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Abstract
The novel coronavirus disease, COVID-19, has rapidly spread worldwide. Developing methods to identify the therapeutic

activity of drugs based on phenotypic data can improve the efficiency of drug development. Here, a state-of-the-art

machine-learning method was used to identify drug mechanism of actions (MoAs) based on the cell image features of 1105

drugs in the LINCS database. As the multi-dimensional features of cell images are affected by non-experimental factors,

the characteristics of similar drugs vary considerably, and it is difficult to effectively identify the MoA of drugs as there is

substantial noise. By applying the supervised information theoretic metric-learning (ITML) algorithm, a linear transfor-

mation made drugs with the same MoA aggregate. By clustering drugs to communities and performing enrichment

analysis, we found that transferred image features were more conducive to the recognition of drug MoAs. Image features

analysis showed that different features play important roles in identifying different drug functions. Drugs that significantly

affect cell survival or proliferation, such as cyclin-dependent kinase inhibitors, were more likely to be enriched in

communities, whereas other drugs might be decentralized. Chloroquine and clomiphene, which block the entry of virus,

were clustered into the same community, indicating that similar MoA could be reflected by the cell image. Overall, the

findings of the present study laid the foundation for the discovery of MoAs of new drugs, based on image data. In addition,

it provided a new method of drug repurposing for COVID-19.
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Introduction

The emerging coronavirus disease 2019 (COVID-19) has

been identified to be caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). According to the

National Health Commission of The People’s Republic of

China, since the outbreak of COVID-19 in December 2019

in Wuhan, more than 80 000 patients have been infected in

China, and more than 100 million patients have been

infected worldwide (World Health Organization. Coron-

avirus disease (COVID-19) pandemic, 2021). However, theLu Han and Guangcun Shan authors contributed equally to
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number of patients diagnosed with COVID-19 and deaths

associated with this disease are still increasing. Thus far,

there is no proven effective medicine and/or treatment

available for COVID-19 (Sanders et al. 2019; Dhawan

et al. 2020). Medical teams worldwide have been fully

engaged with the COVID-19 pandemic and actively con-

ducting many scientific studies on the pathogenesis, mode

of transmission, clinical profiles, management, and disease

prevention of this disease (Zhou et al. 2020; Zumla et al.

2020; Li et al. 2019; Wang et al. 2020; Wrapp et al. 2020).

Drug repurposing can help in the rapid identification of

potential therapeutic medicines among the existing ones

with a known safety profile. Such repurposed drugs might

then be promptly used in the clinic to overcome the current

therapeutic challenges of COVID-19 (Pushpakom et al.

2019). At present, clinical trials of numerous potential

drugs for the treatment of COVID-19 have already begun

(Sanders et al. 2019; Dhawan et al. 2020). Apart from

drugs that can directly interact with the virus, many drugs

may exert antiviral effects through host targets. For

example, chloroquine can inhibit the endocytosis of

COVID-19 through different mechanisms, such as chang-

ing the intracellular environment and increasing the intra-

cellular pH value, to achieve the antiviral effect (Savarino

et al. 2003). In addition, some drugs targeting the cell

pathway may be effective against SARS-CoV-2 (Kin-

drachuk et al. 2015).

As virus invasion, replication, and release are highly

host dependent, analyzing the effects of drugs on cells is

important for the identification of effective antiviral drugs.

Transcriptome data, proteome data, and other information

obtained from the direct interaction of drugs with intra-

cellular molecules are helpful in the discovery of new

therapeutic uses of drugs (Subramanian et al. 2017; Gao

et al. 2021). Despite the relatively low cost of obtaining

image data, it is difficult to use it for the determination of

drug functions owing to the complexity of the data itself

and to the fact that it does not directly reflect the molecular

characteristics of the drugs. In the present study, the

mechanism of actions (MoAs) of 1105 drugs on cells were

obtained by analyzing their image data. Image data were

organized into 812 dimensional vectors, with each

dimension representing a specific cell image feature

(Nassiri et al. 2018; Corsello et al. 2017), such as Cell-

s_Area, Shape_Area and Cells_AreaShape_Compactness.

