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A P P L I E D  P H Y S I C S

Propagation and attenuation of mechanical signals 
in ultrasoft 2D solids
Jan Maarten van Doorn1, Ruben Higler1, Ronald Wegh1, Remco Fokkink1, Alessio Zaccone2, 
Joris Sprakel1, Jasper van der Gucht1*

The propagation of elastic waves in soft materials plays a crucial role in the spatiotemporal transmission of me-
chanical signals, e.g., in biological mechanotransduction or in the failure of marginal solids. At high Reynolds 
numbers Re ≫ 1, inertia dominates and wave propagation is readily observed. However, mechanical cues in soft 
and biological materials often occur at low Re, where waves are overdamped. Overdamped waves are not only 
difficult to observe experimentally, also theoretically their description remains incomplete. Here, we present 
direct measurements of the propagation and attenuation of mechanical signals in colloidal soft solids, induced by 
an optical trap. We derive an analytical theory for low Re wave propagation and damping, which is in excellent 
agreement with the experiments. Our results present both a previously unexplored method to characterize 
damped waves in soft solids and a theoretical framework showing how localized mechanical signals can provoke 
a remote and delayed response.

INTRODUCTION
The propagation of elastic waves in soft materials plays a crucial 
role in the spatiotemporal transmission of mechanical signals, e.g., 
in biological mechanotransduction (1, 2) or in the failure of marginal 
solids (3–6). At high Reynolds numbers Re ≫ 1, inertia dominates 
and wave propagation can be readily observed (7–9). However, me-
chanical cues in soft and biological materials often occur at low 
Re (10), playing a key role in their spatiotemporal response to 
mechanical perturbations (11, 12). For example, in marginally sta-
ble systems, such as jammed packings or fiber networks, a stress at 
the right position can cause total loss of rigidity (3–6). In living cells, 
the propagation of mechanical signals through soft structures is 
crucial in mechanotransduction (1, 2) and controls, for example, 
cell differentiation (13). Also, in soft robotics, sensing and control 
require the transmission of mechanical signals over a distance (14).

Localized mechanical signals can spread in space and time by prop-
agation of elastic waves (7–9). This wave propagation is intimately 
linked to the mechanical properties of the medium (15). In very soft 
materials, the transmission of mechanical signals poses challenges, 
because their intrinsically dissipative nature leads to energy losses 
as the wave propagates (10, 16). In particular, at low excitation fre-
quencies, corresponding to low Reynolds numbers, viscous attenu-
ation of the wave signal is strong, and its detection is challenging. 
Moreover, in ultrasoft solids, the relative amplitudes of thermal 
fluctuations are large, thus further obscuring robust wave propaga-
tion and their detection in experiments.

In this Letter, we show how Fourier filtering can reveal even very 
weak and strongly damped elastic waves at extremely low Reynolds 
numbers, Re ∼ 10−6, in ultrasoft solids formed from crystals and 
glasses of colloids in two dimensions. We create a localized oscilla-
tory perturbation within these solids with an optical tweezer and 
use video microscopy and frequency domain filtering to quantify 
the spatiotemporal strain response. On the basis of an overdamped 

equation of motion, which is in excellent quantitative agreement 
with our experimental results, this enables a full characterization of 
low Re wave propagation and attenuation in ultrasoft solids. More-
over, we show how the analysis of these waves can be used to obtain 
the linear mechanical moduli of very weak elastic solids.

RESULTS
We prepare two-dimensional (2D) colloidal crystals by sedimenting 
monodisperse silica particles with radius a = 3.04 m suspended in 
an aqueous buffer at pH 8.4 and an ionic strength of 10 mM, giving 
a Debye screening length −1 ≈ 3 nm ≪a. This short-ranged elec-
trostatic repulsion yields dense 2D crystals with long-ranged hexag-
onal order at a packing fraction of 0.84 (Fig. 1A and section S1.1).

To create a propagating mechanical wave, we trap a single parti-
cle of the crystal in an optical trap and force it into an in-plane os-
cillatory motion with an amplitude A0 = 2.5 m (Fig. 2A). We vary 
the frequency  of this motion between 0.05 and 10 rad/s, corre-
sponding to Reynolds numbers between 4 · 10−7 and 8 · 10−5 (17), 
and confirm that this mechanical excitation is well within the linear 
regime (section S2).

