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The connectomes of nervous systems or parts there of are becoming important subjects
of study as the amount of connectivity data increases. Because most tract-tracing stud-
ies are performed on the rat, we conducted a comprehensive analysis of the amygdala
connectome of this species resulting in a meta-study. The data were imported into the
neuroVIISAS system, where regions of the connectome are organized in a controlled ontol-
ogy and network analysis can be performed. A weighted digraph represents the bilateral
intrinsic (connections of regions of the amygdala) and extrinsic (connections of regions of
the amygdala to non-amygdaloid regions) connectome of the amygdala. Its structure as
well as its local and global network parameters depend on the arrangement of neuronal
entities in the ontology.The intrinsic amygdala connectome is a small-world and scale-free
network. The anterior cortical nucleus (72 in- and out-going edges), the posterior nucleus
(45), and the anterior basomedial nucleus (44) are the nuclear regions that posses most
in- and outdegrees. The posterior nucleus turns out to be the most important nucleus of
the intrinsic amygdala network since its Shapley rate is minimal. Within the intrinsic amyg-
dala, regions were determined that are essential for network integrity. These regions are
important for behavioral (processing of emotions and motivation) and functional (memory)
performances of the amygdala as reported in other studies.

Keywords: amygdala, connectome, tract-tracing, network analysis, stereotaxic atlas, visualization, rat brain,
simulation

1. INTRODUCTION
A connectome is a level-dependent representation of connections
between biological entities. Levels could be molecular, cellular
(micro level), cohesive structural and/or functional ensembles

Abbreviations: AA, AAA, anterior amygdaloid area; AAD, dorsal anterior amyg-
daloid area; AB, accessory basal nucleus; AB, accessory basal nucleus modified from
de Olmos et al. (2004); ABm, accessory basal nucleus magnocellular division; ABmc,
accessory basal nucleus magnocellular division; ABp, accessory basal nucleus par-
vicellular division; ABpc, accessory basal nucleus parvicellular division; ACo, layers
1-2= anterior cortical nucleus; ACo, anterior cortical amygdaloid nucleus; AHA,
amygdalohippocampal area; AHAl, amygdalohippocampal area lateral division;
AHAm, amygdalohippocampal area medial division; AHi, amygdalohippocampal
area; AHiAL, amygdalohippocampal area anterolateral; AHilp,Amygdalohippocam-
pal area lateral part; AHilp, amygdalohippocampal area lateral part; AHimp, amyg-
dalohippocampal area medial part;AHimp,amygdalohippocampal area medial part;
AHiPM, amygdalohippocampal area, posteromedial; APir PM, amygdalopiriform
transition area posteromedial part; AStrrc, amygdalostriatal transition area rostro-
caudal part; B, basal nucleus; BA, bed nucleus accessory olfactory tract; BAOT, bed
nucleus of the accessory olfactory tract; BAOT∗, bed nucleus of accessory olfac-
tory tract; Bi, basal nucleus intermediate division; BL, BLA, basolateral nucleus;
BLA∗, anterior basolateral nucleus; BLAa, basolateral nucleus, anterior part; BLAp,
basolateral nucleus, posterior part; BLPLP, posterior basolateral nucleus lateral
part; BLV, ventral basolateral nucleus; BM, BMA, basomedial nucleus; BMA, layer
3=Anterior basomedial nucleus; BMA, anterior basomedial nucleus; BMAa, layer
3=Basomedial nucleus, anterior part; BMAp, basomedial nucleus, posterior part;
Bmc, basal nucleus magnocellular division; Bmc, basal nucleus magnocellular part;
BMP, posterior basomedial nucleus; BMP, posterior basomedial nucleus; Bnc, basal
nucleus modified from de Olmos et al. (2004); Bnci, basal nucleus intermediate divi-
sion; Bpc, BPc, basal nucleus parvicellular division; BSTAD, bed nucleus of the stria
terminalis anterior dorsal area; BSTAV, bed nucleus of the stria terminalis anterior
ventral area; BSTdm, bed nucleus of the stria terminalis anteriordivision dorso-

of cells (meso level), or distinct groups of cohesive ensembles
(macro level). With regard to the nervous system of the rat, we
investigated data of a partial connectome of the central nervous
system, the connectome of the amygdala (amygdaloid complex),

medial nucleus; BSTif, bed nucleus of the stria terminalis interfascicular nucleus;
BSTLD, bed nucleus of the stria terminalis lateral division dorsal part; BSTLP, bed
nucleus of the stria terminalis lateral division posterior part; BSTLV, bed nucleus of
the stria terminalis lateral division ventral part; BSTmc, bed nucleus of the stria ter-
minalis magnocellular nucleus; BSTMPL, bed nucleus of the stria terminalis medial
division posterolateral part; BSTpr, bed nucleus of the stria terminalis principal
nucleus; BSTSl, supracapsular bed nucleus of the stria terminalis lateral part; BSTt,
bed nucleus of the stria terminalis transverse nucleus; CE, Ce, CEA, central nucleus;
CEl, central nucleus lateral division; CEAl, central nucleus, lateral part; CEAc, central
nucleus, capsular part; CEAm, central nucleus, medial part; Cec, CEc, central nucleus
capsular division; CeCD, central amygdaloid nucleus caudal division; CeI, central
amygdaloid nucleus intermediate division; CeI, CEi, central nucleus intermediate
division; CeL, central nucleus, lateral division; CeLC, central nucleus, lateral divi-
sion, capsular; CeLCn, central nucleus, lateral division, central; CEm, central nucleus
medial division; CeM, central nucleus, medial division; Co, cortical nucleus; COA,
cortical nucleus of the amygala; COa, anterior cortical nucleus; COAa, layers 1-
2=Cortical nucleus, anterior part; COAp, posterior amygdaloid nucleus; COApl,
cortical nucleus, posterior part, lateral zone; COApm, cortical nucleus, posterior
part, medial zone; COApm, posterior amygdaloid nucleus medial part; COp, pos-
terior cortical nucleus; EN, Eipert network; Fu, bed nucleus of the stria terminalis
fusiform part; I, intercalated nuclei, Intercalated nuclei of the amygdala; IA, inter-
calated nuclei; IM, intercalated masses; i.n., included in; IPACL, interstitial nucleus
of the posterior limb of the anterior commissure lateral part; IPACM, interstitial
nucleus of the posterior limb of the anterior commissure medial part; I∗, interca-
lated masses; L, La, lateral nucleus; LAM, lateral nucleus medial part; LaVL, lateral
nucleus ventrolateral nucleus; LaVM, ventromedial lateral nucleus; LaVM, ventro-
medial part of the lateral nucleus;Ldl, LaDL, lateral nucleus dorsolateral division;
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and its extrinsic efferent targets as well as extrinsic afferent sources
at the meso level of nuclei and their subdivisions. The intrinsic
and extrinsic amygdala data are part of an evaluation of about
2100 publications conducted for this study and contain exclu-
sively tract-tracing data of the rat nervous system (peripheral
nervous system, spinal cord, brain). One rationale of this study
is to uncover the connectivity of the intrinsic amygdala network
of the rat based on high-resolution tract-tracing data. So far, the
connectome of the intrinsic amygdala network has not been inves-
tigated in terms of network measures, graph theoretical quantities,
and multivariate statistics. After making these connectome data
accessible through a weighted connectivity matrix, specific ques-
tions concerning motifs, reciprocity, and most strongly connected
regions upon others can be addressed.

Connectivity data sets of parts of nervous systems have been
developed and analyzed by several groups (Felleman and Essen,
1991; Young, 1992, 1993; Scannell et al., 1999; Sporns et al., 2000,
2002; Sporns and Kötter, 2004; Sporns and Zwi, 2004; Honey et al.,
2007; Modha and Singh, 2010; Sugar et al., 2011). Most of these
connections are compiled into by meta-studies of tract-tracing
publications. The sources of information in this study originate
exclusively from peer-reviewed tract-tracing publications where
anterograde and/or retrograde tracers were applied (lesion stud-
ies were not evaluated). Only those publications were considered
that describe connectivity in adult rats. In our case, connections
between neuronal regions are handled with the help of a consis-
tent neuroontology (Schmitt and Eipert, 2012) that can be updated
frequently in parallel to the fast progress of the identification of
connections in tract-tracing publications.

Partial connectomes of the rat nervous system have been elab-
orated for the retrosplenial cortex (Sugar et al., 2011), nucleus
of the solitary tract (Palombi et al., 2006), reticular formation
(Humphries et al., 2006), hippocampus (Burns and Young, 2000),
and the visual system (Burns, 1997), for an overview of con-
nectome studies we refer to Sporns (2011), Schmitt and Eipert
(2012). A connectome of the amygdala of the rat is reported here
for the first time, even though, reviews of the hodology of the

Level, level of subdivision (first level is the supranuclear division of the amyg-
dala); Lm, lateral nucleus medial division; LOT, nucleus of the lateral olfactory
tract; LOTL2, nucleus of the lateral olfactory tract layer 2; LOTL3, nucleus of the
lateral olfactory tract layer 3; Lvl, lateral nucleus ventrolateral division; M, medial
nucleus; Mc, medial nucleus caudal division; Mcd, dorsal part of central division of
the medial nucleus; Mcv, ventral part of central division of the medial nucleus;
Me, MEA, medial nucleus; MEAad, medial nucleus, anterodorsal part; MEAav,
medial nucleus, anteroventral part; MeAD, anterodorsal medial nucleus; MeAD,
medial amygdaloid nucleus anterodorsal part; MEApd, medial nucleus, posterodor-
sal part; MEApv, medial nucleus, posteroventral part; MeAV, anteroventral medial
nucleus; MeC, medial amygdaloid nucleus caudal part; MeCd, medial nucleus cen-
tral division; MeCD, medial amygdaloid nucleus central dorsal part; MeCV, medial
amygdaloid nucleus central ventral part; MePD, medial amygdaloid nucleus pos-
terodorsal part; MePD, posterodorsal medial nucleus; MePV, medial amygdaloid
nucleus posteroventral part; MePV, posteroventral medial nucleus; MeRo, medial
amygdaloid nucleus rostral part; Mr, medial nucleus rostral division; NLOT, nucleus
of the lateral olfactory tract; PA, posterior nucleus amygdala; PAC, periamygdaloid
cortex; PACm, periamygdaloid complex medial division; PACm, periamygdaloid
cortex, medial division; PACs, periamygdaloid complex sulcal division; PACs, peri-
amygdaloid cortex, sulcal division; PLCo, posterolateral cortical nucleus; PMCo,
posteromedial cortical nucleus; SLEAc, central division of sublenticular extended
amygdala; SV, Subventricular nucleus; w.n.s., with no subdivisions.

amygdala are numerous (Swanson and Petrovich, 1998; Pitkä-
nen, 2000; Sah et al., 2003; de Olmos et al., 2004). In contrast
to low-resolution, non-directed, and non-weighted connectomes
derived from tractographic analysis of in vivo DTI measurements
(Essen et al., 2012), the type of connectome described in the fol-
lowing is a high-resolution, directed, and weighted network where
nodes are organized in a neuroontology containing functional,
neurophysiological, and molecular biological information.

Nodes of the network correspond to regions which are dis-
tinguishable in terms of cytoarchitecture. These regions can be
related to each other with regard to hierarchical subdivisions. Since
many possibilities exist to build such hierarchies of subdivisions of
the amygdaloid complex that influence the analysis of its connec-
tome, an overview will be provided in the following. The German
translation Mandelkern of the term amygdala has been introduced
by Burdach (1819–1826). A first topographic description of the
amygdala was published by Meynert (1867). A nomenclature of
subdivisions was introduced by Johnston (1923) and further devel-
oped by Pitkänen (2000) and de Olmos et al. (2004). Lists of terms
of amygdala nuclei are contained in the stereotaxic atlases of Pax-
inos and Watson (1986) and Swanson (1992). A comprehensive
comparison of nomenclatures was published by Price (1981) and
Pitkänen (2000). The rat amygdaloid complex (amygdalar com-
plex, amygdaloid body), amygdala in short, is a heterogeneous gray
complex of 13 larger nuclear and cortical regions. This multinu-
clear complex is located in the depth of the anteromedial temporal
lobe ventral to the lentiform nucleus (Figure 1). The topographical
criteria proposed by Brockhaus (1938) to subdivide the amygdala
into a superficial and a deep nuclear group has been adopted here
as well as by other authors (Pitkänen, 2000; de Olmos et al., 2004)
and will be described in detail in the next subsection.

In compliance with the structural diversity of the amygdala
the various nuclear groups and subdivisions also differ func-
tionally. Major outputs to functional systems generating exper-
imental, motor, mnemonic, autonomic, or endocrine responses
originate largely in different nuclei (Russchen, 1986). Four func-
tional systems can be related to nuclear groups of the amygdala:
the accessory olfactory, the main olfactory, the autonomic, and
the frontotemporal system. The amygdala plays a crucial role
in conditioned fear, anxiety, and attention. Especially the lateral,
basolateral, and central nuclei of the amygdala build a function-
ally unified system necessary for the acquisition and expression
of conditioned or instrumental fear learning and memory modu-
lation (Davis, 1992). For example, the electric stimulation of the
amygdala elicits a pattern of behaviors that mimic natural or con-
ditioned fear (Rosen and Davis, 1990) and anxiolytic effects can
be induced by applying benzodiazepine receptor antagonists in
the basolateral nucleus (Hart et al., 2010). Distinct groups of neu-
rons respond to (1) primary (unlearned) reinforcers like taste, (2)
visual stimuli which previously have been paired with primary
reinforcers like taste (positively reinforcing effects produced by
novel stimuli independent of previous association of visual stimuli
with primary reinforcement), and (3) responds to faces. Substan-
tial evidence from both infra-human and human subject studies
suggest that the sympathetic nervous system and the amygdala are
crucial for the modulation of long-term memory storage for emo-
tionally arousing events. The central and basolateral amygdaloid
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A

B C

FIGURE 1 | Visualization of hierarchical regions of the rat central nervous
system using neuroVIISAS. The subdivision of regions of the amygdala is
based on the stereotactic atlas of Paxinos and Watson (2007). (A) Location of
the amygdala (arrow) in the central nervous system of the rat. (B) The view
from the midline into the right hemisphere shows the amygdala (magenta
structures). Cortical regions are labeled with red tones [same orientation as

shown in (A)]. This scheme of colors is consistent with the color mapping of
the complete rat nervous system connectome where further colors are
already assigned to other regions (see Materials and Methods). (C) The view
from ventral (bottom) shows the rostrocaudal extension of the amygdala. The
rough surfaces are caused by the intersection distance, serial sectioning, and
small subregions of the amygdala.

nuclei are involved in conditioned taste aversion, a unique type
of innately predisposed (prepared) learning, in which the subject
associates a taste with malaise over long delays (Yamamoto and
Ueji, 2011). The consolidation of long-term explicit/declarative
memory can be blocked after lesioning the basolateral amygdaloid
nucleus (Gale et al., 2004).

Dysfunctions of the amygdala in humans have been reported in
different neurological and psychiatric diseases like Klüver-Bucy-
syndrome, Urbach-Wiethe-syndrome, temporal lobe epilepsy,
Alzheimer disease, dementing disorders, and major depressive
disorder. Generally, changes in emotionality and modulation of
memory are attributed to lesions of the amygdala. A deficit in iden-
tifying fear in facial expressions of emotion while other expressions
are intact was described by Adolphs et al. (1994) and Young et al.
(1995). The importance of the amygdala for fear conditioning as
well as promotion of effective memories (e.g., aversive condition-
ing) by arousing situations have been found in rodents (Chen
et al., 2011, 2012). Neurotoxic lesion of the amygdala alters affec-
tive responses (Meunier et al., 1999). After lesion of the basolateral
amygdaloid nucleus it was shown that the antidepressant fluoxe-
tine has a positive effect on hippocampal cell survival (Castro et al.,
2010). This emphasizes the fact that the amygdala may modulate
the antidepressant action in hippocampal neurogenesis and its
relation to depression-like behaviors. Furthermore, the basolateral
amygdaloid nucleus seems to play an important role in the rep-
resentation of the sensory features of motivationally significant
events. Dwyer and Killcross (2006) demonstrated that animals
with lesions of the basolateral amygdaloid nucleus can represent
the sensory aspects of neutral events but not the sensory aspects
of motivational events.