Owing to the few number of samples and great number of

classifications, it is difficult for machine-learning methods

to effectively use these data for action-pattern identifica-

tion. Moreover, because the multi-dimensional features of

image data are affected by non-experimental factors, the

characteristics of similar drugs vary considerably. In

addition, the current sample number is not adequate for a

deep-learning model (Aliper et al. 2016; Shan et al. 2020;

Gao et al. 2021), and hence, other methods were used for

learning optimization. Therefore, we used the supervised

information theoretic metric-learning (ITML) algorithm to

convert the characteristics of drugs.

By using a non-parametric clustering method (AP

cluster), we clustered all drugs into 39 communities and

calculated the MoAs of the enriched drugs MoAs in each

community. Among the drugs currently being investigated

for the treatment of COVID-19, chloroquine and clomi-

phene could block virus entry by inhibiting endocytosis.

Based on the image data of these two drugs, they were both

classified to Community 21, despite their different MoA

annotations. The analysis of image features showed that

drugs from the same community may share similar image

features (community-specific image features, CSIFs),

which may play an important role in identifying drug

functions. In addition, one of the Community 21 members,

clomiphene, originally known as an estrogen receptor

antagonist, indicated their similar effects on cells. Clomi-

phene has been reported to block the entry of Ebola virus

into the host cell (Nelson et al. 2016).

In the present study, 1105 drugs were analyzed via a

machine-learning-based clustering algorithm. A variety of

data pre-processing methods were simultaneously used to

improve the clustering effect. We compared the principal

component analysis (PCA) algorithm and metric-learning

algorithm for data pre-processing. For data clustering, we

used the affinity propagation (AP) algorithm. Therefore, we

adopted the ITML algorithm to perform the identification

of drugs with similar mechanisms by optimizing the mea-

surement of drug image features. Compared to the original

data and PCA without the ITML algorithm, the new

method developed here could help in the identification of

drugs with similar mechanisms. For enrichment analysis of

drug types with a sample size exceeding five, it was found

that 39 clusters were enriched with MoAs of 35 drugs. In

addition, each community was enriched with drugs with

similar MoA: Community 20 was enriched with micro-

tubule inhibitors, tubulin inhibitors, and cyclin-dependent

kinase (CDK) inhibitors and Community 21 with drugs

known to block virus entry. Further analysis of the image

features within each community showed that community-

specific image features (CSIFs) may be used to describe

and discover the MoA of drugs.

Methods

Data collection and preparing

The cell morphology data was based on the work of Nassiri

and N. McCall (Nassiri and McCall, 2018). The cell

imaging dataset, containing 1105 drugs of 372 MoAs, was
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sorted and screened, and 1105 image data, including 812

dimensional image information and encompassing cell

responses to the 372 MOAs, were collected (Supplemen-

tary Table S1). These 1105 drugs of 372 MoAs covered

several clinical uses. The image data represented the most

intuitive phenotypic effects of these drugs on cells. The

image data included 812 dimensional data, such as Cell-

s_Area, Shape_Area, Cells_AreaShape_Compactness, and

Cells_AreaShape_Eccentricity. The distribution of data in

each dimension ranged from ? 677 to - 384. We adopted

the mean variance normalization method as follows:

Normalazedvalue ¼ Scale � ððInput
�MeanÞ=sqrtðVarianceþ EpsilonÞ
þ BiasÞ

After normalization, the data was distributed within the

range of mean = 0, and we collected the information

regarding the MoAs of the drugs from the LINCS database,

which 372 types of MoA. Among these, 49 types were

shared by five or more drugs, and the most common MoA

was shared by as many as 43 drugs.

