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Measles remains a major contributor to preventable child mor-
tality, and bridging gaps in measles immunity is a fundamental
challenge to global health. In high-burden settings, mass vaccina-
tion campaigns are conducted to increase access to vaccine and
address this issue. Ensuring that campaigns are optimally effec-
tive is a crucial step toward measles elimination; however, the
relationship between campaign impact and disease dynamics is
poorly understood. Here, we study measles in Pakistan, and we
demonstrate that campaign timing can be tuned to optimally
interact with local transmission seasonality and recent incidence
history. We develop a mechanistic modeling approach to optimize
timing in general high-burden settings, and we find that in Pak-
istan, hundreds of thousands of infections can be averted with no
change in campaign cost.
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Measles is a significant source of global disease burden and
child mortality, estimated to have caused 7 million infec-

tions and 90,000 deaths in 2016 (1). Although an effective, safe,
and cost-efficient measles vaccine has existed since the 1960s,
vaccination in high-burden settings remains a challenge due
largely to poor healthcare infrastructure and access (1–3). As a
result, measles vaccine dissemination is a pressing global health
and social justice issue.

While routine immunization (RI) at 9 mo and 15 mo of
age is the World Health Organization (WHO) recommended
vaccination schedule (2), high-burden settings rely heavily on
mass vaccination campaigns, termed supplemental immuniza-
tion activities (SIAs), to provide measles vaccine more broadly
(3). In these campaigns, health workers advertise and run fixed
postvaccination sites to target all children in a specified age
range with the aim to vaccinate susceptible children missed
by RI (3). SIAs are logistically complicated and implementing
them successfully requires a combination of operational excel-
lence, planning, and knowledge of region-specific needs. While
understanding and optimizing SIA implementation is therefore
a difficult general problem, it is a critical contributor to measles
burden control and an important step toward global measles
elimination.

In this report we analyze measles in Pakistan, a high-burden
setting (4), and show that SIA impact is strongly dependent on
timing. We present a general time-series susceptible–infected–
recovered (TSIR) model (5) which explicitly accounts for SIAs
in the process of inferring the underlying susceptible popu-
lation, transmission seasonality, and future infections. Fitting
this model to laboratory-confirmed measles cases from 2012
to 2017, we show that Pakistan has significant annual measles
transmission seasonality with a high-transmission season begin-
ning in October and continuing through the following April.
This seasonality has implications for SIA timing, and using the
model to extrapolate from 2018 to 2021, we show that an SIA
conducted in November prevents on average ∼400, 000 more
infections than an equivalent campaign run in January. Finally,
by extending the model to the province level, we show that
optimal SIA timing is spatially heterogeneous, and we discuss

implications of this result for future SIA planning in Pakistan
and elsewhere.

Measles Transmission Seasonality in Pakistan
Measles is a highly virulent disease, and laboratory-confirmed
measles cases in Pakistan have more than doubled from 2016 to
2017 (4). Pakistan’s most recent Demographic and Health Sur-
vey (DHS) (2012–2013) estimates measles vaccination coverage
in 1- to 2-y olds at 61.4% nationwide, with significant subna-
tional heterogeneity (26.4–85.2%) (6). Given this relatively low
RI coverage, informed and effective SIAs are needed to slow and
potentially interrupt measles transmission.

Mechanistic modeling allows us to understand measles sea-
sonality while estimating underlying susceptible populations and
forecasting policy outcomes. TSIR models of measles are well
studied (7–10) and have been used to understand measles trans-
mission in a variety of settings (11, 12). While modern TSIR
methods typically use Markov chain Monte Carlo (13) or related
algorithms (14, 15) to calibrate to incidence data, we forgo this
complexity and instead extend the more computationally robust
linear-regression approach (5) to the high-burden context by
incorporating past interventions.