The connectional role of these regions which have been dis-
tinguished functionally can be determined by investigating the
connectome of the amygdala in terms of graph theoretic and mul-
tivariate analysis. This contribution aims to establish and elucidate

the connectome of the rat amygdala with a focus on intrinsic
connectivity and emphasis on central, medial, lateral, and basal
nuclear complexes.

2. MATERIALS AND METHODS
Organization, visualization, and analysis of connectome data
have been performed in neuroVIISAS (Schmitt and Eipert,
2012), a platform-independent generic framework devel-
oped in JAVA™. The neuroVIISAS installation package can
be downloaded from http://neuroviisas.med.uni-rostock.de/
index-Dateien/Page455.htm. All computations and visualization
have been realized within the neuroVIISAS framework. The fol-
lowing pipeline describes the connectome analysis performed in
this study:

1. Search, selection, and evaluation of tract-tracing publications
2. Defining the network of interest by selecting regions
3. Computing matrix representations
4. Global parameter computation
5. Local parameter computation
6. Motif analysis
7. Multivariate analysis
8. Vulnerability analysis
9. Extrinsic connectivity estimation

2.1. NOMENCLATURE
The superficial cortical-like nuclear group consists of the ante-
rior, posterolateral, posteromedial cortical amygdaloid nuclei, the
amygdalohippocampal and amygdalopiriform transition area, the
nucleus of the lateral olfactory tract, the nucleus of the accessory
olfactory tract, the medial amygdaloid nucleus, and the anterior
amygdaloid area. The nuclear groups that are located in the deep
zones of the amygdaloid body are the ventral basolateral nucleus,
the central amygdaloid nucleus, and the laterobasal nuclear
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complex as well as three divisions, the lateral, basolateral and baso-
medial nuclei, intercalated masses, amygdalostriatal zone, granular
and parvicellular interfascicular islands, and intramedullary gri-
seum. Additional groups are the extended amygdala (central and
medial sublenticular extended amygdala, paraseptal lateral, and
medial bed nuclei of the stria terminalis) and the unclassified cell
group (part of “Other amygdala areas” in Table 1). This group-
ing of major nuclei and primary subdivisions is based on the
work of de Olmos et al. (2004) and it is visualized in a hier-
archy exported from neuroVIISAS (Figure 2). The hierarchical

nomenclature of de Olmos et al. (2004) is based on cyto- and
fibroarchitectonical criteria, ontogenetic, histo- and immunocy-
tochemical, and hodological data. However, in the tract-tracing
literature of the amygdala, much smaller subparts of nuclei and
zones are described. In order to preserve this high-resolution spa-
tial information, further subdivisions based on the nomenclature
of de Olmos et al. (2004) have been taken into account. The de
Olmos et al. (2004) nomenclature has been related to further (Paxi-
nos and Watson, 1986; Swanson, 1992; Pitkänen, 2000; Price, 1981)
terminologies (Table 1). In Table 1 major nuclear groups such as

Table 1 | Comparison of amygdala nomenclatures.

Subdev. Level de Olmos et al. (2004) extended Pitkänen (2000) Paxinos and Watson (1986) Swanson (1992) Price (1981)

DEEP NUCLEI

19 3 LA L La LA w.n.s. L w.n.s.

1 4 LaDL Ldl LaDL

2 4 LaVL Lvl LaVL

0 4 LaVM Lm LaVM

89 4 Bnc B BL BLA B w.n.s.

4 5 Bmc Bmc BLA* BLAa

0 5 Bnci Bi i.n. BLA i.n. BLAa

7 5 Bpc Bpc BLP BLAp

9 4 AB AB BM BMA w.n.s.

0 5 ABm ABmc i.n. BMP i.n. BMAp

2 5 ABp ABpc BMP BMAp

SUPERFICIAL NUCLEI

6 4 LOT NLOT LOT NLOT NLOT

4 4 BAOT BAOT BAOT BA BAOT

0 4 ACo COa ACo COAa

1 3 BMA BMA BMAa

21 5 Me M Me MEA

0 6 MeRo Mr MeAV MEAav

2 6 MeCd MeCd

0 7 MeCd Mcd MeAD MEAad

0 7 MeCV Mcv MePV MEApv

0 7 MeC Mc MePD MEApd

3 4 PAC PAC Co COA PAC

3 4 PAC PAC PLCo COApl PAC=PLCo

0 5 PACm PACm i.n. PMCo i.n. COApl

0 5 PACs PACs i.n. PLCo i.n. COApl

1 4 COAp COp PMCo COApm Cop=PMCo

OTHER AMYGDALOID AREAS

6 4 AA AAA AAD i.n. AAA AAA

28 4 Ce CE Ce CEA CE

2 6 Cec CEc i.n. CeLC i.n. CEAc

7 5 CeL CEl CeL CEAl

0 5 CeI CEi CeLCn i.n. CEAl

5 5 CeM CEm CeM CEAm

7 4 AHi AHA AHi AHA

0 5 AHimp AHAm AHiPM PA

0 5 AHilp AHAl AHiAL i.n. COApl

4 3 IM I I IA I*

The first 2 columns are related to the extended (de Olmos et al., 2004) nomenclature in neuroVIISAS. i.n., Included in; w.n.s., with no subdivisions.

*BLA is the anterior basolateral nucleus (see also Abbreviations).
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FIGURE 2 | A hierarchical nomenclature of subregions of the rat amygdala based on (de Olmos et al., 2004) has been implemented for the rat
connectome project in neuroVIISAS. Only the top levels of the hierarchy are shown. Different intensities of magenta indicate different subregions.
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LA, Bnc, AB, Me, Ce, and AHi possess several subdivisions and are
located at the 4th level of the amygdala hierarchy. The basal nucleus
possesses a maximum of 89 subdivisions that were found in the
amygdala tract-tracing literature. In the following, we refer only to
an extended version of the (de Olmos et al., 2004) nomenclature
obtained by subdividing the regions mentioned in tract-tracing
studies.

2.2. DATA COLLECTION
Data retrieval was based on publications reporting tract-tracing
studies of intrinsic and extrinsic amygdala connections using
PubMed1, describing:

1. tract-tracing experiments using anterograde, retrograde, or
bidirectional (where location of labeled perikaryons and axonal
terminals are explicitly described) transport of substances

2. juvenile or adult rats
3. healthy, genetically un-altered and untreated control rats
4. results in English, German, or French

The search expression [amyg ∗ AND rat AND brain AND (path-
way∗OR projection∗OR afferent∗OR efferent∗OR connect∗) AND
(trace∗OR tracing OR retrog ∗OR anterog ∗)] NOT (virus OR viral)
yielded 487 papers, which were added to the connectome bibli-
ography references.bib in JabRef2. This bibliographic information
is also available online at the neuroVIISAS webpage. However,
the PubMed search as described consider titles and abstracts of
publications only. More connectivity data of the amygdala have
been collected by evaluating tract-tracing publications of corti-
cal areas and basal ganglia. At present, the whole rat connectome
project contains data from 2100 tract-tracing publications. Papers
not conforming with the criteria were marked in references.bib in
order to exclude them automatically from search results. Intrinsic
connections of the amygdala are described in 81, extrinsic input
to the amygdala was found in 332, and extrinsic output from the
amygdala in 337 publications.

The connectional information was gathered from these publi-
cations by the following criteria:

1. anterogradely labeled terminals and retrogradely marked
perikaryons are clearly related to regions

2. locations of injection sites are described unambiguously
3. injection sites do not overlap with adjacent regions or fiber

bundles
4. lesion and transsynaptic-tracing studies are excluded

The following data were retrieved from the publications and
integrated in the rat connectome project of neuroVIISAS:

1. ipsilateral, contralateral, and bilateral connections
2. semiquantitative information that is often designated as the

“weight” of a connection
3. tract-tracing substance
4. transport direction of tracer

1http://www.ncbi.nlm.nih.gov/pubmed
2http://jabref.sourceforge.net/

5. case or individual rat where a connection has been observed
6. bibliographic details (stored in bibtex format) related to each

connection
7. links to the pdf-documents of the tract-tracing publications

All information about connections is stored as objects in a
zip-compressed project file that can be exported in spreadsheet
format as well as in the owl ontology format of Protégé (Cimino
and Zhu, 2006; Zhang et al., 2006; Poliakov et al., 2007; Musen
et al., 2009). Before connectivity data were imported into neu-
roVIISAS, correctness was checked by at least two of the authors.
The results of independent retrograde and anterograde experi-
ments were integrated, such that the source of a connection, the
target, its weight, and further connectivity attributes are available
in a network representation that can be analyzed and visualized.
All amygdala connections were added to the rat connectome data
based on the hierarchy as shown in Figure 2. The interactive navi-
gation, analysis, and visualization functions of neuroVIISAS allow
a consistent and complete multi-level inspection of connectomes.

The subdivision of de Olmos et al. (2004) was used as an initial
hierarchical nomenclature (Figure 2). This subdivision of regions
of the amygdala is chiefly based upon cytoarchitectonic differ-
ences. However, it was extended based on descriptive subdivisions
introduced in tract-tracing studies. The hierarchy consists of nodes
(neuroanatomic regions) and relations whereby the relations in
terms of an ontology belong to the type “is part.” Within the hier-
archy, a root node (supranuclear division of the amygdala), nodes
without further subdivisions (leafs), and nodes with further sub-
divisions exist. The sequence of hierarchically predefined leafs will
be applied to matrix representations of connections and compu-
tations of further matrices to allow comparison. So far, 8 levels of
subdivision of the amygdaloid complex are available in the con-
nectome. Three regions have been mentioned in the literature
that are possessing connections at the 8th level of subdivision of
the amygdala: posterior basolateral nucleus parvicellular subdivi-
sion caudal part (Groenewegen et al., 1997), posterior basomedial
nucleus medial half in the caudal part, and posterior basomedial
nucleus lateral half in the rostral part (Kishi et al., 2006). The left-
and right-hemispheric amygdala are connected by contralateral
projections. The intrinsic connections of the left and right amyg-
dala are the same. Since we have not found a lateralization of the
amygdala connectivity, results of the left amygdala are presented.

The amygdala connectome is a partial connectome within the
total connectome of the whole rat nervous system. Different ranges
of colors are assigned to basic parts of the central nervous system,
e.g., diencephalon, midbrain, cerebral cortex, oblongate medulla.
Within this scheme of colors the amygdala subregions are assigned
to shades of magenta to differentiate them from non-amygdala
adjacent regions. The same colors of regions were consistently used
in the hierarchy, 3D-visualization (Figure 1), matrices (Figure 4),
and principal component analysis (Figure 9).

3. RESULTS
In addition to the definitions, descriptions and interpretations
of parameters and statistical procedures that are used in the
results subsection, the supplement contains a complete list of
definitions.
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3.1. GLOBAL PARAMETERS OF THE INTRINSIC AMYGDALA NETWORK
The hierarchy of regions of the left amygdala consists of 362
nodes. 279 of them do not posses further subregions. For 162
of these 279 regions of the left amygdala no intrinsic connections
are documented. These 162 regions and, if needed, their parent
regions were successively removed in order to build a network
where each node has at least one connection. The resulting net-
work contains 132 regions that are forming a single component
connected by 665 edges (Figure 3A). A multi-level representa-
tion of the adjacency matrix is shown in Figure 4A. The final
condensed intrinsic network contains only regions which have at
least one input and one output (Figures 4B,C). This network has
the benefit of being well-defined because regions where no con-
nectivity data are available do not contribute to transmission of
information in the network and should not influence global and
local network parameters, limiting the value of any comparison
with randomized networks. The condensed network contains 49
regions that are connected by 464 edges (Figure 3B). Both figures
show the global network parameters and results of simulations
[Erdös Rényi, Watts-Strogatz, Barabasi-Albert, Eipert (Eipert net-
work), modified (directed graph) OHO (Ozik et al., 2004), and
rewiring network generators (for details, see Schmitt and Eipert,
2012)] with the same number of nodes and edges as the real
intrinsic left amygdala network. Simulations are used in order to
compare the quantitative features of the real network with aver-
aged parameters of different types of random networks that are
simulated several times (see below). In the condensed network,
the mean number of edges per node is 18.939 (average valency)
and the line density (connections of the network divided by the
number of all possible connections) 19.728%. The heterogene-
ity (standard deviation of valency divided by the average value)
of 0.68 suggests that each node has a sum of inputs and outputs
in the same range (Estrada, 2010). On average each node can be
reached by using 2.478 edges (average path length). The average,
number of links incident upon a node (centrality) is 0.438. A mea-
sure of how complete the neighborhood of a node is, is given by
the average cluster coefficient (Rubinov and Sporns, 2010) and
turns out be 0.505. Both global parameters are larger than the
mean of 1000 Erdös Rényi simulations with the same number of
nodes and edges hinting at a specific wiring structure. However,
these parameters are more similar for the EN, modified OHO, and
rewiring networks. In a small-world network most nodes are not
neighbors of one another, however, most of them can be reached
from every other node by a small number of edges. The small-
worldness parameter (cluster coefficient of real and Erdös Rényi
networks divided by average path lengths of real and Erdös Rényi
networks) of 1.99 is the largest, compared to simulated networks
(Humphries et al., 2006; Humphries and Gurney, 2008). Hence,
the intrinsic amygdala network has a small-world property. Inter-
estingly, the average path length of 2.478 is the largest compared
to all simulations. A small average path length and a large average
cluster coefficient hint at a small-world network, consistent with
the small-worldness parameter. The condensed amygdala network
has a relatively small delta error (mean deviation between the data
and the approximation of the power law distribution multiplied by
100) of 1.4 in comparison with a power law distribution, pointing
to a scale-free property. The modularity Newman (2004) of 0.36

is relatively small, indicating dense connections between modules
of the intrinsic amygdala network (Figures 3C,D).

3.2. NETWORK
The rows of the adjacency matrix indicate sources, perikaryon
locations or efferents, and the columns are indicating targets,
axonal terminal locations, or afferents. The adjacency matrix
shows a cluster of dense interconnections of the subregions of
the superficial amygdaloid cortex (superficial cortical-like nuclear
group; Figure 5A). The different subdivisions of the amygdaloid
nucleus are subregions of the superficial amygdaloid cortex and
possess numerous outputs (103) to anterior basomedial and acces-
sory basal nuclei. The cluster of strong local connectivity within
subregions of the superficial amygdaloid cortex can be found again
in the distance matrix where most of these connections turn out
to use only one edge (Figure 5B) which means that most of these
regions are directly interconnected. The ventromedial part of the
lateral nucleus, the bed nucleus of the stria terminalis lateral divi-
sion ventral part, and the bed nucleus of the stria terminalis medial
division posterolateral part attract attention due to many long dis-
tances indicated by dark gray values in the correspondent rows.
The bed nucleus of the stria terminalis medial division postero-
lateral part and the ventromedial part of the lateral nucleus show
low communicability values (Estrada and Hatano, 2008; only few
shortest paths between a pair of connected regions exist), whereby
the bed nucleus of the stria terminalis lateral division ventral part
has similar values as neighboring nuclei (Figure 5B). The subre-
gions of the superficial amygdaloid cortex are forming a cluster
with large communicability values, hence, many shortest paths
between pairs of connected regions exist. The matrix of connectiv-
ity in degree matchings (Sporns, 2002) shows a new set of regions
that have quite similar input patterns of connectivity. These sub-
regions belong to the bed nucleus of the stria terminalis and are
located within the upper left part of the matrix indicated by a yel-
low square (Figure 5F). The subregions of the bed nucleus of the
stria terminalis have lower connectivity output matching values
(Sporns, 2002; Figure 5E) than input values which indicates more
similarity of input connections to than output connections from
BST-subregions. In the connectivity input and output matching
matrix, the larger values of the subregions of the bed nucleus of
the stria terminalis are highlighted again and the second cluster
of the superficial amygdaloid nucleus is also visible (Figure 5D).
The large input connectivity matching means that pairs of regions
have similar afferents. Because the same regions have low output
connectivity matching values, processed information of them is
distributed divergently to target regions.

