide future

treatments. The process of manual segmentation, DVH

evaluation, and multiple layers of human review (dosimetrists,

physicians, and physicists) has allowed for the successful

introduction of high-precision IMRT, including total marrow

irradiation (TMI) and total marrow and lymphoid irradiation

(TMLI) (1–3). TMI and TMLI treatment planning requires

extensive contouring but allows enhancement the antileukemic

effect by delivering higher doses to the region of leukemia niche,

the bone marrow and lymph nodes, while reducing organ dose

exposure compared to conventional total body irradiation (TBI).

TMLI significantly improved overall survival in patient with

relapse/refractory leukemia when compared to TBI (4). Dose

escalation using conventional TBI did not improve survival

because of radiation-induced toxicities (5). While evidence of

the clinical advantages of TMI is growing, clinical

implementation will rely on the technological capabilities of

adopting institutions. The significant manual effort required in

contouring the entire body including OARs, and TMLI target

volumes is a major barrier to clinical implementation.

The potential to replace human delineation with computerized

methods has been a focus of image science for decades. The

continued interest in Artificial Intelligence (AI) for this manual

task is predicated on the accuracy, consistency, and human trust in

the software. However, there are not universally accepted methods

to determine whether segmentation is accurate, precise, or reliable

in human- or algorithm- defined delineations. Despite significant

efforts in computer vision and shape modeling including atlas-

based methods (6, 7), deformable-image registration (DIR) (8–10),

probabilistic modeling (11), and AI, fully automated segmentation

remains infeasible. None of these advancements have broken

through to consistently replace manual delineation in RT (12,

13) despite retrospective evidence that auto-contouring may be

more consistent in estimating DVH dose associated risk (14). In

order to validate auto-segmentation for clinical use, tools include
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human scoring (12, 15) and computational indices including the

Sørensen-Dice coefficient (Dice) and the Hausdorff Distance (HD)

have consistently been deployed, but they provide limited value in

measuring clinical efficiency gains.

The perceived critical importance of contour accuracy has

led to considerable time and effort in manual review and manual

edits of automated contours produced by these algorithms, and

limited efficiency gains. More recently, AI- deep and transfer

learning methods are being used for auto-segmentation with

significant promise for clinical adoption due to their accuracy

and consistency despite the lack of widely accepted criteria for

defining accuracy and consistency. Several recent studies report

on head-and-neck (H&N) and pelvis auto-segmentation have

been evaluated using Dice, HD and other metrics (16). Dice and

HD were also used to evaluate the H&N Auto-Segmentation

Challenge 2015 (17). The common approach of the reviewed

studies is three-fold, (1) select sets of comparison metrics, (2)

generate auto-segmentations, and (3) compare auto-

segmentations with clinical/database contours. This approach

has been published in anatomic sub-sites including H&N (16,

18), thorax (19, 20), abdomen (21, 22), pelvis (23–25), and whole

body (26). Unlike these studies, our institution has clinically

introduced an AI- auto-segmentation software, Medical Mind,

Inc. (27) for all RT patients. All patient images are auto

segmented prior to dosimetrist and physician interaction in

the treatment planning system. The Medical Mind software

has been clinically deployed for all normal contours in

external beam treatment planning including brain, H&N,

thorax, abdomen, and pelvic RT. Using this approach, this

work demonstrates prospective congruence between AI- and

clinical segmentations.