Note that the self-diffusion time of particles in the crystal,  = 
a2/4D ≈ 100 s, so that the Deborah number De =  is larger than 
1 in all our experiments (section S3), implying that the material can 
be considered a viscoelastic solid.
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Fig. 1. Structure of colloidal samples. Bright-field microscopy images of (A) 2D 
colloidal crystal and (B) 2D colloidal glass of silica particles used in the tweezing 
experiments. Scale bars, 40 m.
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The oscillating particle creates a mechanical wave that propa-
gates through the surrounding material. This sets up a net ballistic 
displacement of the particles adjacent to the oscillating bead. How-
ever, the signal of interest is convolved with the inherent Brownian 
motion of these microscopic colloids. In particular, far away from 
the trapped colloid, where the elastic signal is attenuated, it may drown 
in the Brownian noise (Fig. 2, B and E). Upon filtering the positional 
trajectory of each particle in the frequency domain at the driving 
frequency (Fig. 2C), even small displacements due to the propagat-
ing wave become apparent (Fig. 2D). To ensure statistical reliability 
of these data, we set up a real-time distributed particle tracking al-
gorithm that allows us to collect data during 20,000 to 35,000 frames, 
which is equivalent to 50 to 500 oscillation cycles. While the unfil-
tered mean square displacement of the particles shows no apparent 
signature of the perturbation, except at the forced particle (Fig. 2E), 
the Fourier-filtered amplitude map shows a propagating mechanical 
wave with an amplitude that decays steeply with increasing distance 
from the trapped bead (Fig. 2F) and a phase shift that gradually in-
creases with distance (Fig. 2D).

To explain these results, we assume that the colloidal crystal can 
be treated as a 2D continuous elastic material. We write an equation 
of motion for the displacement field ​​ → u ​​ in the solid (18) to which we 
add a dissipative term to account for the damping fluid and an os-
cillating point force, ​​ 

→
 f ​(t ) = ​​ 

→
 f ​​ 0​​ · ​e​​ it​​, that represents the perturbation

	​  ​ ​∂​​ 2​​ → u ​ ─ 
∂ ​t​​ 2​

 ​ +  ​ ∂​ → u ​ ─ ∂ t ​  = ​  
→
 f ​(t ) (​ → r ​ ) + ​  E ─ 2(1 + ) ​ ​​ ∇​​ 

→
​​​ 
2
​​ → u ​ + ​  E ─ 2(1 − ) ​ ​ ∇​​ 

→
​(​ ∇​​ 
→

​ · ​ → u ​)​		
		  (1)

Here, the first term describes the inertial forces with  ≈ 10−2 kg/m2 
as the density of the 2D material. The second term represents the 
viscous damping due to the solvent with  as the drag coefficient per 
unit area, which we determine experimentally from the short-time 
diffusion of particles in the crystal, giving  = 4.8 · 103 Ns/m3 (section S3). 
The last two terms correspond to the Navier-Cauchy equation that 
describes the elastic forces within the 2D solid with E as the 2D elastic 
modulus and  as the 2D Poisson ratio.

Because our experiments are performed at low Reynolds number, 
the inertial term is negligible, resulting in overdamped mechanics. 
Solving the equation of motion for this case yields the displacement 
field in the form ​​ → u ​  =  · ​ 

→
 f ​​, with  as the complex response function 

tensor, which has principal components ∥ and ⊥ that describe the 
components of the displacement field parallel and perpendicular to 
the applied force, respectively. In polar coordinates, with r as the 
distance from the point where the force is applied and  = 0 corre-
sponding to the direction of the force, this becomes (see section S4 
for full details)

	​​​ ​ ∥​​(r,  ) = ​ 1 − ​​​ 2​ ─ 4E  ​​(​​ ​K​ 0​​​(​​ ​ r ​√ 
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and
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Fig. 2. Generation and detection of mechanical waves. (A) Schematic overview of our experiment. (B) Raw experimental particle trajectories in the direction of the 
driven particle (gray). Colors correspond to the particles in (A). (C) Amplitude spectrum of the driven particle. The red line corresponds to the driving frequency. (D) Tra-
jectories of (B) after Fourier filtering at the driving frequency. (E) Unfiltered root mean square displacement and (F) Fourier-filtered amplitude map of particles in a crystal 
excited at  = 3.1 rad/s; the color scale in (E) and (F) represents the amplitude in micrometers. Scale bars, 40 m. The red arrow indicates the oscillation direction of the 
probe particle.
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where K0 and K2 denote the modified Bessel functions of the second 

kind, ​  = ​ ((1 − ​​​ 2​ ) / E)​​ 
−​1 _ 2​

​​ is a characteristic attenuation length of 
the displacement amplitude, and ​  = ​ √ 

_
 2 / (1 − ) ​​ is a parameter that 

depends only on the Poisson ratio and diverges for  → 1, which is 
the maximum Poisson ratio in 2D. The amplitude and the phase of 
the displacement fields are obtained as the magnitude and the ar-
gument, respectively, of the complex response functions.