3.3. LOCAL NETWORK PARAMETERS
Local network analysis using the same set of regions as in the
global network analysis reveals the impact of single regions with
regard to connectivity and flow of information. Most of the 30
local network parameters calculated by neuroVIISAS (Table 2) are
strongly correlated with the degree all parameter [the degree of a
node (vertex) is the number of incoming (afferent) and outgoing
(efferent) edges (connections)]. If incoming connections are dif-
ferentiated from outgoing connections, then the terms indegrees
(in) and outdegrees (out) are used (Sporns, 2002). The anterior
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FIGURE 3 | Global analysis of the left intrinsic amygdala network applied
to (A) all regions (132 regions and 665 edges) and (B) 49 regions that
have at least one input and one output that are connected by 464 edges
(condensed intrinsic amygdala network). The selected regions of the
network are visualized by hierarchies of triangles (top panels). The bottom
panels display the global network statistics. Both networks are simulated

1000 times by 6 different network generators and global parameters of 1000
simulations were averaged. The result of a modularity analysis is shown in (C)
(all regions) and (D) (regions with at least one input and output). (C) Within
the 5 modules the number of connections is larger than in between the
modules. (D) The number of modules is reduced to 3 if only those regions are
considered that have at least one input and one output (90˚ rotated view).
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3 4 5 6

7

8

A

B C

FIGURE 4 | Hierarchical connectomes allow the selection of different
levels of subdivisions of regions. (A) This multi-level representation is
shown in the panel with gray background and applied to the left amygdala
with 132 regions from level 3 to level 8. Sources or efferent regions are
arranged in rows and target or afferent regions are arranged in columns.

The sequence of regions is predefined by the sequence of leafs of the
defined region hierarchy (see Materials and Methods). (B) Triangle
representation of all regions that have at least one input and one output at
level 8 and (C) the corresponding adjacency matrix describing 49 regions
and 464 connections.
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BA

FE

DC

FIGURE 5 | Connectivity matrices of the condensed intrinsic left
amygdala network. (A) Adjacency matrix with highlighted regions
(transparent magenta) of the superficial amygdaloid cortex. Ten connectivity
weights are color-coded. (B) Distance matrix. Gray levels 1–7 indicate the
smallest number of edges between regions. Light gray values indicate short
distances. (C) Communicability matrix. The gray scale codes values between
0.0553 and 7.915E10. Large values indicate (e.g., ACo) that many short

shortest paths between a pair of regions exist. (D) Connectivity matching
matrix for inputs and outputs. The gray level scale is coding values between 0
and 1. Large values indicate similar input and output connections of two
regions. (E) Connectivity matching matrix for inputs. Red shades are coding
similar inputs of two regions. (F) Connectivity matching matrix for outputs.
Green shades are coding the similar outputs of two regions. The yellow
square indicates the regions of the bed nucleus of the stria terminalis.

Frontiers in Neural Circuits www.frontiersin.org December 2012 | Volume 6 | Article 81 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Schmitt et al. Amygdala connectome

Ta
b

le
2

|L
o

ca
lp

ar
am

et
er

s
o

f
th

e
co

n
d

en
se

d
am

yg
d

al
a

n
et

w
o

rk
so

rt
ed

by
th

e
d

eg
re

e
al

l
p

ar
am

et
er

.

D
G

a
D

G
o

D
G

i
K

at
z

LC
E

cc
o

E
cc

i
C

C
o

C
C

i
C

C
a

C
C

2
A

D
G

V
C

L
C

o
C

i
B

C
E

C
S

t
S

h
ap

le
y

Z
o

Z
i

Z
a

P
C

o
P

C
i

P
C

a
R

o
R

i
C

en
o

C
en

i

A
C

o
55

32
23

33
62

.9
8

1
3

5
0.

29
0.

43
0.

26
0.

08
20

.9
4

0.
5

0.
83

0.
75

0.
53

86
9.

29
1.

00
00

00
18

40
−

0.
79

0.
75

1.
04

0.
96

0.
55

0.
48

0.
53

6.
39

6.
12

14
3

C
O

A
p

41
16

25
33

76
.2

7
1

4
6

0.
63

0.
36

0.
37

0.
19

23
.1

9
0.

51
0.

79
0.

52
0.

52
37

6.
99

0.
78

65
87

92
8
−

2.
51

1.
73

1.
61

1.
67

0.
32

0.
55

0.
48

5.
84

6.
06

−
27

−
3

B
A

O
T

37
18

19
30

24
.3

9
1

4
6

0.
72

0.
52

0.
49

0.
08

27
.1

7
0.

35
0.

78
0.

53
0.

49
17

5.
4

0.
92

63
99

47
5
−

0.
34

0.
75

−
0.

57
0.

37
0.

2
0.

52
0.

39
5.

88
5.

98
−

25
−

7
PA

C
s

33
18

15
31

43
.9

8
1

4
6

0.
71

0.
9

0.
71

0.
21

28
.6

7
0.

37
0.

85
0.

53
0.

44
38

.4
0.

91
92

79
11

6
−

0.
21

0.
75

0.
51

0.
76

0.
2

0.
12

0.
17

5.
88

5.
73

−
25

−
19

I
33

17
16

33
62

.7
6

1
4

6
0.

8
0.

87
0.

8
0.

19
30

.1
8

0.
29

0.
85

0.
53

0.
45

11
.8

6
0.

91
92

69
11

5
−

0.
17

0.
75

1.
04

0.
96

0.
11

0.
12

0.
11

5.
86

5.
76

−
26

−
18

B
M

A
32

21
11

38
5.

8
2

3
5

0.
2

0.
33

0.
18

0.
36

14
.2

1
0.

8
0.

55
0.

62
0.

47
32

2.
15

0.
21

40
69

81
3
−

0.
48

2.
8

1.
86

3.
06

0.
33

0.
17

0.
28

6.
12

5.
86

−
14

−
14

A
B

m
31

16
15

31
43

.9
8

1
4

6
0.

88
0.

9
0.

88
0.

17
31

.5
6

0.
24

0.
83

0.
52

0.
44

4.
37

0.
91

46
38

47
−

0.
13

0.
5

0.
51

0.
57

0.
12

0.
12

0.
12

5.
84

5.
73

−
27

−
19

A
B

p
31

16
15

32
25

.5
1

1
4

6
0.

88
0.

9
0.

88
0.

17
31

.5
6

0.
24

0.
83

0.
52

0.
44

8.
93

0.
91

46
38

91
−

0.
16

0.
5

0.
51

0.
57

0.
12

0.
12

0.
12

5.
84

5.
73

−
27

−
19

M
eR

o
31

17
14

30
23

.0
2

1
4

6
0.

81
0.

91
0.

81
0.

19
30

.2
9

0.
29

0.
85

0.
53

0.
44

10
.7

7
0.

91
92

69
10

6
−

0.
14

0.
75

−
0.

03
0.

57
0.

11
0.

13
0.

12
5.

86
5.

71
−

26
−

20
PA

C
m

30
17

13
27

93
.4

5
1

4
6

0.
81

0.
94

0.
81

0.
19

30
.3

5
0.

29
0.

85
0.

53
0.

43
5.

64
0.

91
92

69
54

−
0.

1
0.

75
−

0.
57

0.
37

0.
11

0.
14

0.
12

5.
86

5.
69

−
26

−
21

M
eC

D
30

14
16

33
62

.7
6

1
4

6
0.

92
0.

88
0.

88
0.

17
31

.6
3

0.
24

0.
83

0.
51

0.
45

6.
31

0.
82

07
32

68
−

0.
13

−
0.

02
1.

04
0.

37
0.

13
0.

12
0.

12
5.

8
5.

76
−

29
−

18
A

H
ilp

30
15

15
31

43
.9

8
1

4
6

0.
8

0.
9

0.
78

0.
19

29
.8

8
0.

34
0.

83
0.

52
0.

44
51

.1
2

0.
82

01
69

10
4
−

0.
43

−
0.

02
0.

51
0.

17
0.

23
0.

12
0.

18
5.

82
5.

73
−

28
−

19
M

eC
V

29
14

15
31

43
.9

8
1

4
6

0.
93

0.
9

0.
88

0.
17

31
.6

9
0.

24
0.

83
0.

51
0.

44
1.

95
0.

82
07

32
23

−
0.

09
−

0.
02

0.
51

0.
17

0.
13

0.
12

0.
13

5.
8

5.
73

−
29

−
19

M
eC

27
14

13
28

85
.7

7
1

4
6

0.
81

0.
96

0.
83

0.
17

30
.8

8
0.

29
0.

78
0.

51
0.

43
8.

43
0.

75
89

13
85

−
0.

08
0.

24
−

0.
57

−
0.

02
0

0.
14

0.
07

5.
78

5.
69

−
30

−
21

LA
M

26
13

13
27

19
.7

6
1

4
6

0.
89

0.
92

0.
9

0.
17

31
.8

8
0.

23
0.

82
0.

51
0.

4
0.

92
0.

74
50

62
10

−
0.

07
−

0.
27

−
0.

03
−

0.
22

0.
14

0
0.

07
5.

78
5.

53
−

30
−

29
B

m
c

25
15

10
21

08
.6

4
1

4
6

0.
7

0.
94

0.
74

0.
16

30
.1

2
0.

31
0.

74
0.

52
0.

4
6.

23
0.

75
71

25
17

−
0.

01
−

0.
02

−
1.

64
−

0.
61

0.
24

0
0.

15
5.

82
5.

47
−

28
−

32
B

nc
i

24
12

12
25

00
.9

8
1

4
6

0.
89

0.
92

0.
9

0.
17

32
0.

23
0.

82
0.

5
0.

4
0.

53
0.

68
52

12
6
−

0.
03

−
0.

53
−

0.
57

−
0.

61
0.

15
0

0.
08

5.
76

5.
51

−
31

−
30

B
M

P
23

15
8

34
6.

31
2

3
6

0.
28

0.
54

0.
25

0.
29

15
.0

6
0.

79
0.

5
0.

57
0.

42
33

.2
6

0.
14

24
49

12
6

0.
11

1.
66

0.
81

1.
68

0.
34

0.
22

0.
3

6
5.

61
−

20
−

26
A

H
im

p
23

7
16

33
62

.7
6

1
5

6
0.

98
0.

91
0.

91
0.

17
32

.0
6

0.
23

0.
82

0.
38

0.
45

0.
95

0.
42

10
31

11
0.

04
−

1.
8

1.
04

−
1.

01
0.

24
0.

12
0.

16
5.

12
5.

76
−

38
−

18
M

eA
D

22
15

7
34

5.
54

1
3

6
0.

31
0.

43
0.

3
0.

19
20

.0
6

0.
69

0.
41

0.
57

0.
43

15
0.

68
0.

25
60

80
42

5
−

0.
38

1.
66

0.
47

1.
5

0.
34

0.
24

0.
31

5.
98

5.
65

−
20

−
23

M
eP

V
21

17
4

30
9.

5
2

3
6

0.
31

1
0.

31
0.

2
19

.5
9

0.
7

0.
42

0.
58

0.
4

36
.3

4
0.

24
58

12
13

7
0.

15
2.

12
−

0.
57

1.
33

0.
3

0.
38

0.
32

6.
02

5.
47

−
19

−
33

P
M

C
o

18
8

10
48

2.
28

1
3

6
0.

41
0.

32
0.

29
0.

21
18

.3
1

0.
5

0.
36

0.
52

0.
44

12
7.

36
0.

10
94

55
31

0
0.

02
0.

53
1.

16
0.

98
0.

22
0.

32
0.

28
5.

84
5.

71
−

27
−

22
B

ST
LP

17
6

11
53

8.
41

1
4

5
0.

3
0.

37
0.

32
0.

22
17

.8
6

0.
7

0.
41

0.
44

0.
48

15
1

0.
02

11
29

48
1

0.
01

0.
3

1.
51

0.
98

0
0.

3
0.

21
5.

47
5.

92
−

31
−

15
B

ST
LV

15
1

14
49

2.
36

4
6

4
0

0.
38

0.
34

0.
23

17
.4

7
0.

7
0.

45
0.

21
0.

51
75

.9
6

0.
00

00
03

18
1

0.
34

−
0.

83
2.

9
0.

81
0

0.
13

0.
12

3.
16

6.
04

−
46

−
14

M
eP

D
15

12
3

72
.9

3
2

3
6

0.
2

1
0.

3
0.

24
17

.5
7

0.
67

0.
36

0.
53

0.
33

4.
39

0.
15

56
83

22
0.

37
0.

98
−

0.
57

0.
47

0.
4

0
0.

34
5.

88
4.

94
−

26
−

45
Fu

13
8

5
94

.1
2

4
6

0.
09

0.
35

0.
15

0.
26

9.
73

0.
4

0.
33

0.
41

0.
35

77
.7

0.
01

60
61

21
3

0.
05

0.
76

0.
12

0.
64

0
0

0
5.

31
5.

12
−

33
−

40
B

ST
dm

11
8

3
33

.1
2

2
4

7
0.

29
0.

5
0.

29
0.

21
18

.5
0.

62
0.

2
0.

49
0.

32
89

.5
9

0.
08

71
19

26
0

0.
14

0.
53

−
0.

57
0.

12
0.

22
0

0.
17

5.
73

4.
86

−
27

−
46

B
ST

LD
11

4
7

39
4.

2
2

5
6

0.
5

0.
55

0.
42

0.
2

20
.7

0.
66

0.
29

0.
32

0.
43

59
.9

0.
00

24
26

20
1

0.
01

−
0.

15
0.

47
0.

12
0

0.
24

0.
17

4.
71

5.
65

−
38

−
26

B
ST

M
P

L
10

1
9

34
9.

66
4

7
5

0
0.

32
0.

32
0.

19
19

.4
0.

73
0.

24
0.

18
0.

47
2.

89
0.

00
00

02
8

0.
69

−
0.

83
1.

16
−

0.
05

0
0.

2
0.

18
2.

27
5.

88
−

47
−

17
C

eI
10

2
8

16
49

.6
7

1
3

6
0.

5
0.

93
0.

74
0.

17
32

0.
31

0.
27

0.
45

0.
39

8.
83

0.
07

11
19

48
0.

42
−

3.
08

−
2.

72
−

3.
37

0.
5

0
0.

18
5.

53
5.

43
−

42
−

34
S

LE
A

c
10

3
7

31
0.

08
1

3
4

0.
17

0.
31

0.
26

0.
22

16
.3

3
0.

98
0.

24
0.

46
0.

46
20

9.
57

0.
07

02
88

43
2

0.
1

−
0.

6
0.

47
−

0.
23

0.
44

0.
24

0.
32

5.
59

5.
84

−
39

−
14

B
ST

A
D

9
1

8
57

8.
12

2
5

6
0

0.
54

0.
54

0.
17

27
.7

5
0.