PCA algorithm

The PCA algorithm was used to analyze the most important

components of input data, and it is often used for data-

dimensionality reduction in machine-learning. Through the

PCA algorithm, it is possible to reduce an n-dimensional

vector to an m-dimensional vector as follows:

XðmÞ ¼ PCAðXðnÞÞ;m\n;

where X(n) is the original data and X(m) is the output data

after mapping the original data from the n-dimensional

space to the m-dimensional space. The most representative

m-dimensional data were thus extracted from the original

data by the PCA algorithm, which can not only reduce the

dimensions of input data but also extract the more effective

features from the original data.

Metric-learning

In addition to the PCA algorithm, we used a metric-

learning method to pre-process input data before clustering.

Metric-learning is a machine-learning algorithm for

detecting similarities between data and it is widely used in

face recognition, for instance. Metric-learning classifies the

similarity of input data by learning the distance function in

a specific task and it is thus more practical than deep-

learning. For example, the deep-learning model trained in a

specific task can only adapt to data similar to the training

samples, and for input data considerably different from the

sample data the results tend to be significantly erroneous.

Furthermore, when the number of data categories

increases, the former training model needs to be retrained

under the new categories, which consumes resources and

time. Therefore, practical applications of a deep-learning

method are often limited. As a type of machine-learning,

metric-learning can effectively solve this problem. It

increases the similarity between the same type of data and

decreases the similarity between different types of data.

Therefore, the result of data clustering after metric-learning

is more accurate. In the present study, we used the ITML

algorithm of metric-learning to pre-process the input data

as follows:

Sn�n ¼ ITMLðInputm�nÞ;
Outputm�n ¼ Inputm�n � Sn�n;

where Inputm9n is the input data, m is the number of input

data, n is the dimension of input data, Sn9n is the similarity

matrix learned by metric-learning, and Outputm9n is the

output data after metric learning. In Outputm9n, the dis-

tance between similar classes of drugs will be closer than

that in the original data, and the distance between different

classes of drugs will be larger than that in the original data.

AP clustering

After pre-processing, data were clustered. There are dif-

ferent types of clustering algorithms, including the unsu-

pervised and supervised clustering algorithms. The

supervised clustering algorithm often needs some prior

conditions, such as the categories that need clustering. The

unsupervised clustering algorithm often does not require a

prior condition, but clustering is performed through the

analysis of input data, such as the density or mean of input

data. The unsupervised clustering algorithm has a benefi-

cial effect on some data that are difficult to label. In the

present study, we used the unsupervised clustering algo-

rithm AP to cluster the data. This algorithm constructed a

network for different samples in the input data, and each

node in the network represented a sample in the input data.

The connection of nodes in this network transferred the

responsibility and availability between different samples.

After multiple iterations, the AP algorithm generated K

exemplars and the remaining samples were allocated to

them to complete the clustering. Then, the AP algorithm

divided the input data into k categories.

Results and Discussions

Cell imaging dataset containing 1105 drugs

The cell imaging dataset containing 19,864 unique com-

pounds or drugs were sorted and screened (see Methods
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section), and image data obtained for 1105 drugs (including

812 dimensional image information), encompassing cell

responses to 372 MOAs, were collected (Table S1 in

Supplementary Data). These 1105 drugs of 372 MOAs

have a broad range of clinical use. The image data repre-

sented the most intuitive phenotypic effects of these drugs

on cells. The image data comprised 812 dimensional data,

including Cells_Area, Shape_Area, Cells_Area

Shape_Compactness, and Cells_Area Shape_Eccentricity.

The distribution of data in each dimension ranged

from ? 677 to - 384, and more than 98.8% of the data

were between - 20 and 20. We adopted the mean variance

normalization method. The data in each dimension fol-

lowed a normal distribution, with a mean of 0 and a vari-

ance of 1, and a range of - 7.930 to 13.934. The original

data distribution is shown in Fig. 1a and the normalized

data distribution in Fig. 1b.