As an experienced innovator in TMI/TMLI treatment, a

TMI/TMLI AI-contouring model was developed based on

clinical data from patients treated at our institution. By

providing approximately 100 prior clinical cases of total body

contouring from TMI/TMLI treatments including planning

target volumes (PTVs), a TMI/TMLI AI-contouring model

was optimized using the Medical Mind software. The TMI/

TMLI model includes 27 individual OARs and 4 PTVs to assist

with the laborious task of total body contouring and to create

consistency in the clinical treatment planning workflow. The

TMI/TMLI PTVs are based on normal anatomy (not tumors)

and therefore can potentially be reliably, automatically

identified. The OAR set includes important regions of brain,

H&N, thorax, abdomen, pelvis, and extremities in a single set of

contours. In the current workflow, clinicians including

dosimetrists, physicians, and physicists are presented with the

auto-segmentations prior to human delineation. In this method,

the clinician must make a clinical judgement about whether an

AI- contour edit is important and necessary to clinical treatment

plans. This work describes the initial experience and success of

the TMI/TMLI contouring model in a prospective approach.
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2 Methods

The Medical Mind AI-software was trained on 100 prior

clinical TMLI clinical patients including OARs and PTVs.

The 100 TMI patients were treated consecutively at our

institution. The datasets and contours include multiple

dosimetrist, physicist, and physician contributions and

standard planning guidel ines were used to ensure

consistency. The model was implemented using Python 3.6

(28) and PyTorch 1.0 (29). The dataset was split into a

training set, a validation set, and the testing set. The

training set contained 70 patients, the validation set

contained 15 patients and the testing set also contained 15

patients. The Medical Mind software uses a Convolutional

Neural Network (CNN) following the U-Net architecture. It

contains an encoder and a decoder, and the convolutional

layers are replaced by context aggregation blocks. Both the

encoder and decoder consist of five context aggregation

blocks. The feature maps in the encoder part are

concatenated to the corresponding feature map in the

decoder part. The Adam optimization algorithm (30) was

used with a 0.001 learning rate. The model was trained over

50 epochs and the best model was selected, which is the one

that had the lowest validation loss score. The convolutional

layers were initialized using Xavier Uniform Initialization

(31). All these convolution layers were followed by a batch

normalization layer and a Rectified Linear Unit (ReLU) layer.

The model was trained and tested using a GTX 1660-S GPU.

The model was deployed clinically, and this work details our

initial (6-month) experience with the TMI/TMLI patients using

the system. This work compares the final, clinically approved

and the original AI- contours through volume, surface, and

composite comparison metrics. The edited and original AI

contour dosimetry evaluated on the planning dose are also

compared and correlated to the various comparison metrics.

Efficiency gains are estimated based on the relative number of

manual edits performed on the AI-contours.

Computed Tomography (CT) simulation for TMI/TMLI

treatment planning is acquired in a head-first supine (HFS)

position spanning head-to-toes. The HFS images are sent from

CT-simulation to the Medical Mind software, auto-

segmentation is performed by selecting the TMI/TMLI model,
Frontiers in Oncology 03
delineating, and sending for import into treatment planning

software. The process of opening the Medical Mind software via

a secure interface to an on-network PC, identifying the patient,

auto-segmentation of the patient, sending to clinical treatment

planning software, and importing the AI-contours is typically<7

min. For each patient, at least one dosimetrist and at least one

radiation oncologist review the AI-segmentations and edit PTVs

and OARs prior to clinical treatment planning. The HFS CT is

split at mid-thigh and flipped to FFS for treatment delivery from

head to mid-thigh in HFS, and from the toes to mid-thigh in

FFS, with composite dosimetry in the junction evaluated at the

time of treatment planning. Contours and dosimetry were

evaluated only on the HFS scan. In the FFS scan, only PTV-

bone is included and delivery is often simple parallel-

opposed beams.

The Medical Mind TMI-model generates 21 unique OARs

(plus 6-additional Left/Right pairs) and 4 PTVs. The OARs are

detailed in Table 1. The four PTVs are the PTV-Bone, the PTV-

lymph nodes (PTV-LNs), PTV-ribs, and PTV-skull. The PTVs

are 1-10 mm expansions of anatomic structures visible on CT

and were trained on clinically utilized PTVs from the 100 prior

TMI patients. The PTV-Bone is approximately an 8 mm

expansion of all bone excluding skull and rib. The PTV-skull

is an approximate 1-mm expansion of the skull. PTV-LNs

includes approximately 5 mm margins about cervical, axillary,

mediastinal, paraaortic, and pelvic lymph nodes. The PTV-ribs

includes the chest wall, all ribs, and abuts the spinal canal.