48
0.

2
0.

35
0.

45
10

.5
6

0.
05

12
12

47
0.

5
−

1.
06

0.
47

−
0.

57
0

0.
41

0.
49

4.
9

5.
8

−
47

−
17

B
ST

A
V

9
4

5
80

.6
7

2
4

6
0.

67
0.

6
0.

43
0.

13
17

.1
3

0.
42

0.
29

0.
37

0.
34

12
.4

6
0.

00
71

60
34

0.
38

−
0.

15
0.

12
−

0.
05

0
0

0
5.

06
5.

04
−

37
−

41
B

LV
8

3
5

31
6.

06
2

4
5

0.
17

0.
3

0.
26

0.
22

18
.5

7
0.

88
0.

16
0.

37
0.

43
13

7.
63

0.
00

88
07

26
8
−

0.
48

−
0.

38
−

0.
23

−
0.

4
0

0.
32

0.
22

5.
08

5.
69

−
40

−
26

B
ST

m
c

8
3

5
29

3.
57

2
4

6
0.

67
0.

5
0.

45
0.

2
22

.5
7

0.
67

0.
19

0.
36

0.
4

40
.1

8
0.

00
67

22
95

0.
39

−
0.

38
−

0.
23

−
0.

4
0

0.
32

0.
22

5.
04

5.
53

−
38

−
31

B
ST

if
8

1
7

35
1.

09
3

5
6

0
0.

48
0.

48
0.

19
25

.7
5

0.
58

0.
2

0.
35

0.
42

0.
39

0.
05

12
12

4
0.

57
−

1.
06

0.
12

−
0.

75
0

0.
45

0.
53

4.
92

5.
61

−
47

−
27

C
O

A
pm

8
4

4
52

0.
22

2
5

6
0.

33
0.

67
0.

5
0.

19
29

0.
56

0.
16

0.
37

0.
42

6.
81

0.
11

81
95

19
0.

39
−

0.
58

−
0.

23
−

0.
33

0.
63

0.
63

0.
63

5.
1

5.
59

−
42

−
27

B
ST

t
7

1
6

34
8.

6
3

5
6

0
0.

63
0.

6
0.

19
27

.8
6

0.
54

0.
19

0.
35

0.
4

0.
39

0.
05

12
12

4
0.

57
−

1.
06

−
0.

23
−

0.
92

0
0.

5
0.

57
4.

92
5.

53
−

47
−

31
IP

A
C

M
7

5
2

27
.8

2
2

4
5

0.
35

0
0.

35
0.

16
16

0.
55

0.
19

0.
42

0.
34

75
.1

7
0.

02
03

02
16

3
0.

15
0.

08
−

0.
92

−
0.

4
0

0
0

5.
41

5.
06

−
35

−
39

B
ST

S
l

6
4

2
8.

95
2

4
5

0.
17

0
0.

2
0.

37
7.

2
0.

34
0.

31
0.

36
0.

28
14

5.
33

0.
00

62
00

22
4
−

0.
91

−
0.

15
−

0.
92

−
0.

57
0

0
0

4.
98

4.
49

−
39

−
43

LO
TL

2
6

5
1

0.
2

1
3

1
0.

7
0

0.
7

0.
22

26
.8

0.
61

0.
2

0.
48

1
0

0.
10

97
61

0
0.

5
−

0.
15

−
1.

27
−

0.
75

0.
32

0
0.

28
5.

92
0.

14
−

35
−

48
LO

TL
3

6
5

1
0.

2
1

3
1

0.
7

0
0.

7
0.

22
26

.8
0.

61
0.

2
0.

48
1

0
0.

10
97

61
0

0.
5

−
0.

15
−

1.
27

−
0.

75
0.

32
0

0.
28

5.
92

0.
14

−
35

−
48

B
LP

LP
5

1
4

95
.5

7
3

5
4

0
0.

25
0.

25
0.

3
10

.4
0.

48
0.

21
0.

27
0.

37
13

1.
52

0.
00

04
00

29
1
−

0.
36

−
0.

83
−

0.
23

−
0.

75
0

0
0

4.
06

5.
33

−
46

−
37

B
ST

pr
5

1
4

29
1.

47
2

5
6

0
0.

5
0.

5
0.

21
27

.7
5

0.
35

0.
1

0.
35

0.
4

0.
39

0.
05

12
12

4
0.

5
−

0.
58

−
0.

23
−

0.
33

0
0.

38
0.

48
4.

9
5.

51
−

47
−

28
La

V
M

4
1

3
51

.1
7

5
6

7
0

0.
67

0.
33

0.
23

15
.2

5
0.

5
0.

14
0.

22
0.

31
2

0.
00

00
30

4
0.

61
−

0.
83

−
0.

57
−

0.
92

0
0

0
3.

31
4.

8
−

46
−

46
IP

A
C

L
4

2
2

22
.9

7
3

4
5

0.
5

0
0.

33
0.

36
7.

25
0.

26
0.

32
0.

33
0.

32
5.

93
0.

00
46

04
14

0.
47

−
0.

6
−

0.
92

−
0.

92
0

0
0

4.
73

4.
92

−
44

−
39

A
P

irP
M

4
2

2
30

.9
4

2
4

7
0.

5
0

0.
33

0.
25

15
0.

34
0.

14
0.

37
0.

32
3.

06
0.

01
66

78
11

0.
45

−
0.

6
−

0.
92

−
0.

92
0

0
0

5.
06

4.
86

−
46

−
47

C
eC

D
3

1
2

22
5.

51
3

6
7

0
0

0.
17

0.
33

19
0.

52
0.

07
0.

25
0.

36
1.

87
0.

00
01

00
5

0.
58

−
0.

83
−

1.
27

−
1.

26
0

0.
5

0.
44

3.
8

5.
18

−
46

−
34

SV
3

1
2

30
.7

5
4

5
6

0
0

0
0.

18
14

.6
7

0.
84

0.
07

0.
27

0.
33

47
.5

5
0.

00
06

00
92

0.
28

−
0.

83
−

0.
92

−
1.

09
0

0
0

4.
18

5
−

46
−

46
A

S
tr

rc
2

1
1

21
8.

78
3

5
7

0
0

1
0.

39
35

.5
0.

15
0.

06
0.

35
0.

31
0

0.
05

12
12

0
0.

67
−

0.
58

−
1.

15
−

1
0

0
0.

5
4.

92
4.

78
−

47
−

49

Fo
r

lo
ng

na
m

es
of

re
gi

on
ab

br
ev

ia
tio

ns
,

se
e

ab
br

ev
ia

tio
n

lis
t.

Pa
ra

m
et

er
de

fin
iti

on
s

ar
e

ex
pl

ai
ne

d
in

th
e

su
pp

le
m

en
t

as
w

el
la

s
in

re
vi

ew
s

(K
öt

te
r,

20
02

;
R

ub
in

ov
an

d
S

po
rn

s,
20

10
;

S
po

rn
s,

20
11

).
D

G
a,

de
gr

ee

al
l;

D
G

o,
de

gr
ee

ou
t;

D
G

i,
de

gr
ee

in
;K

at
z,

K
at

z
in

de
x;

LC
,d

is
ta

nc
e

to
th

e
re

gi
on

its
el

f;
E

cc
o,

ec
ce

nt
ric

ity
ou

t;
E

cc
i,

ec
ce

nt
ric

ity
in

;C
C

o,
cl

us
te

r
co

ef
fic

ie
nt

ou
t;

C
C

i,
cl

us
te

r
co

ef
fic

ie
nt

in
;C

C
a,

cl
us

te
r

co
ef

fic
ie

nt

in
an

d
ou

t;
C

C
2,

cl
us

te
r

co
ef

fic
ie

nt
of

2n
d

ne
ig

hb
or

s;
A

D
G

,a
ve

ra
ge

ne
ig

hb
or

de
gr

ee
;V

C
,v

ar
ia

tio
n

co
ef

fic
ie

nt
of

ne
ig

hb
or

de
gr

ee
(E

ch
te

rm
ey

er
et

al
.,

20
11

);
L,

lo
ca

lit
y;

C
o,

cl
os

en
es

s
ce

nt
ra

lit
y

ou
t;

C
i,

cl
os

en
es

s

ce
nt

ra
lit

y
in

;B
C

,b
et

w
ee

nn
es

s
ce

nt
ra

lit
y;

E
C

,e
ig

en
ve

ct
or

ce
nt

ra
lit

y;
S

t,
nu

m
be

r
of

sh
or

te
st

pa
th

s;
S

ha
pl

ey
,S

ha
pl

ey
ra

tin
g;

Zo
,z

-s
co

re
ou

t;
Zi

,z
-s

co
re

in
;Z

a,
z-

sc
or

e
in

an
d

ou
t;

P
C

o,
pa

rt
ic

ip
at

io
n

co
ef

fic
ie

nt
ou

t;

P
C

i,
pa

rt
ic

ip
at

io
n

co
ef

fic
ie

nt
in

;P
C

a,
pa

rt
ic

ip
at

io
n

co
ef

fic
ie

nt
in

an
d

ou
t;

R
o,

ra
di

al
ity

ou
t;

R
i,

ra
di

al
ity

in
;C

en
o,

ce
nt

ro
id

ou
t;

C
en

i,
ce

nt
ro

id
in

.

Frontiers in Neural Circuits www.frontiersin.org December 2012 | Volume 6 | Article 81 | 11

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Schmitt et al. Amygdala connectome

cortical amygdaloid nucleus has the largest degree all (55) followed
by the posterior amygdaloid nucleus (41) and the bed nucleus of
the accessory olfactory tract (33). However, the Shapley rate (a
low Shapley rate indicates a large impact of a node in a network;
Kötter et al., 2007) of the posterior amygdaloid nucleus is smaller
(−2.532) than that of the anterior cortical amygdaloid nucleus
(−0.759). Interestingly, the Shapley rate of the supracapsular bed
nucleus of the stria terminalis lateral part is the second smallest
(−0.91), although only having 13 inputs and outputs. The Shap-
ley rates are visualized in the 3D-atlas using a multiaxes extension
(Figure 6).

Most cyclic pathways from the anterior cortical amygdaloid
nucleus back to it are possible via 21 different 2-edge-cycles,
followed by the intercalated nuclei (16 different 2-edge-cycles)
and the accessory basal nucleus parvicellular division, peri-
amygdaloid complex sulcal division, and accessory basal nucleus
magnocellular division (15 different 2-edge-cycles).

As described in the introduction, the lateral (LA), the baso-
lateral (BL), and the central amygdaloid nucleus (CE) are fre-
quently analyzed in behavioral, neurophysiologic, and pharmaco-
logic studies. In addition, the medial amygdaloid nucleus (ME)
is considered as an important entity (Aggleton, 2000; Pitkänen,
2000) of amygdaloid circuits and has been analyzed in the con-
text of LA, BL, and CE. In the hierarchy that is used here, the LA
and BL are child nodes of the laterobasal nuclear complex, CE is
a subregion of the central extended amygdala, and ME is a sub-
region of the medial extended amygdala. They are not directly
visible because some of their subregions are expanded. However,
by reducing some branches of the hierarchy, they become leafs of
the hierarchy (26 regions, 350 connections; not shown here) and
local parameters of these regions can be computed. The CE has
the smallest Shapley rate and most inputs and outputs (indegree:
22, outdegree: 22) indicate its large impact of the intrinsic amyg-
dala connectome. ME (outdegree: 20, indegree: 21) has the second
lowest Shapley rate of −0.076. The Shapley rate of BL is −0.003
(outdegree: 14, indegree: 15) and that of LA is−0.029 (outdegree:
17, indegree: 17). With regard to the other 24 regions, ME has the
3rd, BL the 9th, and LA the 10th smallest Shapley value. Hence,
their intrinsic impact of BL and LA are considerably smaller than
those of CE and ME. In the network where CE, ME, LA, and BL are
leafs, most cyclic pathways are passing CE (2 node cycles: 19 pas-
sages, 3-node passages: 254) and ME (2 node cycles: 18 passages,
3-node passages: 247; LA 2 node cycles: 15, 3-node cycles: 198; BL
2 node cycles: 10, 3-node cycles: 121).

The sum of extrinsic contralateral and ipsilateral input of CE is
506 followed by BL (286), LA (230), and ME (216). The extrinsic
output of CE is 380, of BL is 174, of LA is 109, and ME has the
2nd largest: 207. These four regions receive most extrinsic inputs
among all regions of the 26 node hierarchy.

3.4. MOTIFS AND CIRCUITS
Motif analysis for directed 3-node and 4-node motifs revealed a
significantly more frequent expression of completely reciprocal
motifs (all edges of a motif are reciprocal) than in a random net-
work (Figure 7A). A maximum of 13 directed motifs that consist
of 3-nodes and 199 that consist of 4 nodes can be constructed. The
frequency of all motifs were determined by a paralleled (using n

cores in parallel) isomorphism search (Schmitt and Eipert, 2012).
The connections were randomized 1000 times (1000 networks
with the same number of nodes and edges as the condensed intrin-
sic amygdala network were computed) by the rewiring simulation,
the motif frequencies were determined and visualized by black
dots in the motif-diagram. Blue dots that are above or beyond
the black point clouds indicate a significant larger or lower fre-
quency of occurrence in the real amygdala network in comparison
to rewired networks. The first 6 motifs can be considered as varia-
tions of convergent and divergent motifs. These are all less frequent
in the real than in the rewired networks. The cyclic motifs (3-07,
3-10) are also less frequent in the real amygdala network (Table 3).
The completely reciprocal motif (3-13) is much more abundant in
the real than in rewired networks (Figure 7A, arrow). The 4-node
subgraph analysis shows similar results as the 3-node subgraph
analysis (Figure 7B). Variations of divergent and convergent 4-
node motifs (data not shown) as well as the completely reciprocal
motifs are much more frequent in the rewired than in the real
amygdala network. In Figure 7B only those motifs are shown for
which p= 0 (p= 0 indicates motifs that are significant more fre-
quent in a real network, p= 1 indicates motifs that are significant
more frequent in a random network; Table 4). In the motif 4-116
the motif 3-13 is included and it occurs most frequently.

The particular regions that are part of the completely recip-
rocal 3-13 motif are the anterior cortical amygdaloid nucleus (90
times), the intercalated nuclei of the amygdala (90), the periamyg-
daloid complex sulcal division (84), and accessory basal nuclei
(83). The central division of the sublenticular extended amygdala
(3), the ventral basolateral nucleus (2), and the posterior baso-
lateral nucleus lateral part (2) occur in the cyclic 3-07 motif with
almost no reciprocal connections. The frequencies of regions in the
completely reciprocal 4-199 motif is similar to the case of motif 3-
13: anterior cortical amygdaloid nucleus (258), intercalated nuclei
of the amygdala (268), periamygdaloid complex sulcal division
(254), and accessory basal nuclei (254). In contrast to the motif
3-13 region, participation frequencies of the intercalated nuclei
of the amygdala are higher than the anterior cortical amygdaloid
nucleus for motif 4-199.

The four regions LA, BL, CE, and ME have been analyzed with
regard to local parameters and extrinsic connectivity (see above).
The motif-search revealed that ME is part of the 3-13 motif in
90 cases, CE (86), LA (69), and BL (19). Interestingly, BL is most
frequently a member in the 3-04 motif with one reciprocal edge
and a single directed edge (CE: 31, LA: 23, ME: 20). The motif 3-09
with two reciprocal edges has another frequency distribution with
regard to these regions (CE: 47, ME: 40, LA: 32, BL: 25).