To compare our experimental results with this prediction, we de-
compose the measured displacement amplitudes into their parallel 
and perpendicular components (Fig. 3, A and E). This results in dis-
tinct lobed patterns for these two components that can be observed 
in all our experiments. Our theoretical prediction produces identical 
patterns that are in excellent agreement, indicating that wave prop-
agation in these colloidal crystals can indeed be described by treat-
ing the material as a continuous and isotropic 2D elastic solid (Fig. 3, 
B and F). We note that, in principle, the mechanical properties of 
the crystal should depend on the direction with respect to the crys-
tal axes, but apparently, such anisotropy does not play a large role 
for these soft crystals.

The parallel component of the displacement response propa-
gates preferentially along the excitation axis and shows a distinct 
asymmetry in the attenuation length along the two primary axes. The 
perpendicular displacement shows a four-lobed pattern, with max-
imum displacements at an angle of 45∘ with respect to the excitation 
direction. Also, in the phase maps (Fig.  3,  C  and  D), we observe 
patterns that are in excellent agreement with the theoretical predic-
tion (Fig. 3, G and H).

We can now use our theoretical analysis to interpret the experi-
mental results in terms of the linear elasticity of the solid. For this, 
we first consider the parallel displacement component in the direc-
tion of the excitation,  = 0. An asymptotic expansion of Eq. 2 for 
relatively large distances from the perturbation r >  (see section S4) 
leads to a phase lag in the far field

	​​ ​ ∥​​(r, 0 ) ≈  − ​  ─ 8 ​ − ​  r ─ 
 ​√ 

_
 2 ​
 ​​	 (4)

and an amplitude

	​​ A​ ∥​​(r, 0 ) ∼ ​ r​​ −1/2​ ​e​​ −r/​√ 
_

 2 ​​​	 (5)

According to Eq. 4, the phase varies linearly with r along  = 0, 
which is indeed what we find experimentally (Fig. 4A). This means 
that the wave propagates at a constant velocity in the direction of the 
excitation, with a phase velocity ​​v​ ∥​​  =  ∣  ​(d ​​ ∥​​ / dr)​​ −1​ ∣  ≈  ​√ 

_
 2 ​  = ​

√ 
___________

  2E /  ​(1 − )​​ 2​ ​​. As shown in the inset of Fig. 4A, the phase velocity 
increases approximately as ​​v​ ∥​​  ∼ ​ √ 

_
  ​​ for low frequencies, which in-

dicates that the elastic modulus and the Poisson ratio do not depend 
on the frequency in this regime.

The linear elasticity of an isotropic 2D solid is described by two 
independent mechanical parameters: the elastic modulus and the 
Poisson ratio. While the modulus only affects the absolute magni-
tude of the response function and the characteristic length scale , 
the shape of the spatial pattern is uniquely determined by the Poisson 
ratio, as expressed by the parameter  in Eqs. 2 and 3 (section S5). 
Hence, if the Poisson ratio is independent of the frequency, it should 
be possible to superimpose the measured displacement data ob-
tained at different frequencies by normalizing the distance r by the 
characteristic length . We determine  for each frequency from 
the asymptotic behavior at large r in two independent ways, using 
Eqs. 4 and 5. Normalizing all distances with () then indeed leads 
to a collapse of the data for both the amplitude and phase of the 
parallel displacement contribution, both in the direction of the ex-
citation ( = 0) and perpendicular to it ( = /2) (Fig. 4, B and C). 
We fit these curves to Eq, 2 using ​  = ​ √ 

_
 2 / (1 − ) ​​ as the only fit pa-

rameter, giving a value for the Poisson ratio  = 0.70 ± 0.07, compara-
ble to values expected for crystalline solids in two dimensions 
(19, 20). Using this value of , we then obtain the elastic moduli of 
the colloidal crystal from the decay lengths, giving moduli on the 
order of E ≈ 10−6 N/m, both for the phase and amplitude data 
(Fig. 4D). A similar analysis for the perpendicular displacement 
components, fitted to Eq. 3 (section S6), gives similar moduli 
(Fig. 4D). As a final consistency check, we use the measured Young’s 
modulus and Poisson ratio to predict the absolute values of the 
response functions, which now provide a reasonable quantitative 