Figure 1 shows an example PTV set generated from the Medical

Mind TMI/TMLI model.

Since introducing the auto-segmentation TMLI-model and

compilation of data, 21 patients were treated with this workflow.

All CT scans were performed with 7.5 mm slice spacing (range of

134-262 slices per patient), and in-plan voxel resolution ranged

from 0.98-1.56 mm. Treatment Delivery was designed to deliver

dose to bone, bone marrow, blood, and lymphoid tissue. Treatment

planning has been previously examined in detail including early

development on Tomotherapy (Accuray, Inc) for helical delivery (1)

and on Eclipse for multi-iso volumetric modulated arc therapy

(VMAT) (32). Eighteen of the patients were treated with helical

Tomotherapy, three were treated with multi-isocenter VMAT on

the Varian Truebeam (Varian Medical Systems, Palo Alto, CA)

linear accelerator.
TABLE 1 Organ at Risk (OAR) contours included in the TMI/TMLI auto-segmentation model.

H&N Thorax Abdomen Pelvis

Brain Mandible Esophagus Spleen Bowel Bag

Eyes (L+R) Oral Cavity Heart Stomach Bladder

Lens (L+R) Larynx Lungs (L+R) Liver Rectum

Optic Nerve (L+R) Thyroid Spinal Cord Kidneys (L+R)

Optic Chiasm Parotids (L+R)
fron
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2.1 Region of interest comparison metrics

Common met r i c s to compare AI - and ed i t ed

segmentations include volume and surface overlap measures.

Volume overlap methods include the Sørensen-Dice

coefficient (Dice). Dice presents the relative overlap of two

segmentations, where a value of 0 is no overlap and a value of 1

is 100% overlapped. However, Dice can be very misleading in

terms of segmentation quality. For example, structures with

large volumes can have a high-volume overlap (Dice > 90%)

with possibly 100% of the surface deviating by a large distance.

For 2-spheres of radius r1 and r2, dice is >0.90 for all r1/r2

within 3%, which is >3mm for all r1, r2>10cm. Dice is an

important measure of contour quality and overlap, but

perhaps not a sufficient measure of contour quality

or efficiency.
Frontiers in Oncology 04
Surface metrics to measure contour accuracy include the

Hausdorff Distance (HD) (33). Measured at each point of the

surface, the HD creates a distribution of Euclidean distances to

nearest points. HD is typically expressed as a percentile; the 95th

percentile (HD95) presents the maximum distance from surface-

to-surface for 95% of the reference to test contour surface. An

HD95 = 5 mm demonstrates 95% of the surface points are less

than 5 mm. However, presenting HD at a percentile does not

provide adequate information to assess clinical contour quality

or efficiency gains. For example, an HD95 = 3.1mm could imply

100% of the contour deviates by >3mm or could imply 94.9% has

HD<1mm and 5.1% deviates by >3mm. Like Dice, HD95 offers

value but is not an adequate assessment of contour quality or

efficiency gains.

Due to the limitations in classical volume overlap including

Dice and HD percentiles (for example HD95) for estimating
FIGURE 1

TMI/TMLI target volumes include total bone with margin (PTV-Bone), lymph nodes extending from the head and neck to the pelvis with margin
(PTV-Lymph Nodes), the chestwall containing ribs and the mediastinum (PTV-ribs), and the skull (PTV-skull).
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contour quality and efficiency gains, we aim to measure the

congruence of the AI- and human- contour by the relative

surface which deviates by less than a fixed distance d. This can
be presented as the fraction or the percent of the surface which

deviates by less than this distance. For segmentations defined by

the set of 3D-points X and Y with elements xi and yi, the HD can

be written

 HD X,Yð Þ = max supxi∈X inf   xi,  Yð Þ, supyi∈Y   inf X, yið Þ� �

Where sup is the least upper bound or supremum, inf is the

greatest upper bound or the infimum. We define the efficiency

gain (Eff) at a spatial tolerance d by the ratio of the cardinality

(card) of the sets HD(X,Y)<d and HD(X,Y):