LA receives sensory inputs (Kim and Jung, 2006; Ciocchi et al.,
2010; Haubensak et al., 2010; Tye and Deisseroth, 2012). Some of
these sensory inputs originate in the somatosensory, auditory, and
visual cortical regions. Typically LA projects to the basal nuclear
complex which projects to CE (Ciocchi et al., 2010; Haubensak
et al., 2010; Tye and Deisseroth, 2012). In terms of behavior this
pathway is interpreted as the fear conditioning pathway (Kim
and Jung, 2006; Ciocchi et al., 2010; Haubensak et al., 2010; Tye
and Deisseroth, 2012). The rat connectome was analyzed by a
constrained search using the pathway analysis approach of neu-
roVIISAS to detect pathways through LA→Bnc→CE. CE seems
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FIGURE 6 | Visualization of Shapley rates in 3D-expansion view of the
unilateral and bilateral amygdala. (A) View from dorsal. The left- and
right-hemispheric amygdala are visible through the transparent pars cranialis
of the central nervous system. (B) Unilateral amygdala with regions that have

the lowest Shapley rates (see text) and color-coded weights of connections
(color-codes of connections are the same as in Figure 5). Color-coded Shapley
rates are assigned to regions. (C) Bilateral amygdala with ipsilateral and
contralateral connections.

to be necessary for the fear response. As shown in Figure 8, the
pathways from somatosensory, visual, and auditory regions to LA,
from LA to Bnc and from Bnc to the output complex, CE can be

reconstructed using a transhierarchical search strategy. The sub-
regions of each of the three complexes are densely interconnected
by differentially weighted connections.
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A B

FIGURE 7 | Motif analysis of the condensed intrinsic amygdala
network. Frequency of motifs in the intrinsic amygdala network is
indicated by a blue dot. Frequencies of motifs in rewiring randomizations
are indicated by black points. Red bars show the standard deviation of
motif frequencies. (A) 3-Node directed motif analysis of 13 subgraphs. The

abundant fully reciprocal motif (e.g., 3-13, where 3 is the number of nodes
of this motif and 13 is the identification number of a this motif) is indicated
by an arrow and magnified. (B) 4-Node directed motif analysis. Those
subgraphs that were significantly more frequent in the real network are
shown.

Table 3 | All 13 3-node motifs and resampling calculations based on 1000 rewiring randomizations of 49 regions and 464 connections.

MN N E f 1 f 2 f 3 p z x̄ σ

3-01 3 2 328 51 10 1 −9.983 701.373 37.39748

3-02 3 2 235 41 11 1 −11.046 1003.56 69.57714

3-03 3 2 173 43 10 1 −10.978 494.202 29.25675

3-04 3 3 421 48 10 1 −6.663 658.326 35.61592

3-05 3 3 87 24 10 1 −6.225 347.777 41.89099

3-06 3 3 279 41 7 1 −6.669 479.78 30.10242

3-07 3 3 7 4 4 1 −4.933 75.619 13.90999

3-08 3 4 165 35 9 0.055 1.688 145.338 11.6419

3-09 3 4 163 18 5 0.405 0.237 156.479 27.45046

3-10 3 4 47 16 6 1 −9.607 200.794 16.00711

3-11 3 4 46 16 5 1 −5.845 115.055 11.81347

3-12 3 5 235 36 7 0.032 1.873 205.676 15.65589

3-13 3 6 371 32 6 0 37.688 41.056 8.75459

MN, motif number (corresponding motif type is shown in Figure 7); N, number of motif nodes; E, number of motif edges; f1, motif frequency with repeated usage

of edges; f2, motif frequency without multiple usage of edges; f3, motif frequency without multiple usage of nodes; p, probability that motif frequency in random

graph is greater than in the real network; z : (f 1− x̄)/σ , x̄ : average frequency of a motif in network randomizations; σ , standard deviation.

3.5. PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) of the condensed intrin-
sic amygdala network was applied to detect groups of regions

with similar patterns of connectivity (Echtermeyer et al., 2011;
Schmitt and Eipert, 2012). The degree all (DGall; all refers to
the sum of input and output connections), average degree of
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Table 4 | 13 Significant 4-node motifs from a total of 199 4-node motifs and 1000 rewiring randomizations of 49 regions and 464 connections.

MN N E f 1 f 2 f 3 p z x̄ σ

4-063 4 5 295 14 4 0 5.074 111.351 36.18718

4-068 4 6 202 13 4 0 5.591 96.261 18.90949

4-070 4 6 604 12 4 0 4.742 336.156 56.47799

4-102 4 6 110 8 4 0 4.941 42.609 13.63694

4-116 4 7 1143 19 5 0 11.981 309.257 69.58759

4-130 4 7 789 16 4 0 12.175 193.728 48.8891

4-157 4 8 717 11 4 0 21.392 92.144 29.20872

4-180 4 9 128 9 4 0 13.236 23.404 7.90182

4-193 4 10 266 13 3 0 21.570 45.253 10.23391

4-195 4 10 188 10 3 0 6.6218 82.028 16.00348

4-196 4 10 108 8 4 0 11.981 45.77 10.66729

4-198 4 11 604 13 4 0 30.638 56.922 17.85587

4-199 4 12 777 14 5 0 166.413 7.047 4.62675

SeeTable 3 for further details.

neighbors (AvgDGnb; Rubinov and Sporns, 2010), cluster coef-
ficient all (CluCall; Rubinov and Sporns, 2010), cluster coefficient
of 2nd neighbors (Echtermeyer et al., 2011; CluC2), variation coef-
ficient of neighbor degree (VCDG1; Echtermeyer et al., 2011), and
locality (Loc; da Costa et al., 2006) were used as 6 dimensions
(feature vector) for PCA because these local parameters quan-
tify connectivity relations of direct and indirect neighbors. Here,
PCA maps feature vectors of all nodes to a plane to detect dif-
ferences between nodes with regard to their feature expression. A
Parzen-window (Echtermeyer et al., 2011) was used to realize a
probability density function in the two-dimensional PCA-plane.
The contribution of each parameter to the components is shown
in Table 5. The parameters locality (Loc), cluster coefficient all
(CluCall), and average neighbor degree (AvgDGnb) are the largest
among all 6 variables and have the biggest influence on the x-
axis (component 1). The absolute values of parameters degree all
(DGall) and the variation coefficient of neighbor degree (VCDG)
have the biggest influence on the y-axis (component 2; Figure 9A).
The subventricular nucleus (SV) is located at the upper left cor-
ner of the PCA-plane. SV has only three direct neighbors which
have a similar amount of connections to 2nd neighbors of SV
like the 2nd neighbors among themselves (1st weak connectiv-
ity). The anterior cortical amygdaloid nucleus (ACo) has a large
degree all and many connections between 1st neighbors, however,
sparse connections from 1st to 2nd neighbors and among 2nd
neighbors (1st NB focused connectivity). The amygdalohippocam-
pal area medial part (AHimp) has many neighbors which are very
densely connected among themselves and more densely than the
2nd neighbors among themselves (1st dense connectivity). A sim-
ilar connectional pattern can be found for the regions mapped
around AHimp: Pacs, Bmc, AHilp, I, MeC, PACm, MeRo, ABm,
MeCVABp. The posteromedial cortical nucleus (PMCo) is located
almost in the center of the PCA-plane. It has a medium num-
ber of connections to direct neighbors and the 2nd neighbors are
strongly connected among themselves. In relation to the 1st neigh-
bors, the 2nd neighbors of PMCo are connected more densely (1st
balanced mid connectivity). Around PMCo is a second larger group
of regions that join the latter connectivity feature of PMCo. The

bed nuclei of the stria terminalis are among this PMCo-group.
The amygdalostriatal transition area rostrocaudal part (AStrrc)
is located at the bottom of the PCA-plane and has only two 1st
neighbors. The 2nd neighbors of AStrrc are strongly connected
among themselves (2nd NB focused connectivity).

3.6. VULNERABILITY OF THE INTRINSIC AMYGDALA NETWORK
Vulnerability analysis in neuroVIISAS was applied to identify
nodes and connections that contribute significantly to the integrity
of the intrinsic amygdala network. The analysis has been per-
formed by iteratively removing nodes (significance list Table 6)
or edges (vulnerability matrix Figure 10) from the condensed
intrinsic amygdala network, followed by calculating the closeness
(inverse of the sum of distances to all other nodes) of remain-
ing nodes. The relative change in percent of the closeness turns
out to be a meaningful quantity for the significance of removed
nodes. If the relative average closeness is large (average path length
increases) after removing a node, then this node possesses a large
significance for the connectivity of the network. A negative relative
average change of closeness (average path length decreases) may
occur if the removed node is relatively far away from most other
nodes. In Table 6 the posterior amygdaloid nucleus (9.434%), the
anterior cortical amygdaloid nucleus (9.227%), and the anterior
basomedial nucleus (2.695%) have largest significances and if these
nodes are removed the average path length increases much more
than removing other nodes. The relative average change of close-
ness after removing connections is visualized in the vulnerability
matrix (Figure 10). The cluster of regions in the lower right quad-
rant of the vulnerability matrix shows similar values and belongs
to the superficial amygdaloid complex.

3.7. EXTRINSIC CONNECTIVITY OF THE AMYGDALA
The condensed intrinsic network of an unilateral amygdala has
ipsilateral and contralateral inputs and outputs to regions that
do not belong to the intrinsic amygdala connectome. Direct con-
nections start at leafs (regions that are not split into subregions
or where subregions are not opened in the user-defined hierar-
chy presentation) of subtrees and were considered to calculate
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FIGURE 8 | Pathway analysis of somatosensory, visual and auditory
regions of the cerebral cortex and the lateral, basal, and central
nuclear complexes of the amygdala. (A) Somatosensory, (B) visual,
and (C) auditory cortical regions are defined as source regions of the
projection to the lateral (LA) nuclear complex of the amygdala. All
subregions of the LA are taken into account as putative target regions.
From these LA-target regions connections to the basal nuclear complex
(including BL) where searched. From the basal nuclear complex,

connections were chosen which project to CE subregions. The colors of
lines corresponds to the weight code in Figure 4. Thick lines indicate
reciprocal connections and the numbers indicate the number of studies
that have documented a particular connection. In the left part are the
source regions displayed, then the LA subtree regions are following,
then the basal nuclear complex subtree regions, and on the right the
subregions of the CE subtree. The numbers at the left part of the
pathway-diagrams are indicating hierarchical levels.

Table 5 | A feature vector consists of the parameters degree all (DGall), average degree (AvgDGnb), cluster coefficient all (CluCall), cluster

coefficient of 2nd neighbors (CluC2), variation coefficient of neighbor degree (VCDG), and locality (Loc; for a definition of parameters, see

Echtermeyer et al., 2011).

Component DGall AvgDGnb CluCall CluC2 VCDG Loc Share

1 0.392 0.448 0.457 −0.297 −0.375 0.456 58.893%

2 −0.529 0.266 0.412 0.425 −0.45 −0.312 20.035%

3 0.33 −0.382 −0.107 0.693 −0.324 0.384 13.459%

4 0.164 0.43 0.251 0.483 0.697 0.073 5.918%

5 −0.46 −0.471 0.491 −0.122 0.254 0.496 1.468%

6 0.468 −0.419 0.533 −0.049 0.04 −0.544 0.328%

For each principal component, the contribution of the feature vector is given for each feature, and by its Share (percentage of the variance of a component of the total

variance of the 6-dimensional feature space; Echtermeyer et al., 2011).
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FIGURE 9 | PCA analysis of the condensed intrinsic amygdala network.
(A) Probability density diagram of the 2-dimensional plane of PCA showing
the 49 mapped regions. Component axes are indicated and correspond to
Table 5. Yellow letters refer to the circle-diagrams. All circle-diagrams have a
center circle that correspond to a region of interest of the PCA-plane in (A).

The inner-ring of circles are the 1st neighbors and the outer-ring of circles are
the 2nd neighbors of the center region. (B) Subventricular nucleus (SV). (C)
Anterior cortical nucleus (ACo). (D) Amygdalohippocampal area medial part
(AHimp). (E) Posteromedial cortical nucleus (PMCo). (F) Amygdalostriatal
transition area rostrocaudal part.
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Table 6 | Significance of regions in percent based on the change of

closeness after removing a particular region from the network.

Region Significance

Posterior amygdaloid nucleus 9.434

Anterior cortical amygdaloid nucleus 9.227

Anterior basomedial nucleus 2.695

Amygdalohippocampal area lateral part 2.325

Bed nucleus of the accessory olfactory tract 1.953

Ventral basolateral nucleus 1.952

Medial amygdaloid nucleus anterodorsal part 1.808

Supracapsular bed nucleus of the stria terminalis lateral

part

1.530

Periamygdaloid complex sulcal division 1.422

Central division of sublenticular extended amygdala 1.084

Intercalated nuclei of the amygdala 1.004

Accessory basal nucleus magnocellular division 0.918

Accessory basal nucleus parvicellular division 0.918

Medial amygdaloid nucleus rostral part 0.918

Medial amygdaloid nucleus central dorsal part 0.876

Periamygdaloid complex medial division 0.876

Medial amygdaloid nucleus central ventral part 0.833

Posteromedial cortical nucleus 0.828

Medial amygdaloid nucleus caudal part 0.734

Posterior basomedial nucleus 0.636

Bed nucleus of the stria terminalis lateral division dorsal

part

0.616

Lateral nucleus medial part 0.606

Bed nucleus of the stria terminalis lateral division

posterior part

0.592

Basal nucleus magnocellular part 0.591

Posterior basolateral nucleus lateral part 0.563

Basal nucleus intermediate division 0.520

Medial amygdaloid nucleus posteroventral part 0.510

Amygdalohippocampal area medial part 0.289

Bed nucleus of the stria terminalis anterior division

dorsomedial nucleus

0.254

Bed nucleus of the stria terminalis lateral division ventral

part

0.163

Bed nucleus of the stria terminalis fusiform part 0.020

Medial amygdaloid nucleus posterodorsal part −0.073

Central amygdaloid nucleus intermediate division −0.098

Bed nucleus of the stria terminalis magnocellular nucleus −0.280

Bed nucleus of the stria terminalis anterior dorsal area −0.304

Posterior amygdaloid nucleus medial part −0.326

Interstitial nucleus of the posterior limb of the anterior

commissure medial part

−0.399

Subventricular nucleus −0.448

Bed nucleus of the stria terminalis interfascicular nucleus −0.454

Bed nucleus of the stria terminalis transverse nucleus −0.539

Bed nucleus of the stria terminalis principal nucleus −0.603

Bed nucleus of the stria terminalis anterior ventral area −0.634

Amygdalopiriform transition area posteromedial part −0.949

Bed nucleus of the stria terminalis medial division

posterolateral part

−1.013

(Continued)

Table 6 | Continued

Region Significance

Amygdalostriatal transition area rostrocaudal part −1.050

Interstitial nucleus of the posterior limb of the anterior

commissure lateral part

−1.170

Central amygdaloid nucleus caudal division −1.270

Ventromedial part of the lateral nucleus −1.623

Nucleus of the lateral olfactory tract layer 2 −1.777

Nucleus of the lateral olfactory tract layer 3 −1.777

extrinsic inputs and outputs. The anterior cortical amygdaloid
nucleus has the largest direct ipsilateral input (101) and the sec-
ond largest direct contralateral input (11). The direct ipsilateral
output consists of 138 and the direct contralateral output con-
sists of 19 connections (rank 5). The basal nucleus intermediate
division has the most directed contralateral outputs (37), yet, only
19 ipsilateral outputs (rank 29). The anterior cortical amygdaloid
nucleus turns out to be a part of the condensed intrinsic amyg-
dala network that has most ipsilateral inputs and outputs. Table 7
documents that ipsilateral and contralateral connectivity is not
positively correlated for each region, e.g., the interstitial nucleus
of the posterior limb of the anterior commissure medial part.