Considering time in semimonthly increments corresponding
to a measles infection’s typical duration (1, 16), we model St ,
the susceptible population at time t , and It , the corresponding
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infection prevalence at time t , as a discrete, stochastic dynamical
system,

St =(1−µt−1) (Bt +St−1− It) [1]

It =βtI
α
t−1St−1εt [2]

Ct ∼Binom {It , p}. [3]

Here, Bt is an assumed known estimate of births missed by RI at
time t , µt is the fraction of the susceptible population reached by
any SIA at time t , α models inhomogeneous population mixing
(5), andβt is the average number of infectious contacts per person
at time t which we assume has an annual periodicity. Transmission
uncertainty is accounted for by εt , a zero-mean, log-normal ran-
dom process, and laboratory-confirmed cases, Ct , are assumed to
be drawn from a binomial distribution where p is the laboratory-
reporting rate, an unknown probability for cases to be selected for
laboratory study. In Eq. 1 children missed by RI, Bt , contribute to
St while infections and SIAs serve to decreaseSt . Simultaneously,
Eq. 2 models new infections occurring at rate βt as infectious and
susceptible populations interact.

Since measles SIAs happen relatively infrequently, Pakistan’s
campaign history can be used to reduce µt to the estimation of a
single parameter. Subnational vaccination campaigns have been
conducted six times in Pakistan since 2012 with wide variation in
target population (17). Here we assume that nonzero µt =Ptµ
where Pt is the known target population fraction and µ is an
unknown SIA efficacy parameter common to all campaigns from
2012 to 2017.

Given the observedCt series and correspondingBt [via RI cov-
erage estimates (6) and birth-rate estimates (18–20)] (Methods),
the model can be fitted to data in a two-step linear-regression
process described in Methods and SI Appendix, section 2. Model
calibration yields estimates ofα, µ, p, and βt with uncertainty due
both to underreporting and to transmission stochasticity.

Fitting the model to national-level reports yields p=0.23±
0.04%, indicating, in qualitative agreement with similar esti-
mates from high-burden settings (21), that a single laboratory-
confirmed case corresponds on average to∼400 infections in the
population. Simultaneously, we find α=0.93± 0.03, indicating
that inhomogeneous population mixing is a small but statistically
significant effect. Past SIA efficacy µ is estimated to be 40%,
which shows that campaign efforts have had a significant effect
on measles susceptibility in Pakistan.

In Fig. 1, national-level reports from 2012 to 2017 are aggre-
gated by month (gray bars), showing that the majority of measles
cases occur in the first half of the year. The inferred βt consistent
with this case distribution is averaged by month and overlaid in
red (SD cloud), showing that low transmission occurs between
May and October (blue), Pakistan’s hot, summer rainy season.
This correlation between measles transmission and rainfall or
temperature agrees with findings from research in other settings
(11, 22) and suggests that transmission fluctuates in part due to
weather-related variation in contact rates.

Seasonal population migration and associated changes in pop-
ulation density have also been correlated with measles incidence
in urban settings (23, 24). We test this hypothesis in SI Appendix,
section 2 by computing annual variation in nighttime light satel-
lite imagery brightness (25) near Pakistan’s largest cities, Karachi
and Lahore. As shown in SI Appendix, Fig. S6, our inferred
βt is highly correlated (Pearson correlation 0.725) with this
measure of Pakistan’s urban population density, suggesting that
annual rural-to-urban migration is also a driver of Pakistan’s
transmission seasonality.

Interestingly, the increase in transmission precedes the rise in
cases by 2–3 mo. This phase difference is in quantitative agree-
ment with seasonality studies of measles in the preelimination

Fig. 1. Measles transmission seasonality in Pakistan. Laboratory-confirmed
cases from 2012 to 2017 aggregated by month are plotted as gray bars.
The corresponding inferred force of infection (red trace, SD cloud) shows
that transmission varies by as much as 50% throughout the year, with a
low-transmission season (blue line) from May through September, Pakistan’s
summer rainy season.