Eff dð Þ = card HD < dð Þ
card HDð Þ  

Where it is assumed, all elements are unique since each

represents a unique spatial position on the surface. We propose

the efficiency measure evaluated at distance d =1mm, and

efficiency is the relative contour surface with HD<1mm. The

1mm distance is approximately equal to the axial intra-voxel

spacing of the image and therefore can be considered the relative

amount of the AI-contour which was edited by the clinician, and

an unedited contour is related to enhanced efficiency. The

clinical efficiency gain was estimated by the percentage of the

AI-contour-surface within 1mm of the clinical contour surface.

Examples of efficiency gains include unedited AI-contours will

have HD<1mm = 100% and an efficiency gain of 100%, an AI-

contour with HD<1mm = 70% has an efficiency gain of 70%.

Computation of Dice and HD was performed in MATLAB

using binary images defined on the CT-coordinates. Sub-voxel

vertices were not considered. Dice is a built-in function of

MATLAB (34) and was computed on AI and human edited AI

contours for all OARs and PTVs. HD was computed as the

Euclidean distance arrays between voxels of the binary images

via the distance transform function in MATLAB (35). In this

analysis, Dice, HD<1mm, and HD95 each provide unique

information about overall contour quality (Dice volume

overlap), the potential efficiency gains (HD<1mm), and the

magnitude of the surface deviations (HD95). Section 3.1

details contour similarity metrics in the patient dataset.
2.2 Dose volume histogram comparison

All treatments were delivered twice-daily (BID) at PTV dose

levels including 12 Gy in 8 fractions, 14 Gy in 8 fractions, 18 Gy

in 9 fractions, and 20 Gy in 10 fractions. Doses varied based on

protocol and patient, but dosimetry goals in the PTVs

consistently included the volume which receives 100% of

prescription dose was > 85% (V100%>85%). DVH planning

objectives for OARs followed institutional protocols (36)
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including dose to 10% volume (D10), dose to 50% volume

(D50), and dose to 80% volume (D80) with levels specified

from population statistics of various initial testing and patient

cases. Lung mean dose was limited to 8 Gy in all cases, kidney

dose was not limited consistently. The clinical dose distribution

of the upper body plans includes H&N, thorax, abdomen, and

pelvic regions. This clinical dose distribution was used to

computed cumulative DVH based on sampling both clinical

and AI- contours. Plans were not re-optimized on each contour

set. The DVHs were compared in order to estimate the potential

dosimetric significance of contour error.

The cumulative DVH was computed for all AS- and clinical-

contours utilizing the dicompyler python module (37). DVH

calculations were performed at the axial voxel resolutions (0.98-

1.56 mm) and three dose and ROI slices per 7.5 mm CT-slice

resulted in a longitudinal resolution of 2.5 mm. DVH was

computed for each ROI, and DVH-differences were estimated

at all dose levels for all structures in 1 cGy dosimetric bins. Using

a relative volume difference of 0.05 at any dose level to flag a

potentially clinically significant DVH difference, then DVH was

compared along neighboring dose levels using a dose tolerance

threshold of 20 cGy. All DVH differences which exceed 0.05

relative volume difference at dose levels ≥20cGy were flagged as

“failing” criteria.