Fig. 3. Comparison of experimental and theoretical wave patterns. (A) Experimental amplitude map of the parallel displacement. (B) Parallel displacement amplitude 
predicted by our model. (C) Experimental phase shift for the parallel displacement. (D) Phase shift of parallel displacement predicted by our model. (E) Experimental map 
of perpendicular displacement. (F) Perpendicular displacement amplitude predicted by our model. (G) Experimental phase shift for the perpendicular displacement. 
(H) Phase shift of perpendicular displacement predicted by our model. Amplitudes and phases have units micrometers and radians, respectively. Scale bars, 40 m. The 
red double-headed arrow indicates the oscillation direction. In all cases,  = 0.52 rad/s; for the model calculations, E = 2.5 · 10−6 N/m and  = 0.7.
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match with the experimental results (Fig.  3, A  to H). This high-
lights that our theoretical description captures the main phenome-
na in a quantitative fashion.

We may compare the values for E with a simple estimate ob-
tained by approximating the colloidal crystal as a hexagonal lattice 
of harmonic springs, for which ​E  =  2k / ​√ 

_
 3 ​​ with k as the spring con-

stant of a particle pair (21). We estimate k by analyzing the thermal 
bond length fluctuations (section S7) and find E ≈ 1 · 10−6 N/m 
in very good agreement with the experimental values. We also 
validate our results by estimating the modulus in a different way, 
by analyzing the long-wavelength thermal fluctuations in the crys-
tal (22). As shown in section S8, this gives a modulus that is in 
good agreement with our estimate based on the wave pattern. Our 
method has the advantage, however, that it can directly probe the 
frequency dependence of the elastic moduli. Moreover, we obtain 
a spatial map of the displacement pattern in real space, which al-
lows us to observe deviations from the predicted pattern and to 
relate these to the local structure (see below).

We note that our method is limited at higher frequencies by the 
decrease in the attenuation length with increasing frequency. Once 
the characteristic length  becomes of the order of the particle size, 
discretization effects hinder the accurate determination of the wave 
propagation. This gives a limiting frequency max ≈ E/a2 ≈ 20 rad/s. 
For frequencies approaching max, our estimation of the modulus 
becomes inaccurate.

Last, to emphasize that our approach is not exclusive to ordered, 
crystalline solids, we repeat the experiments described above for a 
disordered colloidal glass that lacks long-ranged order (23, 24). We 
prepare monolayers of a bidisperse mixture of silica spheres (a = 

3.04 and 1.85 m at a mixing ratio of 1:2.35 by number and a total 
packing fraction of 0.80) (Fig. 1B). We confirm the absence of struc-
tural order from the liquid-like shape of the pair-correlation function 
and structure factor, while the particle dynamics are strongly arrested 
and caged as evidenced from their mean square displacement in 
the absence of external mechanical excitation (section S1.2).

Despite the very different microstructure, we find that the dis-
placement amplitude and phase patterns are very similar to those 
observed for the crystals (Fig. 5, A to D). The same analysis (Fig. 5, 
E and F) as for the crystals (using a drag coefficient  that is a 
weighted average over the small and large particles, giving  = 7.5 · 
102 Ns/m3; see section S3) gives a Poisson ratio  = 0.60 ± 0.15 
and an elastic modulus on the order of 1 · 10−7 N/m for the glasses 
(log E = − 7.0 ± 0.4). This is about an order of magnitude lower 
than for the crystals, which could be due to the slightly lower pack-
ing fraction or the softer interaction potential between the small 
particles (section S7).

From Fig. 5 (A to D), it is also clear that the wave patterns are 
noisier for the glasses than for the crystals, even though the decay 
lengths  are comparable. The reason for this is not clear, but it might 
be related to their disordered structure, which is known to lead to 
inhomogeneous mechanical properties and nonaffine deformation 
modes (25). Further evidence for a relation between wave propagation 
and microscopic structure can be seen by looking at the displacement 
patterns in the vicinity of defects in the colloidal crystal. For example, 
the pattern in Fig. 2F shows an asymmetry between left and right, 
which can be attributed to the presence of a dislocation just to the 
right of the probe particle (section S9). We note that this is not yet 
captured by the theory, which assumes a homogeneous elasticity.