4. DISCUSSION
Analysis and visualization of neuronal connections with regard
to networks and connectomes have been pushed forward in the
last 30 years (MacDonald, 1983; Felleman and Essen, 1991; Tononi
et al., 1994; Young et al., 1994). Specific connectivity analysis based
on meta-studies have been performed on the nucleus of the soli-
tary tract of the rat (Palombi et al., 2006), hippocampus of the rat
(Burns and Young, 2000), thalamocortical connectivity (Scannell
et al., 1999; da Costa et al., 2006), brainstem reticular formation
(Humphries et al., 2006), and retrosplenial cortex (Sugar et al.,
2011).

In an ongoing meta-study of tract-tracing publications of the
rat nervous system, the connectivity data of 2100 articles are
collected in neuroVIISAS, a generic platform for digital atlas-
ing, connectivity analysis and visualization (Schmitt et al., 2012),
and population based simulations. In all tract-tracing studies of
the amygdala, groups of regions were described as subdivisions
and parts of regions. Therefore, regions of the nervous system
are arranged in a neuroontology within neuroVIISAS. Because
most tract-tracing studies have been performed in the rat, these
rat-specific articles have been evaluated.

The total number of peer-reviewed publications of tract-
tracing studies of the rat, without considering other organisms, can
be determined by convenient expressions that filter the PubMed
database (see text footnote 1). 4528 Of such articles can be found in
September 2012. 491 Articles of these 4528 mention amyg∗ (amyg-
daloideum, amygdaloid, etc.) in their abstracts. Hence, they can be
considered as the core of the meta-analysis of tract-tracing based
connections of the amygdala. In addition, the bibliographies of
review articles and monographs (de Olmos et al., 2004) have been
evaluated. In other projects, the connectomes of further functional
systems (basal ganglia, cerebellum, cerebral cortex, hippocampus,
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FIGURE 10 | Vulnerability matrix of the condensed intrinsic amygdala
network. Values indicate the decrease of closeness after removing a
particular connection. Removal of the connection from the posterior

basolateral nucleus lateral part to the supracapsular bed nucleus of the stria
terminalis lateral part has the largest significance of 2.78% (lightest gray
value).

spinal cord, peripheral nervous system) are analyzed. In many of
these tract-tracing publications that do not use the term amyg∗

in their abstract, input and output connections to and from the
amygdala are described and have been captured in the whole rat
connectome project. Interestingly, the rat is the organism in which
most peer-reviewed tract-tracing studies are available.

Comparable connectome studies of the rat are considering neu-
rons (Arenas et al., 2008) or several areas (whole brain and/or
whole CNS; Bohland et al., 2009). The painstaking work of con-
nectivity evaluation of Burns (1997) is based on the terminology
of Swanson and Petrovich (1998), ranging at a comparable gran-
ularity as the terminology of Paxinos and Watson (2007). The
systematic evaluation and databasing of connectivities of the rat
brain was proposed and extensively investigated by Burns (1997).
This work has been refined by Burns and Cheng (2006), Burns
et al. (2008), and Bota and Swanson (2008). So far, a connectome

analysis based on a meta-study of tract-tracing publications of the
rat amygdala has not been performed.

A principal difficulty of extracting source-target-weight data
from tract-tracing publications is the definition of interlinked
source and target regions in different studies. This is aggravated
by the fact that ambiguities of region definitions may occur in
different contexts:

1. spatial ambiguities
2. meaning and definition of region terms (ambiguity of defini-

tion)
3. location of a region term in a hierarchical terminology

(ambiguity of classification)
4. comparative or interspecies alignment of terms (e.g., appli-

cation of Brodmann area terms of human cerebral cortex
parcelation to the rat cerebral cortex; ambiguity of homology)
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Table 7 | Extrinsic bilateral inputs and outputs of all regions of the condensed intrinsic amygdala network.

Dic Dii Dis Doc Doi Dos Sic Sii Sis Soc Soi Sos

ACo 11 101 112 19 138 157 11 101 112 19 138 157

COAp 5 70 75 15 71 86 8 73 81 15 71 86

IPACM 14 60 74 1 64 65 14 60 74 1 64 65

PMCo 4 51 55 7 47 54 4 51 55 7 47 54

BMP 4 47 51 23 113 136 4 61 65 23 113 136

BLV 4 42 46 9 39 48 4 42 46 9 39 48

BSTLV 3 42 45 1 28 29 3 42 45 1 28 29

BMA 1 38 39 10 107 117 1 43 44 10 107 117

I 3 33 36 0 16 16 4 33 37 0 16 16

LaVM 4 30 34 4 23 27 4 30 34 4 23 27

MeAD 4 30 34 10 66 76 4 30 34 10 66 76

BSTAD 7 22 29 0 0 0 7 22 29 0 0 0

SLEAc 2 27 29 0 20 20 2 27 29 0 20 20

LAM 2 26 28 1 43 44 2 26 28 1 43 44

BSTLD 6 21 27 1 37 38 6 21 27 1 37 38

BSTLP 3 23 26 1 19 20 3 23 26 1 19 20

CeI 2 24 26 3 18 21 2 24 26 3 18 21

BSTt 8 15 23 0 0 0 8 17 25 0 0 0

BSTif 8 14 22 0 1 1 8 16 24 0 1 1

Bmc 2 17 19 6 53 59 8 24 32 6 53 59

MePV 0 19 19 11 63 74 0 19 19 11 63 74

MePD 1 14 15 4 37 41 1 14 15 4 37 41

Bnci 3 11 14 37 19 56 3 11 14 37 19 56

BAOT 1 13 14 0 16 16 1 22 23 0 16 16

ABp 0 14 14 2 44 46 0 14 14 2 44 46

BSTpr 5 8 13 0 2 2 5 8 13 0 2 2

MeC 1 12 13 0 10 10 1 12 13 0 10 10

MeCD 4 8 12 0 10 10 4 8 12 0 10 10

PACs 3 9 12 0 30 30 3 9 12 0 30 30

ABm 2 10 12 10 42 52 2 10 12 10 42 52

AHilp 2 10 12 0 23 23 2 10 12 0 23 23

MeRo 1 10 11 0 8 8 1 10 11 0 8 8

AHimp 0 11 11 2 16 18 0 11 11 2 16 18

BSTAV 5 5 10 0 27 27 5 5 10 0 27 27

PACm 3 7 10 4 30 34 3 7 10 4 30 34

BSTMPL 0 10 10 0 3 3 0 10 10 0 3 3

BSTSl 0 10 10 0 17 17 0 10 10 0 17 17

MeCV 2 7 9 0 11 11 2 7 9 0 11 11

SV 4 4 8 0 0 0 4 4 8 0 0 0

LOTL2 3 4 7 26 36 62 3 4 7 26 36 62

BSTdm 1 6 7 0 71 71 1 6 7 0 71 71

BSTmc 1 6 7 0 44 44 1 6 7 0 44 44

Fu 0 6 6 31 84 115 0 6 6 31 84 115

BLPLP 0 4 4 0 2 2 0 4 4 0 2 2

CeCD 0 4 4 0 6 6 0 4 4 0 6 6

LOTL3 1 2 3 18 39 57 1 2 3 18 39 57

IPACL 1 1 2 0 21 21 1 1 2 0 21 21

APir_PM 0 1 1 0 15 15 0 1 1 0 15 15

COApm 0 1 1 4 18 22 0 1 1 4 18 22

AStrrc 0 0 0 0 0 0 0 0 0 0 0 0

The extrinsic connections are sorted by the sum of direct inputs. Dic, direct input from contralateral hemisphere; Dii, direct input from ipsilateral hemisphere without

regions of the intrinsic amygdala network; Dis, direct input of ipsilateral and contralateral regions; Doc, direct output from contralateral hemisphere; Doi, direct output

from ipsilateral hemisphere without regions of the intrinsic amygdala network; Dos, direct output of ipsilateral and contralateral regions; Sic, direct input from subtrees

of contralateral hemisphere; Sii, direct input from subtrees of ipsilateral hemisphere without regions of the intrinsic amygdala network; Sis, direct input of subtrees of

ipsilateral and contralateral regions; Soc, direct output from subtrees of contralateral hemisphere; Soi, direct output from subtrees of ipsilateral hemisphere without

regions of the intrinsic amygdala network; Sos, direct output from subtrees of ipsilateral and contralateral regions.
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These particular terminological contexts are the cause for the
correspondence or concordance problem (Stephan et al., 2000; Bez-
gin et al., 2009; Bohland et al., 2009). An adaptive solution of
the problem with regard to the development of neuroanatomical
knowledge of regions of nervous systems of different species is not
available. The objective relation transformation (ORT; Stephan
et al., 2000) reduces the pattern of spatial overlap between region
pairs to a discrete set of relational attributes containing iden-
tity, subset, superset, and partial overlapping. To realize ORT, a
documentation of spatial features (e.g., extension, neighboring
regions, super regions, subregions, development) of regions in
tract-tracing publications is necessary. Unfortunately, the objec-
tive of tract-tracing studies is a description of sources, targets,
and pathways visualized by axonal transport of tracing sub-
stances. Hence, a definition of regions and the comparison of
them with other studies is out of scope in most cases (Pitkä-
nen, 2000; Jones et al., 2005). Data that are necessary to apply
ORT consistently are either missing in most tract-tracing stud-
ies or they must be inferred (indirect availability). The latter
may also contribute to imponderables and variability in region
definitions.

In this work, extracted source-target-weight data are directly
derived from the original text to reduce inconsistencies as much
as possible. This has the advantage of reproducibility of sources
and targets in a connectome. Interpretations of how much a
region partially overlaps with regions in other publications or
if subregions are assigned to different superregions are avoided
to prevent errors introduced by misinterpretations. Furthermore,
necessary data that allow correct interpretation of terminological
overlap and subdivision problems are often missing in publica-
tions. Hence, source, target, and weight data are extracted with
a minimum of further interpretation to accumulate them con-
tinuously during evaluation of new tract-tracing publications. By
using accumulated data, it is possible to generate different selec-
tions of nodes from the whole neuroontology of the rat nervous
system. In neuroVIISAS, several mechanisms to assemble regions
of the complete neuroontology have been implemented to gen-
erate problem-dependent adjacency matrices. A coarse selection
of superregions (e.g., thalamus, hypothalamus, sensomotoric cor-
tex, cerebellum) for connectivity analysis provides more validity
with regard to region definitions (comparable with tract-tracing
data judgment in ORT), however, less important and relevant con-
nectivity information is the result. Nevertheless, the approach of
accumulating raw data from original publications in a consistent
framework avoids the introduction of errors while solving overlap
and classification problems if necessary data are not available for
the problem at hand.

Beside the concordance problem, there are further factors that
constrain the informative value of tract-tracing based connectome
construction:

1. different dynamics of tracer transport
2. selectivity of tracer transport (unidirectional, bidirectional)
3. identification of axonal terminals and fibers of passages
4. tracer uptake by damaged fibers of passage
5. technical details of tracer application (volume, velocity, ion-

tophoresis)

6. distance of sources and targets from the location of tracer
application and survival time

7. spread of tracer in adjacent regions (especially in stereotaxic
pressure injections)

8. sensitivity of tracer and immunohistochemical visualization
9. semiquantitative and qualitative interpretation of connection

strength (weight) is not normalized between different studies
and most criteria for weights are not based on stereological
and densitometric evaluations

10. investigator bias (interpretation of descriptive representations
of tract-tracing results)

The amygdala connectome has been analyzed using neuroVI-
ISAS by several global and network measures, matrices, motifs,
and multivariate techniques. However, other methods are avail-
able to investigate the structures and features of complex net-
works (Kötter and Stephan, 2003; Tononi and Sporns, 2003;
Sporns and Kötter, 2004; Sporns and Zwi, 2004; Bassett and
Bullmore, 2006; Nagyessy et al., 2006; da Costa et al., 2007; Köt-
ter et al., 2007; Sporns et al., 2007). More specifically, neural
complexity (Tononi et al., 1994), community structure (New-
man and Girvan, 2004), connectivity descriptors (Kammer and
Täubig, 2004; Goryczka and Arodz, 2006), functional topology
analysis (Blinder et al., 2005), efficiency and cost of networks
(Achard and Bullmore, 2007), node conformity of factorizable
networks (Dong and Horvath, 2007), lesion analysis, and trans-
fer entropy (Schreiber, 2000; Honey and Sporns, 2008) as well
as spectral analysis of networks (Baltz and Kliemann, 2004) are
advanced methods to reveal structures and functions of net-
works. In addition, multivariate methods of non-metric multi-
dimensional scaling and Procrustes R2 statistics (Goodhill et al.,
1995; Burns and Young, 2000), hierarchical optimization (Hilge-
tag et al., 1996; Burns and Young, 2000), optimal hierarchical
orderings (Hilgetag et al., 2000), and canonical variable analy-
sis (da Costa et al., 2007) are options to further investigate
results that are obtained by the principal component analysis as
found here.

By selecting those regions where inputs and outputs within the
intrinsic amygdala network are reported, a condensed intrinsic
amygdala network was generated. This network is a scale-free and,
to some degree, small-world network. The adjacency matrix and
complexer matrices exhibit a cluster of connections (Figure 5)
within the subregions of the superficial amygdaloid cortex which
can also be observed at different levels of the region hierarchy
(Figure 4). The medial amygdaloid nucleus has the largest num-
ber of efferents and afferents within this cluster, described here
for the first time. The dense intraamygdaloid connection of the
medial amygdaloid nucleus and the central amygdaloid nucleus
that have also been reported in the review of Pitkänen (2000)
can be confirmed here (subsection 4.2. Network, Figure 5). These
densely interlinked regions of the superficial amygdaloid cor-
tex belong to olfaction, autonomic hypothalamus and prefrontal
cortex cognition.

The CE, ME, BL, and LA regions are considered as hodologic
and functional entities of the amygdala (Aggleton, 2000; Pitkänen,
2000). Based on the subdivision of de Olmos et al. (2004), the
resulting connectome was modified to obtain CE, ME, BL, and
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LA regions as connectional nodes. CE and ME have comparable
quantitative features with regard to local parameters (indegrees,
outdegrees, Shapley rates) and cycle counts. This indicates that
these regions are very important with regard to integrity of the
intrinsic amygdala connectome. In addition, their frequency of
participation for the complete reciprocal motif 3-13 is larger in
comparison to other regions. In contrast, BL and LA have lower
Shapley rates and they do not participate as often as CE and ME
to 2 cycle and 3 cycle pathways within the intrinsic connectome
of the amygdala. However, BL receives the second most extrinsic
inputs from non-amygdala regions of the ipsi- and contralateral
hemisphere. From the connectional perspective this corresponds
with the point of view that BL and LA are entries of sensory infor-
mation (Kim and Jung, 2006). Furthermore, BL participates most
often in the 3-04 motif with one reciprocal and a single non-
reciprocal edge. The reciprocal edge can be interpreted in terms
of a local regulatory function (positive or negative feedback) and
the connection to a node that does not project to the reciprocally
connected nodes could be regarded as a regulatory output of this
motif. To summarize a connectional role of BL, we can consider
it as an extrinsic receiver that may regulate extrinsic inputs and
then distribute them in the intrinsic connectome of the amygdala.
ME possesses second most extrinsic outputs and a relatively small
Shapley rate which could emphasize the connectional role as a
sender to extrinsic targets and a strong intrinsic network entity.
However, CE receives and sends most extrinsic inputs and outputs
and has the smallest Shapley rate which points to a more integra-
tive function in comparison to BL and ME. These interpretations
are speculative and need to be verified. Nevertheless, they are based
on a huge number of observations in tract-tracing studies.