To compare the distributions of Dice, HD95, and HD<1mm

between “passing” and “failing” structure DVH sets, the two-

sample Kolmogorov-Smirnov (KS) test was used as

implemented in MATLAB. The 2-sample KS-test assumes

continuous distributions, and significance testing was

performed at a 5% significance level. In order to determine

which contour metric (Dice, HD95, and HD<1mm) best predicts

DVH variations, the KS test statistic was used to measure

distance between the distributions. Section 3.2 summarizes the

observed dosimetric differences and correlations them with Dice,

HD95, and HD<1mm.
3 Results

3.1 Region of interest comparisons

A total of 467 contours were compared in the 21 patients. In

estimates from clinical staff, contouring time for complete

contouring of TMI/TMLI cases was reduced from 4-8 hours

for full manual contouring to 1-3 hours by editing the AI-

contours, or roughly a 75% efficiency gain. These efficiency gains

were directly reflected in high rates of unedited contours

estimated from HD<1mm. In all OARs, deviations >1mm

were detected in 24.4% ± 27.1% of the structure surfaces; an

average clinical efficiency gain of 75.6%. Deviations > 5mm were

detected in 7.2% ± 18.0% of all OAR contours. The efficiency

metric was not well correlated to DICE (r = 0.76) or negatively
frontiersin.org
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correlated to HD95 (r=-0.52) indicating the efficiency gains from

AI-contouring is not trivially related to these traditional overlap

or surface metrics.

Figure 2 shows dice and HD<1mm for all OAR structures

(right/left pairs are grouped). Of the 21 structures, 18/21 have

Dice>0.8, with esophagus, optic nerves, and optic chiasm with

significantly lower Dice coefficients. As shown in Figure 2,

average Dice > 0.9 was observed in relatively large structures

including stomach, oral cavity, rectum, and bowel but average

HD<1mm was<0.7 in these cases.

In H&N OARs, efficiency gains ranged from a low of 42% in

optic chiasm to 100% in eyes (unedited in all cases), with mean

and standard deviation 77.3% ± 18.9%. HD95 was >1mm in only

oral cavity (1.02mm). The optic nerves and chiasm were edited

significantly for all patients, but this may be a function of large

slice spacing used in TMI/TMLI CT-simulation, in general the

clinical contours were larger than the AI-contours. The HD95

was not well correlated to HD<1mm (r=-0.34) in the H&N area.

In thorax OARs, average efficiency gains were >80% in spinal

cord, heart, and both lungs, with average esophagus HD<1mm

just 21%. HD95 was ≤1 mm in lungs and spinal cord, heart, and

spinal cord. Differences in lung and heart were visually evident

in structures with Dice< 0.9 and in at least one case, were due

human error due to window/leveling variations in borders.

Differences in spinal cord were evident but minimal. The

esophagus consistently scored low dice, low efficiency, and

relatively high HD95. The AI-segmented esophagus did not

extend superiorly into the cricoid cartilage border, instead

including just a portion of the esophagus in the T-spine

region, leading to significant human edits.

In abdomen and pelvis OARs, efficiency gains ranged from 60-

70% in spleen, stomach, rectum, and bowel and 75-84% in liver,

kidney, and bladder. These results were associated with relatively

high values of HD95 indicating clinically significant edits in spleen

(2.1 ± 4.0 mm), rectum (2.7 ± 3.2 mm), and bowel (2.5 ± 2.8 mm).

Bowel was dependent on edits to include the entire bowel bag, or
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individual bowel loops. Similar to esophagus, the kidneys

consistently showed human edits to correct the superior border of

the AI-contours. Average HD<1mm was 75.8%, and HD95 was

1.4 ± 1.6 mm. However, in the (approximately) 25% of the non-

overlapping, superior region of kidney was HD95 was 8.7 mm. In

this case, manually adding slices to the superior kidney contour can

still represent a significant clinical efficiency gain even though

metrics indicate edits could be significant.

Results in PTVs were generally worse than in OARs but still

show significant efficiency gains in 4 PTVs. All PTV data is

shown in Table 2. Average Dice across all patients and PTVs was

86% ± 15%, HD<1mm was 61% ± 23%, and HD95 was 11.0 ±

22.2 mm.