United States (26), suggesting that although a measles infection’s
duration is only 2–3 wk, high transmission is required for a con-
siderable time before enough infections have occurred to spark
an outbreak. Operationally speaking, this is a valuable insight
since lows in the aggregated case count alone might incorrectly
suggest that Pakistan’s low measles transmission season ranges
from July to November.

Model seasonality and corresponding extrapolation ability are
tested against laboratory reporting-rate scaled cases (black dots)
in Fig. 2. In red, predicted It given Ct−1 shows that the model is
capable of reliable semimonthly prediction (R2≈ 0.89) with rel-
atively low uncertainty (red cloud, 95% CI). A more substantial
test of the model is shown in black, where It is predicted for a full
6 y starting with C0 in January 2012. This long-term model pre-
diction has larger uncertainty (gray cloud, 95% CI) as expected
and captures the major outbreaks in 2013, 2016, and 2017 (R2≈
0.35), demonstrating that the inferred seasonality is consistent
with the observed dynamics. The corresponding inferred St is
plotted in blue, showing stark decreases in susceptible popu-
lation following SIAs (gray dashed lines) with heterogeneity
between SIAs due largely to differences in target population.
Finally, in SI Appendix, section 3, we demonstrate that when data
past March 2017 are withheld from model fitting, out-of-sample
model extrapolation successfully predicts the severity and timing
of the 2017 outbreak.

Optimal SIA Timing
An effective vaccination campaign immunizes susceptible indi-
viduals to stifle measles transmission before it occurs. SIAs
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Fig. 2. Testing model performance. (Lower) Semimonthly (red) and 6-y (black) model extrapolations are compared with laboratory reporting-rate scaled
cases demonstrating that the model predicts outbreak timing and magnitude. (Upper) The underlying susceptible population (blue) corresponding to the
long-term projection highlights the potentially strong effect of SIAs (gray dashed lines). For all traces, shaded regions indicate 95% CIs.

accomplish this in the model by decreasing both St in Eq. 1
and the resulting It in Eq. 2. Intuitively, based on the season-
ality of Fig. 1, we expect that SIAs in Pakistan will have greatest
impact in October or November since the susceptible popula-
tion built up over the summer low-transmission season can be
immunized before high transmission begins. Using the model,
we demonstrate that this intuition is qualitatively correct, but
a given population’s recent measles history also affects optimal
SIA timing.

Hypothetical SIA policies can be quantitatively compared by
calculating projected infections. Here, we focus on SIAs run in
2018 over the course of a full month with half the population tar-
geted in each semimonthly model period, and we compute the
sample distribution of total infections from 10,000 model runs
starting with the data at the end of 2017 and forecasting for 3 y.
The 2018–2021 forecasting period was selected since, in practice,
multiple SIAs will be run in >3-y periods, and we are interested
in comparing effects of single SIAs for simplicity. All hypothet-
ical campaigns have efficacy equal to the inferred 2012–2017
efficacy, µ=40%, to isolate the effects of SIA timing.

Expected infections under hypothetical 2018 SIA policies are
plotted in black in Fig. 3A. As anticipated based on the sea-
sonality, a November SIA has greatest impact, with ∼440,000
fewer infections on average than an otherwise equivalent cam-
paign run in January. Moreover, if the extra 10 mo to prepare
leads to increases in SIA efficacy, we find that November rapidly
becomes even more strongly favored (SI Appendix, Fig. S6).
Throughout the low-transmission season (shaded blue region),
campaigns become more and more effective. This is as we
would expect since susceptible population buildup results in a
wider-reaching campaign with greater herd-immunity effects (SI
Appendix, section 5).

As a direct consequence of this, however, delays past
November rapidly incur large costs since the 2018–2019 high-
transmission season depletes the susceptible population and
mitigates the effect of an SIA. This is demonstrated in Fig. 3A by
extending the analysis to equivalent campaigns in 2019. Expected
infections under these policies are plotted in red, and we find that
a campaign delayed from November 2018 to May 2019 results
in over 600,000 more measles infections on average over the
2018–2021 period.