The sensory inputs from the somatosensory, visual, and audi-
tory cortex to the LA have been confirmed in the connectome data.
Furthermore, we can agree with dense interconnections between
LA and basal complex regions. Reciprocal connections between
LA and Bnc (BL is a subregion of Bnc) were also found. Dense
interconnections with reciprocal projections between Bnc and
CE are found as well. Hence, the pathway of fear conditioning
(Kim and Jung, 2006; Ciocchi et al., 2010; Haubensak et al., 2010;
Tye and Deisseroth, 2012) from different sensory regions can be
reconstructed. However, it turns out that there are a lot more
interconnections between specific subregions and reciprocal pro-
jections are known than considered in Haubensak et al. (2010),
Ciocchi et al. (2010), Tye and Deisseroth (2012), and Kim and
Jung (2006).

The Shapley rate is an indicator for the importance of a particu-
lar region in the network. Regions which posses largest importance
with regard to the Shapley rate are the posterior amygdaloid
nucleus, the anterior cortical amygdaloid nucleus, and the supra-
capsular bed nucleus of the stria terminalis lateral part. However,
the latter has only a small degree all of 13 connections. Hence,
Shapley rates should always be judged in comparison with other
local parameters. Also, the Shapley rates of the bilateral con-
densed intrinsic amygdala network indicate that these regions are
as important as those in the unilateral network.

The complete reciprocal 3-node and 4-node motifs occur sig-
nificantly more often in the real condensed amygdala network

than in rewiring simulations, a finding reported here for the first
time. However, circular motifs without reciprocal connections are
less abundant in the real network. Nodes that possess large cen-
trality values and importance for the network structure are always
involved in the completely reciprocal motifs. This could indicate
a strong regulatory role and self control by connectional dense
feedbacks.

By removing the posterior amygdaloid nucleus, the anterior
cortical amygdaloid nucleus, and the anterior basomedial nucleus,
strongest changes of relative closeness have been observed. How-
ever, the anterior basomedial nucleus does not have such strong
centrality features like the regions with lowest Shapley rates, indi-
cating that vulnerability analysis may provide additional informa-
tion regarding the role of regions that has not been revealed by
quantities of local network analysis.

In the PCA we found that the anterior cortical amygdaloid
nucleus has many 1st neighbors, however, connectivity between 1st
and 2nd neighbors is weak. In contrast, the amygdalohippocampal
area medial part has many 1st neighbors and they are also strongly
interconnected. The posteromedial cortical amygdaloid nucleus
has numerous 1st neighbors which are strongly interconnected. In
addition, the 2nd neighbors of PMCo are densely interconnected,
too. These features of local connectivity of PMCo in relation to
its smallest Shapley rate of the intrinsic amygdala connectome
indicate its important role in the network.

Finally, it should be emphasized that the connectional infor-
mation accumulated from the evaluation of a large amount of
tract-tracing publications may only reflect partial trends in con-
nectivity detection of the tract-tracing community. The real and
complete connectome of the rat amygdala might have features
that cannot be detected by analysis of all published tract-tracing
data. However, by also including publications in this work which
are not focused on tracer injections in the amygdala, validity of
the basic network structure is expected to become larger. Further
limitations of neural connectome analysis are the spatiotemporal
dynamics of connectivity at the synaptic level.

In conclusion, the quantitative analysis of the amygdala con-
nectome allows to identify regions of the superficial amygdaloid
complex that are densely interlinked and may be important for
the internal regulation of information processing of the intrinsic
amygdala network. The amygdala network has small-word and
scale-free properties. It contains complete reciprocal motifs sig-
nificantly more frequently than in randomizations. The posterior
amygdaloid nucleus, anterior cortical amygdaloid nucleus, and
bed nucleus of the accessory olfactory tract turned out to send
and receive most connections within the condensed amygdaloid
network.
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A. APPENDIX
The definitions of expressions, parameters, matrices, and sim-
ulation models (random graph models) used in the article are
summarized in the following.

A.1. BASIC DEFINITIONS
A.1.1. Node, vertex
The smallest subunit of a network. With regard to connectomes a
node is a circumscribed or disjunctive region that contains neu-
ron perikarya (sources of physiological action potential) and/or
axonal terminals (targets of physiological action potentials).

A.1.2. Set of indexed nodes
The set of all indices of nodes is

N = {1, 2, 3, ..., n} (A1)

A.1.3. Number of nodes
The number of nodes (regions, vertices) is

n = |N | (A2)

A.1.4. Edge
A directed edge (i, j)∈N ×N is the line that connects vertices i
and j with source i and target j. The set of directed edges E is

E ⊆ N × N (A3)

A.1.5. Edges
The number of edges (connections, links) ε is

ε = |E| (A4)

A.1.6. Set of edges
The set of all not self-referencing edges is

L =
{(

i, j
)
∈ E

∣∣i 6= j
}

(A5)

` = |L| (A6)

A.1.7. Graph

G = (N , E) (A7)

A.1.8. Adjacency matrix
The adjacency matrix (connectivity matrix) A is

A =
(
aij
)n

i,j=1 where aij =

{
1 if (i, j) ∈ E

0 else
(A8)

A.1.9. Weighted matrix
The weighted matrix W is

W =
(
wij
)n

i,j=1 (A9)

whereby wij is the weight of the edge (i, j) that connects i and j.
0≤wij≤ 1.

A.1.10. Path
A sequence of vertices (v1, . . ., vk) is a path from (v1 to vk) if
∀i ∈ {1, . . ., k − 1}: (v1, v i+1)∈ E. The length of a path v1, . . ., vk

is k − 1.

A.1.11. Distance matrix
The distance matrix D is

D =
(
dij
)n

i,j=1 (A10)

where

dij = d(i, j) =


length of the shortest

path from i to j , if such a path exists

∞, else

(A11)

A.1.12. Degree all
Self-references of nodes are not considered for all three degree
measures. deg(i)= degall(i)

deg (i) =
n∑

i=1
j 6=i

aij + aji (A12)

A.1.13. Degree out

degout (i) =
n∑

i=1
j 6=i

aij (A13)

A.1.14. Degree in

degin(i) =
n∑

i=1
j 6=i

aji (A14)

A.1.15. Neighborhoods
Out-neighbors of i:

N out
i =

{
j ∈ N\ {i} | aij = 1

}
(A15)

In-neighbors of i:

N in
i =

{
j ∈ N\ {i} | aji = 1

}
(A16)

All neighbors of i:

Ni = N out
i ∪ N in

i (A17)

N+i = Ni ∪ {i} (A18)

A.2. NETWORK PARAMETERS
A.2.1. Leverage Lev (i )
The leverage centrality was introduced by Joyce et al. (2010).

Lev(i) =
1

deg (i)

∑
j∈Ni

deg (i)− deg (j)

deg (i)+ deg (j)
(A19)
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A.2.2. Directed leverage Lev (i )→

Lev(i)→ =
1

|Ni |

∑
j∈Ni

degall(i)− degall(j)

degall(i)+ degall(j)
(A20)

The weighted directed leverage Lev(i)
−→w is analogue to Lev(i)→

with weighted degrees.

A.2.3. Communicability matrix G

Gij =

∞∑
k=0

(
Ak
)

ij

k!
=

(
eA
)

ij
(A21)

The communicability is the sum of paths from i to j each weighted
with 1

k! for a path with length k.

A.2.4. Modularity measure
Let M = {M 1, . . ., Mm} be a partition of N. Mi is a group, module,
or cluster of vertices. With

ei =
1

`

∑
j ,k∈Mi

j<k

(
ajk + akj

)
, (A22)

the fraction of edges that fall within group Mi⊆N and

ai =
1

2`

∑
j∈M

∑
k∈N\{j}

(ajk + akj), (A23)

the fraction of ends of edges that are attached to vertices in group
Mi, the modularity

Q =
m∑

i=1

(
ei − a2

i

)
, (A24)

whereby a2
i is the fraction of edges that would connect vertices

within group Mi if they were connected at random. A large mod-
ularity implies that the fraction of edges that fall within groups is
larger than expected in the random case. The partition is generated
by a “greedy” optimization algorithm. Starting with a partition
where every single node has its own group, stepwise those two
groups are joined that increase Q most. The algorithm ends if
there are no more such groups. The weighted case is similar, only
the aij are replaced by wij and ` is replaced by the sum of the edge
weights

`
−→w
=

∑
i,j∈N
i 6=j

wij (A25)

The method of Newman and Girvan (2004) was used.

A.2.5. Global efficiency (GE)

GE =
1

n (n − 1)
·

∑
i,j∈N
i 6=j

1

d
(
i, j
) (A26)

GE→ and GE
−→w analog with d→(i, j) and d

−→w (i, j)

A.2.6. Directed global efficiency

GE→ =
1

n (n − 1)
·

∑
i,j∈N
i 6=j

1

d→(i, j)
(A27)

A.2.7. Harmonic mean (HM)

HM =
1

GE
(A28)

The directed and weighted versions use the directed and
weighted global efficiencies.

A.2.8. Local efficiency
The local efficiency indicates how strong neighbors of nodes are
interconnected. For each node i the inverse lengths of the shortest
paths of the neighbors of i that are passing i are added. The local
efficiency is this sum divided by the maximal possible sum of paths
between neighbors that are connected with i. The local efficiency
of the network is the average local efficiency of all nodes.

A.2.9. Directed local efficiency

LE→ =
1

n

∑
i∈N
ni>1

∑
j ,k∈Ni

j 6=k

djk(Ni)
−1

ni · (ni − 1)
(A29)

A.2.10. Weighted directed local efficiency

LE
−→w
=

1

n

∑
i∈N
ni>1

∑
j ,k∈Ni

j 6=k

d
−→w
jk (Ni)

−1

ni · (ni − 1)
(A30)

Whereby ni= |Ni| and djk(Ni), respectively, d
−→w
jk (Ni) is the

length of the shortest path between j and k that contains only
neighbors of i.

A.2.11. Directed assortativity coefficient r →

r→ =

∑
(i, j)∈L

degout (i) · degin

(
j
)

−
1

4` ·

[ ∑
(i, j)∈L

(
degout (i)+ degin

(
j
))]2

1
2 ·

∑
(i, j)∈L

(
degout (i)

2
+ degin

(
j
)2
)

−
1

4` ·

[ ∑
(i, j)∈L

(
degout (i)+ degin

(
j
))]2

(A31)
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A.2.12. Directed and weighted assortativity coefficient r Ew

r
−→w
=

∑
(i,j)∈L

wij ·
(
degw

out (i) · degw
in( j)

)
−

1
4` ·

[ ∑
(i,j)∈L

wij ·
(
degw

out (i)+ degw
in( j)

)]2

1
2 ·

∑
(i,j)∈L

wij ·
(
degw

out (i)
2
+ degw

in ( j)2
)

−
1

4` ·

[ ∑
(i,j)∈L

wij ·
(
degw

out (i)+ degw
in( j)

)]2

(A32)

The correlation of the degrees of nodes that are connected:
−1≤ r ≤ 1. Large positive values imply that nodes are mainly con-
nected to nodes with similar degrees. Large negative values imply
that nodes with a large degree are mainly to nodes that have a small
degree. If r ≈ 0 there is no relation detectable.

A.2.13. Average path length = characteristic path length (d )
With P = {(i, j)∈N ×N | d(i, j)<∞}, the set of paths.

d =


1
|P|

∑
(i, j)∈P

d
(
i, j
)

, P 6= ∅

0, P = ∅
(A33)

In the weighted case the distances d(i,j) are replaced by the
weighted distances.

A.2.14. Average directed degree (deg)

deg =
2`

n
(A34)

A.2.15. Heterogeneity VC
Coefficient of variation (VC) of the degreeall parameter.

HVC =
1

deg
·

√∑
i∈N

(
degall (i)− deg

)2
(A35)

If HVC= 0, all nodes have the same degree. The larger HVC

the more diverse are the node degrees. In the weighted case the
versions of the degrees are used. The heterogeneity measure of
Estrada (2010) was not implemented because it is not defined for
directed and weighted graphs.

A.2.16. Line density (Ld)
The line density is the same like the connectedness of Raghuraj
and Lakshminarayanan (2006).

Ld =
`

n · (n − 1)
(A36)

Without self-referencing edges.

A.2.17. Diameter (Diam)

Diam = max
{

d(i, j)|d(i, j) <∞
}

(A37)

A.2.18. Katz index
The Katz index (Katz status index, Katz centrality) is a measure for
the direct and indirect input of a node.

CKatz (i) =
∞∑

k=1

∑
j=1

αk
(

Ak
)

ji
(A38)

The attenuation factor α has to be smaller than the recipro-
cal of the absolute value of the largest eigenvalue of A. For a
better readability and comparability of the results, in neuroVI-
ISAS the Katz centrality is multiplied by the mean of the quotient
degin(i)/CKatz(i) of all nodes with CKatz(i)> 0. Hence, the values
lie in the same range as the indegrees.

A.2.19. Number of triangles

t→(i) =
∑

j ,k∈N\{i}
j<k

(aij + aji)(aik + aki)(ajk + akj) (A39)

The maximum number of possible triangles that can be derived
from a complete reciprocal triangle is 8.

A.2.20. Weighted number of triangles

t
−→w (i) =

∑
j ,k∈N\{i}

j<k

(
w

1
3

ij + w
1
3

ji

)(
w

1
3

ik + w
1
3

ki

)(
w

1
3

jk + w
1
3

kj

)

(A40)

Instead of the sum of triangles [t→(i)] the sum of geometric
means of edge weights of each triangle is calculated. The following
example provides (wij ·wjk ·wik)1/3 as the summand:

i

j k

wikwij

wjk

A.2.21. Directed transitivity
The general definition of transitivity (T ) is the sum of number of
triangles around all nodes divided by the maximum possible sum
of triangles around all nodes.

T→ =

∑
i∈N

t→ (i)∑
i∈N

tmax(i)
(A41)

A.2.22. Directed and weighted transitivity

T
−→w
=

∑
i∈N

t
−→w (i)∑

i∈N
tmax (i)

(A42)
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Whereby t max(i)= deg(i)·(deg(i)− 1)− 2·rec(i) with deg(i)=
number of adjacent edges of i and rec(i)= number of reciprocal
edges of i (the two directions of one reciprocal edge are considered
as one reciprocal edge).

The degree deg and the reciprocity rec are defined as:

deg (i) =
∑

j∈N\{i}

aij + aji (A43)

rec (i) =
∑

j∈N\{i}

aij · aji (A44)

For the directed and weighted case:

aij =

{
1 wij > 0

0 else
(A45)

A.2.23. Cluster coefficient (triangle based)
The triangle based cluster coefficient (Fagiolo, 2007) of a node n is
the number of triangles around n divided by the maximum pos-
sible number. In this version of the cluster coefficient reciprocal
edges to a neighbor of a node n can affect the cluster coefficient
of node n. In the other version only edges between neighbors of n
have an influence to the cluster coefficient of node n.

C→T =
t→ (i)

tmax (i)
(A46)

C
−→w
T =

t
−→w (i)

tmax (i)
(A47)

A.2.24. Cluster coefficient
Number of edges between the neighbors of a node divided by the
maximum possible number. C→(i) refers to all neighbors of i.

C→ (i) =
1

|Ni | · (|Ni | − 1)
·

∑
j ,k∈Ni

j 6=k

ajk (A48)

C→out (i) refers to the out-neighbors of i.

C→out (i) =
1

|N out
i | ·

(
|N out

i | − 1
) · ∑

j ,k∈N out
i

j 6=k

ajk (A49)

C→in (i) refers to the in-neighbors of i.

C→in (i) =
1

|N in
i | ·

(
|N in

i | − 1
) · ∑

j ,k∈N in
i

j 6=k

ajk (A50)

In the weighted case the aij are replaced by the wij.