There was a weak correlation between Dice and HD<1mm

(r=0.79). Dice values >0.8 did not imply high values of HD<1mm,

demonstrating that structures can have significant overlap with

potentially meaningful surface disagreement. Figure 3 shows

HD<1mm as a function of Dice. In general, only a very high

Dice value (>0.98) ensures and HD<1mm is >0.7. Correlations

betweenHD<1mm andHD95 were not strong (r=-0.65). This weak

correlation is expected, HD95 describes the largest discrepancy,

HD<1mm is a very stringent metric demonstrating overlapping

surfaces. An example patient image including manual and AI

contours is shown in Figure 4.
3.2 Dose volume histogram comparisons

DVH differences exceeded 5% relative volume difference in

109/467 of all curves at any dose level. The most common 5%-

DVH variations were in esophagus (86%), rectum (48%), and

PTVS (22%).

Dice, HD95, and HD<1mm were statistically different

between the pass and fail groups (p<10-7 in all comparisons).

The KS-statistic measures distance between the distributions and

indicates the Dice KS-statistic (0.65) was more predictive than
FIGURE 2

Dice (left) and relative contour surface with HD<1mm (right) for all structures. Standard deviations for the patient population for each structure
are shown. In 18/21 contours average Dice is >0.8. Efficiency gains estimated from HD<1mm are >0.60 in 18/21 structures.
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HD95 (0.37) or HD<1mm (0.48) in predicating DVH

differences. The average Dice in passing vs. failing DVH was

0.91 ± 0.16 vs. 0.71 ± 0.24. Average HD95 was 2.2 ± 4.6 mm vs.

11.9 ± 22.6 mm and HD<1mm was 80% ± 22% vs. 51% ± 27%.

All values show a clear distinction between passing and failing

DVH-criteria groups, and the distributions are shown in

Figure 5. This result is intuitive since Dice and DVH are

volume-based metrics whereas HD is a surface metric.

The obvious result that DVH metrics will fail with low DICE

is not thought-provoking. In 15 cases where low Dice score

passed the DVH criteria of 0.05 relative volume/20cGy tolerance

level, 6 were in optic chiasm and 5 were in optic nerves. This

demonstrates limitations cumulative DVH, as significant dose-

volume differences can be hidden by normalizing to relative

volume even in high-gradient areas. Another source of false-

positive DVH match is uniform dose; any 2 structures will have

equal cumulative DVH in a uniform dose area. In lens, 6/21

cases failed DVH criteria, with 2/21 cases showing major

differences in maximum dose between clinical contours

(Dmax<3.5 Gy) and AI-contours (>5 Gy). In optic structures

including chiasm and nerves, 6/63 cases failed the DVH criteria

with Dmax differences >2 Gy in 3 cases.

There is possibly a lower limit on usable structures in dose

and DVH calculation from AI-contours (where Dice<0.6), but

there also exists a grey area in Dice correlation where the pass/

fail distributions significantly overlap in the range 0.7-0.98.

Structures which failed DVH-criteria with Dice in the range of

0.7-0.98 include 13 PTVs and 56 OARs. PTVs which failed

DVH-criteria with Dice>0.7 show the AI-DVH is lower than the

human contour DVH, indicating AI-contours outside of the

clinically used volumes. Over-contouring of PTVs, if used in
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planning, would result in high dose to normal, untargeted

tissues. Despite relatively high DICE scores (>0.93) in six

cases, DVH differences exceeded 0.30 relative volume at all

doses in many cases. These results demonstrate the critical

importance of PTV contouring in highly conformal radiation

such as TMI/TMLI.

There were 56 OARs which failed DVH-criteria with Dice>0.7

including 6 brain contours, 5 thyroid contours, 6 kidney contours,

and 9 rectum contours. Consistent DVH differences were

observed for the same OARs across many patients. In the case

of Rectum, 8/9 AI-DVHs were > human-DVHs due to humans

adding regions of sigmoid bowel to the rectum contour. In the

case of Kidney, missing regions of superior kidney resulted in AI-

DVHs< human DVHs in all cases. Figure 6 shows DVH

computed on AI and human contours for (top) 3 rectum cases.