Our results highlight that the observation of highly damped me-
chanical waves at low Re open up the way for mechanical character-
ization of both ordered and disordered ultraweak solids. Traditionally, 
microrheology is the method of choice to characterize the visco-
elasticity of very weak elastic materials whose moduli are below the 
detection limit of conventional macroscopic rheometers. In micror-
heology, the viscoelastic features of the material are extracted from 
the Brownian fluctuations of tracer particles embedded in the material 
(passive microrheology) (26) or from the response of an actively 
forced probe particle (active microrheology) (27). However, these 
methods often fail to give the bulk rheological properties, for exam-
ple, in very heterogeneous samples where the probe particles sample 
mostly the pores in the material or in cases where the probe parti-
cles locally modify the structure of the material. This can be solved 
by analyzing cross-correlations between particles that are separated 
by a distance much larger than the characteristic length scale of the 
material, in microrheology is a field of science so-called two-particle 
microrheology (28). Alternatively, the elastic properties can be ob-
tained by analyzing the long-wavelength thermal vibrational modes 
of the material using particle tracking techniques, although extract-
ing the frequency-dependent rheological properties is more chal-
lenging in this case (22). Our method can be seen as a form of 
active multiparticle microrheology, in which the complete spatial 
displacement pattern induced by a local perturbation is mapped out. 
By filtering out the Brownian noise, we obtain experimental access 
to the frequency-dependent mechanical properties of extremely 
soft and fragile systems. In principle, the method can also be ex-
tended toward the nonlinear deformation regime by increasing the 
amplitude of the probe oscillation, although the interpretation in terms 
of nonlinear elastic moduli will obviously be more challenging.

Fig. 4. Analysis of the damped waves. (A) Bin-averaged phase of the parallel dis-
placement in the direction of the excitation for  = 0.52 rad/s. Inset shows the phase 
velocity versus probed frequency; dashed line depicts slope ​​1 _ 2​​; error bars depict a 
95% confidence interval. (B) Superposition of parallel displacement amplitude for 
different frequencies along  = 0 (blue) and  = /2 (red) versus normalized dis-
tance. (C) Superposition of parallel displacement phase for different frequencies 
along  = 0 (blue) and  = /2 (red) versus normalized distance. Lines in (C) and (D) 
are fits to the theory (with  = 0.7). (D) Elastic modulus as a function of frequency, 
obtained from the phase (open symbols) and amplitude (filled symbols) of both the 
parallel (red) and perpendicular (blue) displacement components; error bars de-
pict 95% confidence intervals.
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DISCUSSION
Here, we have shown how elastic waves can be generated and de-
tected at low Re in ultrasoft solids, both ordered and disordered. 
Moreover, we have proposed an analytical model to describe and 
interpret the wave attenuation and propagation, which is in excel-
lent quantitative agreement with our experimental results. On the 
basis of this theory, a measurement of the wave’s phase velocity and 
decay length gives access to the full linear elasticity of the material, 
giving values in excellent agreement with lattice theory predictions. 
While our analysis assumes the material to be homogeneous and 
isotropic, the deviations in the patterns that we observe around de-
fects suggest that wave propagation is affected by heterogeneities in 
the material. It will be interesting to study these effects in more de-
tail and to generalize, for example, our approach to materials with 
heterogeneous or anisotropic material properties. In principle, our 
approach can be extended to probe the mechanics of ultrasoft 3D 
materials such as biopolymer networks, where the Fourier-filtered 
elastic displacements can be obtained, e.g., by embedding tracer 
particles in the material or by using digital image correlation ap-
proaches. This could open the way to characterize how localized 
mechanical signals acting on biological structures give rise to the 
complex spatiotemporal response that underlies mechanical com-
munication in living organisms and on the role of local structures 
on the response of marginal networks.

MATERIALS AND METHODS
We prepare 2D colloidal solids by sedimenting monodisperse silica 
particles (microParticles GmbH) with a = 304 m and a = 1.85 m 
dispersed in a 10 mM TAPS [tris(hydroxymethyl)methylamino]
propanesulfonic acid buffer at pH 8.5. After equilibrating the 
samples for 48 hours for crystals and 96 hours for glasses, we start 
an experiment by trapping a particle in the center of the field of 
view. We make sure that the experiments are performed in a 
region where there is only a single monolayer, which we check by 

varying the focus of the microscope. We apply an oscillating force 
by oscillating the trapped bead with an optical trap at an ampli-
tude of 2.5 m, using a home-built optical tweezer setup (see 
section S10). In each experiment, we checked that no particles were 
pushed out of the layer. The resulting response of the surrounding 
material is quantified by imaging the colloidal solid with bright-
field microscopy and recovering the particle trajectories using 
established routines (29, 30). We measure at a frame rate of 5 Hz 
for at least 20,000 frames. We locate particle positions in real time 
during the experiment by combining existing locating algorithms 
with a distributed messaging protocol Zero Message Queue (ZMQ). 
This approach enables to distribute computational load of particle 
locating over several computers, enabling real-time acquisition.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/37/eaba6601/DC1
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