A.2.25. Average cluster coefficient

C→ =
1

n

n∑
i=1

C→i (A51)

and

C
−→w
=

1

n

n∑
i=1

C
−→w
i (A52)

A.2.26. Small-worldness S

S =

(
C

Crand

)
(

d
drand

) (A53)

drand and Crand are the parameters C and d of the Erdös Renyi
randomizations.

A.2.27. Centrality

CD =

n∑
i=1

degmax − deg (i)

(n − 1) · (n − 2)
=

n · degmax − 2 · `

(n − 1) · (n − 2)
(A54)

This centrality (degree centrality) is defined for an undirected
network based on undirected degrees. A directed or weighted ver-
sion is not available yet. For the calculation the directed network
is transferred to an undirected one.

A.2.28. Circle length (LC)

LC(i) =

{
d (i, i) , d (i, i) <∞

0, d (i, i) = ∞
(A55)

A.2.29. Eccentricity out
Eccentricity out, the output eccentricity of the vertex i is the
maximum distance from i to any vertex.

Eccout (i) = max
{

d(i, j) | j ∈ N ∧ d(i, j) <∞
}

(A56)

A.2.30. Eccentricity in
Eccentricity in, the input eccentricity of the vertex i is the
maximum distance from any vertex to i.

Ecc in (i) = max
{

d(j , i) | j ∈ N ∧ d(i, j) <∞
}

(A57)

A.2.31. Cluster coefficient of second neighbors
The cluster coefficient of second neighbors (Hierarchical directed
cluster coefficient of second (indirect) neighbors) C2(i) is the
number of edges between the 2nd neighbors of node i, divided
by the maximum possible number of edges. In the weighted case
it is the sum of weights of the edges between the 2nd neighbors of
node i, divided by the maximum possible sum. With

N2(i) =

⋃
j∈Ni

Nj

 \N+i , (A58)

the set of second neighbors of node i is:

C2(i) =


1

|N2(i)|·(|N2(i)|−1)

∑
j ,k∈N2(i)

j 6=k

ajk , if |N2(i)| > 1

0 , otherwise

(A59)
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In the weighted case the aij are replaced by wij.

A.2.32. Average neighbor degree
The non-weighted average neighbor degree NB(i) of node i is

deg NB(i) =
1

|Ni |

∑
j∈Ni

degall

(
j
)

(A60)

A.2.33. Weighted average neighbor degree
The weighted average neighbor degree NB(i) of node i is

deg N B
−→w (i) =

1

|Ni |

∑
j∈Ni

degw
all

(
j
)

(A61)

A.2.34. Variation coefficient of neighbor degree

Loc (i) =

√
1
|Ni |

∑
j∈Ni

(
degall

(
j
)
− deg NB(i)

)2

deg NB (i)
(A62)

The weighted case is analog.

A.2.35. Locality index of node i [Loc(i)]
The locality index of node i is the fraction of edges adjacent to
nodes in N+i whose source and target lie in N+i .

Loc (i) =

∑
j∈N+i

∑
k∈N+i

k 6=j

ajk

∑
j∈N+i

∑
k∈N
k 6=j

ajk
(A63)

The weighted case is analog. A value of 0 means that the node
is isolated. The larger the value, the less edges connect the neigh-
borhood of i to outside node. The maximum of one is reached if
the neighborhood of i is not connected to outside nodes.

A.2.36. Closeness centrality out CCout(i)
The closeness centrality out with indices of nodes from which
node i can be reached RNOUT(i)= {j ∈N\{i}|d(i, j)<∞}

CCOUT (i) =
|RN OUT (i)|∑

j∈RN OUT (i)

d(i, j)
(A64)

A.2.37. Closeness centrality in CCin(i)
The closeness centrality in with indices of nodes which can be
reached from node i RNIN(i)= {j ∈N\{i}|d(j, i)<∞}

CC IN (i) =
|RN IN (i)|∑

j∈RN IN (i)

d( j , i)
(A65)

A.2.38. Betweenness centrality (BC)

BC (i) =
1

(n − 1) (n − 2)
·

∑
j ,k∈N\{i}

ρj ,k (i)

ρj ,k
(A66)

Whereρ j,k is the number of shortest paths from j to k andρ j,k(i)
is the number of shortest paths from j to k that pass through i.
The directed and weighted definitions are the same.

A.2.39. Stress (S)

S (i) =
∑

j ,k∈N\{i}

ρj ,k (i) (A67)

The directed and weighted definitions are the same.

A.2.40. Central point distance (CPD)

CPD =
1

n − 1

n∑
i=1

BCmax − BC (i)

BCmax
(A68)

Where BCmax =
max
i∈N {BC (i)} is the maximum betweenness

centrality. The directed and weighted versions use the directed
and weighted betweenness centralities.

A.2.41. Participation coefficient
The partition M = {M 1, . . ., Mm} is generated as described in the
definition of modularity.

PC→x (i) = 1−
∑

Mj∈M

(
degx

(
i, Mj

)
degx (i)

)2

(A69)

with x ∈ {in, out, all} and

degin(i, Mj) =
∑

k∈Mj\{i}

aki (A70)

(Number of edges from vertices of Mj to i).

degout

(
i, Mj

)
=

∑
k∈Mj\{i}

aik (A71)

(Number of edges from i to vertices of Mj).

degall

(
i, Mj

)
=

∑
k∈Mj\{i}

(aik + aki) (A72)

(Number of edges between i and vertices of Mj ).

PC
−→w
x (i) = 1−

∑
Mj∈M

(
degw

x

(
i, Mj

)
degw

x (i)

)2

(A73)

with the same x and weighted definitions of degrees. One has
0≤ PC(i)≤ 1. If PC(i)= 1, the node i has no edges (in, out, all).
If PC(i)= 0 all edges (in, out all) come from, go to, or stay in the
same cluster. The larger PC(i) the more clusters are involved in
the edges of node i.
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A.2.42. Z-score/within module degree
Let Mi be the module containing node i. degx(i, Mi) x ∈ {in, out,
all} is explained in the definition of the participation coefficient.

degx (Mi) =
1

|Mi |

∑
j∈Mi

degx

(
j , Mi

)
(A74)

is the mean and

σdegx (Mi ) =

√√√√√ 1

|Mi |

∑
j∈Mi

degx

(
j , Mi − degx (Mi)

)2

(A75)

the standard deviation of the within module Mi degree distribu-
tion. Then the z-score is defined as

Z→x (i) =
degx (i, Mi)− degx (Mi)

σdegx (Mi )

(A76)

and analog

Z
−→w
x (i) =

degw
x (i, Mi)− degw

x (Mi)

σdeg w
x (Mi )

(A77)

with the weighted versions of the mean and standard deviation.
A value above one or below minus one implies that a node has
significantly more or less edges from, to, or from and to nodes in
its cluster than the average node in its cluster has.

A.2.43. Eigenvector centrality
The eigenvector centrality EC(i) is the i-th component of the
eigenvector with the largest corresponding eigenvalue of the
adjacency matrix resp. weight matrix.

A.2.44. Shapley rating φ
The Shapley rating is a measure that provides information about
the loss of connectivity following the removal of a node.

SR (i) =
∑

N̂⊆N\{i}

(∣∣∣SCC
(

N̂ ∪ {i}
)∣∣∣− ∣∣∣SCC

(
N̂
)∣∣∣)

·

(
n − |N̂ | − 1

)
! · |N̂ |!

n!
(A78)

Where SCC
(

N̂
)

is the set of strongly connected components

of N̂ . The smaller the value is, the more important is the node in
the sense of connectivity of the graph. Because of the exponential
number of subsets, this parameter can be approximated for large
networks, only.

A.2.45. Radiality
The radiality of a node Rad is a measure of the distance of a node
to all other nodes. Nodes that have a small radiality have larger
distances to other nodes than those with a greater radiality.

A.2.46. Input radiality (Radin)
The input radiality of a node Radin is

Radin (i) =
1

n − 1

∑
j∈N

d(j ,i)<∞

Diam + 1− d
(
j , i
)

(A79)

In the weighted case the weighted distances are used.

A.2.47. Output radiality (Radout)
The output radiality of a node Radout is

Radout (i) =
1

n − 1

∑
j∈N

d(i,j)<∞

Diam + 1− d
(
i, j
)

(A80)

In the weighted case the weighted distances are used.

A.2.48. Centroid value (Cen)
With gout(i, j)= |{k ∈N |d(i, k)< d(j, k)<∞}| and gin(i,
j)= |{k ∈N |d(k, i)< d(k, j)<∞}| which are the number of nodes
closer to node i than to node j with regard to In- and Out-distance,
the centroid value is defined in the following.

A.2.49. Output centroid value (Cenout)

Cenout (i) = min
{

gout
(
i, j
)
− gout

(
j , i
)
| j ∈ N \ {i}

}
(A81)

A.2.50. Input centroid value (Cenin)

Cenin (i) = min
{

gin
(
i, j
)
− gin

(
j , i
)
| j ∈ N \ {i}

}
(A82)

In the weighted case the weighted distances are used. A
value< 0 implies, that there exists a node that is closer to most
other nodes. A value≥ 0 implies, that this node is most central
in the network. A value= 0 implies, that there are more than one
most central nodes.

A.2.51. Page rank centrality (PRC)
PRC(i)= ri where r is the solution of the linear system

(
I − α · AT

· B
)
· r =

1

n
(1− α) ·

 1
...
1

 (A83)

with the damping factor α= 0.85, the identity matrix I, and the
diagonal matrix B, whereby

bii =

{
1

degout (i)
, degout (i) > 0

0, otherwise
(A84)

In the weighted case the weight matrix W is used instead of A

and the weighted version deg
−→w
out (i) of the outdegree.
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A.2.52. Flow coefficient (FC)
Number of paths of length 2 between neighbors of a node i that
pass node i divided by the maximum possible numbers of such
paths.

FC (i) =
1

|Ni | · (|Ni | − 1)
·

∑
j ,k∈Ni

j 6=k

aji · aik (A85)

In the weighted case we define the flow coefficient as the sum
of weights of paths of length 2 between neighbors of a node i that
pass node i divided by the maximum possible sum.

FC
−→w (i) =

1

2 · |Ni | · (|Ni | − 1)
·

∑
j∈Ni
wji>0

∑
k∈Ni \{j}
wik>0

(
wji + wik

)
(A86)

A.2.53. Average flow coefficient (FC)
Number of paths of length 2 between neighbors of a node i that
pass node i divided by the maximum possible numbers of sub
paths.

FC =
1

n

n∑
i=1

FC (i) (A87)

FC
−→w
=

1

n

n∑
i=1

FC
−→w (i) (A88)

A.2.54. Subgraph centrality (SC)

SC (i) =
∞∑

k=0

(
Ak
)

ii

k!
(A89)

SC
−→w (i) =

∞∑
k=0

(W k)ii

k!
(A90)

The subgraph centrality of the network is the average subgraph
centrality of its nodes.

SC =
1

n

n∑
i=1

SC(i) (A91)

SC
−→w
=

1

n

n∑
i=1

SC
−→w (i) (A92)

A.2.55. Undirected cyclic coefficient (CyclC)
The undirected cyclic coefficient as published by Kim and Kim
(2005).

CyclC(i) =
2

|Ni | · (|Ni | − 1)
·

∑
( j ,k)∈Ni×Ni

j 6=k

1

2+ disti( j , k)
(A93)

With

disti( j , k) =


length of the shortest path from j to k

that does not contains i,

if such a path exists

∞, otherwise

(A94)

A.2.56. Directed cyclic coefficient (CyclC→)
A publication about the directed cyclic coefficient is unknown.
The directed cyclic coefficient is implemented here as follows:

CyclC→(i) =
1

|N out
i | · |N

in
i | − |N

out
i ∩ N in

i |

·

∑
( j ,k)∈N out

i ×N in
i

j 6=k

1

2+ disti( j , k)
(A95)

A.2.57. Directed weighted cyclic coefficient (CyclC w
→

)
A publication about the directed weighted cyclic coefficient is
unknown. The directed weighted cyclic coefficient is implemented
here as follows:

CyclC
−→w (i) =

1

|N out
i | · |N

in
i | − |N

out
i ∩ N in

i |

·

∑
( j ,k)∈N out

i ×N in
i

j 6=k

1

wij + wki + dist w
i ( j , k)

(A96)

with dist w
i ( j , k) is the weighted version of disti(j, k) with the

weighted path length.

A.2.58. Cyclic network coefficient (CyclC →)
The cyclic coefficient of the network is the average cyclic coefficient
of its nodes:

CyclC→ =
1

n

n∑
i=1

CyclC→(i) (A97)

A.2.59. Independent cycle count (CyC)
The number of independent cycles is:

Cy = ε − n + 1 (A98)

The relative number of independent cycles is:

CyC =
Cy

Cymax
=

2Cy

n(n + 1)
=

2(ε − n + 1)

n(n + 1)
(A99)

CyC→ =
Cy

n2
=
ε − n + 1

n2
(A100)
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A.2.60. Vulnerability (V)
The vulnerability V is the maximum relative decrease of the global
efficiency removing a single node.

V = max
i∈N

{
GE − GE(i)

GE

}
(A101)

Where GE(i) is the global efficiency of the graph (N\{i},{(j,
k)∈ E | j 6= i 6= k}) that originates by removal of node i and all
edges adjacent to i. The weighted version is analog using the
weighted global efficiencies.

A.2.61. Hubness
The hubness is the degree to which a node has output to authorities
(Kleinberg, 1999).

A.2.62. Authoritativeness
The authoritativeness is the degree to which a node gets input from
hubs (Kleinberg, 1999).

A.3. RANDOM MODELS
The following random graph models are compared to the real
network of the intrinsic amygdala connectivity. By comparing the
average path length and the cluster coefficient of the models with
the real network it is feasible to determine a model that is most
similar to the real network.

A.3.1. Erdös Renyi graph

G
(
n, p

)
(A102)

where n is the number of vertices and p is the probability that an
edge (i, j) exists, for all i, j. The degree distribution of the Erdös
Renyi random graph is binominal in terms of

P
(
deg (v) = k

)
=

(
n − 1

k

)
pk(1− p

)n−1−k
(A103)

A.3.2. Watts-Strogatz graph
The small-world model of Watts-Strogatz is a random graph gen-
eration model that provides graphs with small-world properties.
The network (initially it has a non-random lattice structure) is
build by linking each node to its <k> closest neighbors using are

wiring probability p. Hence, an edge has the probability p that it
will be rewired as a random edge. The number of rewired links
can be estimated by:

pE = pN < k > /2 (A104)

A.3.3. Barabasi-Albert graph
The Barabasi-Albert graph is used to generate preferential attach-
ments between nodes. The probability pi that the new node is
connected to node i is

pi =
ki∑

j∈N
kj

(A105)

The degree distribution of a Barabasi-Albert network is scale-
free following the power law distribution of the form:

P (k) ∼ k−3 (A106)

A.3.4. Eipert graph
The modified Eipert model (EN: Eipert network) is based on the
Barabasi-Albert graph. However, the algorithm starts at a fixed
number of nodes and edges are added iteratively.

A.3.5. Ozik-Hunt-Ott graph
The Ozik-Hunt-Ott model (OHO; Ozik et al., 2004) is a small-
world randomization approach that was modified for directed
networks and a fixed number of edges. The OHO-model uses
a growing mechanism in which all connections are made locally
to topographical nearby regions.

A.3.6. Rewiring graph
The rewiring-models connects each target of an edge of a network
to another target node.

A.3.7. Power law

P (k) = α · k−γ (A107)

1 is the deviation (error) of an empirical distribution of degrees
from the power law function. A small 1 value means that the
empirical distribution is similar with the power law function.
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