Dice ranges from 0.71 (left) to 0.91 (right), but the DVH

differences are not significantly reduced as Dice increases.

Similar results were observed in Kidney (middle) and Thyroid

(bottom) with Dice ranging from 0.77 to 0.93. There was not a

significant reduction in DVH differences as Dice is increased from

0.7-0.9 in these structures.
4 Discussion

The TMI model was trained on >100 patients and validated in

the current study on 21 patients. This modest sample size showed

excellent results in most structures in all patients, but it is possible

additional patients may reveal additional problems with the AI-

segmentations. AI-models from trained from limited data are

known to be susceptible to overfitting, including in auto-
TABLE 2 PTV statistics are summarized including Dice, relative surface with Hausdorff Distance<1mm (HD<1mm), and the 95th percentile of HD.

PTV PTV-Bone PTV-Lymph nodes PTV-Ribs PTV-Skull

Dice 85.1% ± 21.9% 83.0% ± 16.6% 94.6% ± 4.4% 81.4% ± 9.9%

HD<1mm 40.6% ± 22.1% 53.4% ± 12.8% 80.1% ± 11.7% 72.4% ± 20.0%

HD95 30.5 mm ± 38.0mm 7.5mm ± 3.6mm 3.0mm ± 2.6mm 2.8mm ± 2.2mm
FIGURE 3

Dice (x-axis) vs. relative surface area with Hausdorff Distance<1mm (HD<1mm). Low Dice values (<0.5) equated to low HD<1mm in almost all cases, but
the converse was not true. High Dice (>0.8) could still result in significant human editing, with HD<1mm ranging from 0.1-0.9 in this region.
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segmentation (38). In this sample, we have shown the Medical

Mind TMI/TMLImodel is consistent and reliable for contouring a

vast majority of structures. We show significant DVH differences

in high gradient areas (PTVs and optic structures) which

reinforces our current workflow of AI-contouring followed by

manual review. However, for many OARs, even low Dice overlap

may not result in significant errors in DVH estimates and may be

reliable to use clinically without edits.

The clinical validity of AI-defined OARs evaluated by Dice

and HD95 has been assumed in prostate (39) including in

physician-edited contours in a prospective study (40). The

current study has demonstrated limited value in Dice and

HD95, and therefore introduces a more stringent comparison

metric, HD<1mm. HD<1mm is the relative proportion of contour
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surface within 1mm of the clinical contour. In prospective studies

where AI-contours are used as a starting point for clinical

contours, we strongly recommend using this or a similar, more

challenging metric in describing the accuracy of the segmentation.

In DVH calculation, we found Dice is the strongest predictor

of DVH congruence. However, a high Dice value did not ensure

DVH differences<0.05, and DVH for structures with Dice >0.9

was not significantly different than structures with dice in the

range of 0.7-0.8.

The TMI/TMLI dataset is unique for its use of relatively

large slice spacing (7.5 mm). However, from a clinical

perspective this is equivalent to defining contours on every

other 2.5mm slice and utilizing interpolation. DVH calculation

was performed on a 2.5mm grid, so that large axial contour
FIGURE 4

An example patient image is shown including manual and AI contours in parotids, larynx, lung, heart, liver, and kidneys. The human and TMI
contours are indistinguishable in most organs, however the kidneys demonstrate some variation In the axial image (borrom right) the human
drawn kidneys are significantly larger than the AI-kidneys due to clinician preference.
FIGURE 5

Dice, HD95, and HD<1mm cases which pass (blue) and fail (red) the applied DVH criteria. Low Dice and low HD<1mm still showed similar DVH
in structures which received low, or no dose. HD95>20mm showed no passing DVH.
frontiersin.org

https://doi.org/10.3389/fonc.2022.970425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


) Kidney AI-contours of kidney resulted in DVHs consistently

W
atkin

s
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
2
.9
70

4
2
5

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
9

FIGURE 6

DVHs computed from Human (solid) and AI- (dashed) contours, with difference. (top) AI-rectum contours were > human DVH in 8/9 cases. (middle
lower than the human contours. Thyroid showed minor differences independent of relatively low Dice values.