We collected the MoA information of drugs from the

LINCS database, which contained 372 types of MoA for

the investigated drugs. Among these, 49 types of MoA

were shared by five or more drugs and the most common

MoA (adrenergic receptor antagonism) was shared by 43

a b

c

Origin_data Norm_data

Fig. 1 Data distribution plots. a Original data distribution, b Normalized data distribution, and c relevant data distribution. The pie chart indicates
the MoA. The top 10 MoA types are presented in the bar chart
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drugs. The other common MoA were dopamine receptor

antagonism, cyclooxygenase inhibition, and serotonin

receptor antagonism. The relevant data distribution is

shown in Fig. 1c for the top ten MoA types; The pie

chart represents the MoA. The overall flowchart of the

present study is illustrated in Fig. 2.

Conversion of the 812 dimensional image data
by ITML

The supervised ITML is a global metric-learning method

that can be used as an alternative method to understand the

metric distance function for a specific task, according to

different learning tasks. We used this method to obtain a

distance measurement for the drug MoA classification task;

parameters were num_constraints (number of constraints to

generate) = 20, max_iter (maximum number of itera-

tions) = 1000, and convergence_threshold = 0.001. The

t-Distributed Stochastic Neighbor Embedding (t-SNE) plot

graphs of the top ten drugs, before and after learning, are

shown in Fig. 3a, b, respectively. Through training for all

MoA of drugs, we obtained the T matrix. The 812

dimensional vector was then transformed to a new vector

via supervised learning after passing through the T matrix.

Classification of drugs into 39 categories based
on ITML-transformed features

We used the T matrix-transformed features to establish drug

image phenotype (DIP) connections. The DIP connections

were represented as ‘‘association scores’’ computed using

Euler distance. To achieve this, for each calculated distance

we obtained the corresponding association scores (detailed

information is provided in the Methods section and in the

Supplementary Distance data file).

The 609,960 pairs of DIP connections (Table S2 in

Supplementary Data) observed for the 1105 drugs are

shown in the heatmap representation of the distance matrix

(Figure S1). The application of an automated, parameter-

free clustering algorithm yielded 39 drug groups, with

prominent consensus internal DIP similarities. We distin-

guished each of these 39 groups as a DIP community

(Fig. 4b). We then used the MoA type composed of more

than five drugs as a test set to determine whether the DIP

community could be used for drug MoA discovery.

Our enrichment analysis identified significant (P\ 0.01,

Table S3) enriched community-specific drug MoA for each

DIP community (Fig. 4b and Supplementary Table S4).

For example, communities 1, 2, and 3 were enriched with

local anesthetics, acetylcholine receptor agonists, and

protein kinase A inhibitors, respectively.

To examine whether ITML can help in MoA recogni-

tion, we compared the effects of MoA recognition using

raw data and data processed by the PCA algorithm and

obtained 57 and 48 clusters, respectively. As shown in

Table 1, with frequencies of enriched MoA of 26 and 24

and enrichment ratios of 0.4561 and 0.5000, respectively.

These were lower than the results of ITML, indicating that

clustering of ITML-processed data made it easier to iden-

tify drugs with consistent MoA.

DIP facilitates identification of drug MoA

Herein, 35 drug MoAs were enriched in the 39 classifica-

tion communities. Several similar drug MoAs were enri-

ched in the same communities. Protein synthesis inhibitors

Fig. 2 Overview of this study approach for drug repurposing analysis.

First, we obtained the image data from LINCS (1105 drugs 9 812

dimensions). Then, we used PCA and metric-learning (ITML) to

process the data. After obtaining the processed data, we used the AP

algorithm for clustering data. Finally, we analyzed and compared the

results
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and histone deacetylase inhibitors were both enriched in

Community 18. Cytochrome P450 inhibitors and epidermal

growth factor receptor inhibitors were enriched in com-

munity 36. Acetylcholine receptor agonists, bacterial cell

wall synthesis inhibitors, and angiogenesis inhibitors were

enriched in Community 2. Acetylcholine receptor antago-

nists, retinoid receptor agonists, and tyrosine kinase inhi-

bitors were enriched in Community 4. Adrenergic receptor

agonists, norepinephrine reuptake inhibitors, and aromatic

hydrocarbon derivatives, for instance, were relatively

decentralized and not significantly enriched in all com-

munities. This decentralized distribution may be attributed

to the effects of these drugs on the phenotype of tumor cell

lines, due to which the image data were not significantly

changed. The cell images derived from other cells may be

more helpful for the identification of these MoA.