https://doi.org/10.3389/fonc.2022.970425
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Watkins et al. 10.3389/fonc.2022.970425
variations would not heavily influence dose evaluation. Medical

physics datasets including H&N MRI (18) and thoracic cancers

(19, 20), rectal cancers (41), and cervical cancers (25, 42) have

been made available to validate and inter-compare auto-

segmentation algorithms. The TMI/TMLI experience at our

institution can contribute to this meaningful inter-institution

comparison of AI algorithms for total body contouring. This is

the first study demonstrating AI-segmentation in the whole

body simultaneously. Chen et al. (26) introduced an AI-

algorithm called “WBNet” and achieved average Dice in the

range of 0.81-0.84 in a large number of datasets including H&N,

thorax, abdomen, and pelvis sites individually. In our

comparisons, only esophagus, lens, optic nerves, and optic

chiasm showed average Dice<0.85. These impressive results

were realized in terms of clinical efficiency gains as well, with

team members routinely reporting 50-90% efficiency gains in

contouring these complex cases.

In small structures such as lens and optic nerves and chiasm, a

low Dice score does not imply a poor contour. Due to their limited

size, a very small deviation can lead to a very low Dice score. A

known limitation of multi-layer deep learning in image recognition

and segmentation is limited number of features (43–45) which may

explain why optic nerves, and chiasm are among the worst scoring

structures in Dice in the current study. However, average Dice 0.42-

0.45 in the optic structures are not significantly lower than those

reported in other studies, 0.37-0.65 (46) and 0.45-0.69 (47). In these

small structures, a single 7.5-mm slice difference in the TMI/TMLI

contour set can lead to large deviations. From a clinical efficiency

perspective, these relatively small structures (<1cc volume) are

defined on as few as 1 TMLI slice and do not add significant

workload to manual contouring when compared to larger

structures like brain, lung, and liver which require contouring on

dozens of CT-slices. In esophagus, boundary errors led to low DSC

and high HD95. Esophagus needs closer scrutiny; it’s known to

potentially include large inter-slice positional variations and low

CT-contrast. In optic structures, esophagus, and similar structures

which can vary significantly over small regions of cranio-caudal

anatomy, training AI on large slice spacing images may lead to

significant errors if applied to finer resolution images.

It may be possible to link AI algorithms with contour quality

assurance using, for example a multi-parametric approach (15, 48)

or machine learning approach (48) including sensitivity in Tumor

Control Probability (TCP) and Normal Tissue Complication

Probability (NTCP) (49). A recent review article agrees multiple

endpoints are needed in assessing contour quality, and clinical

validation of meaningful TCP/NTCP endpoints will guide

meaningful contour deviations (50). In dose escalated TMI/TMLI

maximum dose may not be a critical evaluation datapoint. Instead,

volume-based metrics such as V10, V50, and V80 may be more

useful to identify quality treatment plans. Our results demonstrate

that DVH-based metrics are not closely related to Dice, HD-95, or

HD<1mm in OARs, but in general HD<1mm > 60% and

Dice>90% led to consistent DVHs. In PTVs, the scenario is much
Frontiers in Oncology 10
different, and we consistently observed PTV-DVH differences >0.30

across all dose levels even with very high Dice scores. Sufficient

target delineation is an essential requirement of conformal radiation

to ensure disease control and reduce the possibility of underdosing

the target (51). Over-contouring PTV results in a larger treatment

volume in normal tissue, which is very familiar to conventional TBI

regimens but may not be appropriate for TMI and TMLI.
5 Conclusions

Utilization of auto-segmentation for TMI and TMLI

treatment planning presents a breakthrough for clinical

efficiency in implementation of TMI/TMLI treatments.

Efficiency gains of 80-90% are possible in >20 structures

including PTVs and OARs.
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