To identify the image features that may be more con-

ducive for the identification of drug use, we calculated the

intra-class distance ratio between the features of each

dimension in each cluster (Table S5, see the Methods

section for details) and determined CSIFs according to the

intra-class ratio (\ 0.01). It was found that the CSIFs rarely

overlapped between clusters. Only 26 different features

played a role in two clusters, and no features simultane-

ously became CSIFs in three or more communities. For

example, Nuclei_Intensity_MeanIntensity_Ph_golgi was

the CSIF of cluster 16 of dopamine uptake inhibitors and of

cluster 22, which had no enrichment of any kind of drugs.

The CSIFs suggested that drugs within the same cluster

may have specific responses to CSIFs. Although there were

only four tubulin inhibitors in the dataset, they were all

enriched in Community 20, which was also enriched with

CDK inhibitors, and only two microtubule inhibitors were

in observed in this cluster. The CSIFs corresponding to

Community 20 were Cells_Texture_InfoMeas1_Hoechst_

5, Cells_Texture_InfoMeas2_Ph_golgi_5, Cells_Texture_

Variance_Hoechst_3, and Cytoplasm_AreaShape_

Zernike_8_8. This may be related to the effects of the

above drugs on the cell cycle, including inhibition of cell

division and induction of changes in cell texture. These

results suggest that it is feasible to discover the functions of

known or new compounds based on DIP (Table S4).

Community 21 drugs that could block virus entry

It was found that there are two drugs, chloroquine and

clomiphene with different MoA annotations, were clus-

tered into cluster 21. And these two drug candidates found

to be effective against COVID-19. The MoAs of clomi-

phene in cluster 21 was annotated as oestrogen receptor

antagonist, which has been found to be resistant to Ebo-

la virus, suggesting that it may have a similar MoA with

chloroqunine. While the MoA of clomiphene was anno-

tated as oestrogen receptor antagonist, different from

chloroquine, chloroquine and clomiphene share common

drug characteristics. For example, they inhibit T cell pro-

liferation, reduce the release of proinflammatory cytokines,

and increase the pH of the endosome to block endocytosis

(Savarino et al. 2003; Vincent et al. 2005; Hoffmann et al.

2020). These drugs may be used for COVID-19 prevention

and treatment through blocking the PH-dependent path-

way. While the SARS-CoV-2 may entry the lung cells via

both pH-dependent and pH-independent (TMPRSS2

dependent) pathways and the TMPRSS-2-primed pathway

bypassing the endosome-mediated entry may partly explain

the low success rates in COVID-19 therapy, chloroquine/

hydroxychloroquine alone could not inhibit SARS-CoV-2

infection (Hoffmann et al. 2020). As a result, combination

of drugs blocking endocytosis and TMPRSS-2 inhibitors

may be promising (Ortega et al. 2020).

The aforementioned results showed that the MoAs of

drugs can be recognized through multidimensional image

features, and the use of ITML for feature conversion may

help in the identification of drugs with similar MoA. The

Fig. 3 t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of a original data and b ITML-processed data
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Fig. 4 Data clustering for a original data, b ITML-processed data, and c PCA data

Table 1 The comparison data for clustering and enrichment

Clustering Number Enrichment Number Enrichment Expectation (Enrichment Number/ Clustering Number)

Original Data 57 26 0.4561

PCA 48 24 0.5000

ITML 39 35 0.8974
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DIP communities can help in finding more drugs with

similar MoA through the analysis of image data. At pre-

sent, no effective drug has been approved for COVID-19

treatment. Drug candidates with certain therapeutic effects

may be promising, as is the case of chloroquine and

remdesivir. Drugs such as remdesivir target viral proteins

but the DIP derived from uninfected cell lines may not be

able to reflect their MoAs. Chloroquine and clomiphene

exert anti-infective effects by regulating the host cell

functions. However, serious side effects associated with the

use of chloroquine, such as gastrointestinal effects and

cardiotoxicity, may limit its clinical use (Doyno et al.

2021). The discovery of new alternative drugs through DIP

is of great significance. It was found that the two drugs,

chloroquine and clomiphene, in cluster 21 are effective

against virus infections. They had different MoA annota-

tions but similar drug characteristics. We observed that

adrenergic receptor agonists, norepinephrine reuptake

inhibitors, aromatic hydrocarbon derivatives, and drugs

with other MoAs were not significantly enriched in all the

clusters. The effects of these drugs on the phenotype of

tumor cells were not significant and may result in image

data of non-specific features. Based on the above findings,

we suggest that ITML features are more conducive to drug

classification than their original features and PCA features.

Image data obtained after the drug acts on the cell is one

of the most easily obtained screening data. Evaluating the

potential effects of drugs from images is of great signifi-

cance. Here we used cell characteristic data processed by

professional cell image software (CellProfiler) to predict

MoA (Carpenter et al. 2006). Due to the complex MoAs of

drugs, we used third-party MoA annotation data and opti-

mized the metrics based on ITML. The optimized DIP

communities were more closely related to the known MoA.

Tubulin, CDK, and microtubule inhibitors exert their

effects on the formation of spindles, and they were also

classified into cluster 20. The effective drug candidates for

COVID-19, such as chloroquine, and the anti-Ebola drug

clomiphene were accumulated in Community 21. These

results confirmed the possibility and accuracy of drug

discovery based on image data. In addition, selective

estrogen receptor modulators, such as raloxifene, could

probably also exhibit the antiviral activities against SARS-

CoV-2 and/or Ebola infections. It should be noted that the

cell image data we used here derived from cell lines

without SARS-CoV-2 infection. Therefore, drugs targeting

viral proteins may not induce consistent effects on the

cells, and hence these data may not be applicable to virus-

targeted drug discovery. The image data of SARS-CoV-2-

infected cells and under the effects of different drugs would

be more useful in screening virus-targeting drugs.

Conclusions

In summary, we propose a method for discovering MoA

based on cell image data after drugs are provided. The

functional and association analysis of DIPs provided a

hypothesis for drugs’ repurposing according to their MoA.

The present study indicated that the common mechanism of

the drugs under study is related to the DIP observed after

they act on the cells. As such, although the other drugs in

cluster 21 had different MoA, they may have therapeutic

effects similar to those of antiviral drugs within this cluster

owing to their similar DIPs. Notably, MoAs, especially at

either the target or signaling pathway level, were more

suitable as ‘‘positive set’’ labels. However, other drugs

contained in cluster 21 had different MoA. The results of

the present study showed that the characteristics of ITML

conversion were more conducive to the recognition of drug

functions. The analysis of feature conversion showed that

different features play important roles in identifying dif-

ferent drug functions. With respect to the drugs currently

being investigated for COVID-19 treatment, chloroquine

and clomiphene showed antiviral effects by inhibiting

endocytosis, and were classified into the same community.

The MoA of clomiphene in cluster 21 was annotated as

estrogen receptor antagonist. As it has also been found to

inhibit the entry of Ebola virus (Nelson et al. 2016), and it

might have a similar MoA to chloroquine, which was

reflected by cell image. Such a combination with drugs

block pH-independent pathways may be helpful for

COVID-19 treatment. As a matter of fact, the ongoing

outbreak of COVID-19 has been overloading medical

systems worldwide, and therefore in order to address such a

complex challenge, cooperation among diverse researchers

with complementary expertise is required (Chen et al.

2020). It should be noted that new approaches to identi-

fying a broad-spectrum antiviral drug target shared by

different viruses are expected. As the next step, we will be

conducting antiviral screening experiments with double-

blind clinical trials on some of the predicted drug candi-

dates that could fit the clinical predicting models better.

The present work lays the foundation for the discovery of

new MoAs of drugs based on machine-learning of image

data and also provides a new method of drug repurposing

for COVID-19 treatment.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11571-

021-09727-5.
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