Fig. 3B plots extrapolated model traces for SIAs before (in
April, blue) and after (in November, green) the 2018 low-
transmission season for more detailed comparison. While the
April SIA mitigates infections in 2018, this comes at the expense
of a large outbreak in 2020. On the other hand, the Novem-
ber SIA decreases the severity of the predicted 2020 outbreak
at the expense of infections in 2018. This tradeoff indicates
that transmission seasonality’s contribution to the optimal SIA
timing acts in concert with the expected severity of upcoming
outbreaks, an expectation which depends directly on measles’
recent history in a population. For Pakistan as a whole, 2017
was a relatively severe measles year, indicating that natural infec-
tion has decreased the susceptible population. Consistent with
this intuition, model extrapolation predicts that 2020’s outbreak
will be larger on average than 2018’s, and the November SIA is
preferable as a result.

The interplay between seasonality and recent history is high-
lighted if we apply the model to Pakistan’s provinces individually.
To do this, the model is fitted to province-level data assuming
the national-level transmission seasonality of Fig. 1 with a con-
tact rate scaled by the fraction of Pakistan’s population within
the province. The assumption that measles transmission behaves
qualitatively similarly across the country is necessary since indi-
vidual provinces report too few laboratory-confirmed cases to
reliably infer province-level transmission parameters. Province-
level models are tested by the methods of Fig. 2 in SI Appendix,
section 4. They show comparable predictive performance to the
national-level model, indicating that the seasonality assumptions
are valid.

Subnationally, Pakistan’s recent measles history has signifi-
cant heterogeneity. For example, in Pakistan’s two most popu-
lated provinces, Punjab and Sindh, laboratory-confirmed measles
cases per 100,000 in 2017 were at 0.9 and 6.8, respectively.
While this is due in part to RI coverage differences between
Punjab and Sindh (6), this also indicates that 2017 was an
outbreak year in Sindh but not in Punjab. This heterogeneity
is mirrored in province-level optimal SIA timing: Comparing
April and November SIAs where data are available, we see in
Fig. 3C that in provinces with high 2017 case counts the Novem-
ber campaign is more effective (purple) while in Punjab the
April SIA performs better (red). Thus, in line with intuition
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Fig. 3. Optimizing SIA timing in Pakistan. (A) Comparing total expected infections in 2018–2021 (black, SE shading) under different SIA policies shows that
November minimizes measles burden by taking advantage of susceptible buildup over the low-transmission season (blue region). As a result however, delays
into the 2018–2019 high-transmission season (red, SE shading) are costly. (B) Model projections for pre– (April) and post–low-transmission season (November)
SIAs (black dashed lines) demonstrate the tradeoff between 2018 and 2020 outbreak control. As a result, 2017 measles burden also plays a significant role in
timing optimization. (C) Extending the model to the province level allows us to compare April and November SIA timing subnationally. Preference for April
is mapped in red while preference for November is mapped in purple; gray provinces [Federally Administered Tribal Areas and Azad Kashmir, representing
less than 5% of Pakistan’s total population (20)] are inaccessible to health workers while white areas indicate disputed territory. Heterogeneity in the 2017
laboratory-confirmed measles cases per 100,000 (indicated) is reflected in the timing optimization.

from the national level, optimizing SIA timing requires a
balance between contributions due to seasonality and inci-
dence history. The modeling approach presented here offers a
robust means to solve this optimization problem in high-burden
contexts.

Discussion
Measles vaccination campaign optimization is a complex general
problem. Here, we have studied data from Pakistan to demon-
strate that SIA timing is a critical factor and that two SIAs
with equivalent efficacy and cost may have significantly different
impacts solely as a result of their start date. With that in mind,
transmission seasonality and recent measles burden, the drivers
of optimal campaign timing, should be considered alongside
operational constraints in future SIA planning.

From a methodological perspective, the TSIR model used in
this work is a robust tool for evaluating competing SIA polices.
While disease models with mass vaccination have been studied in
the past (27–29), generalization of a least-squares–based model
calibration method (5) to the high-burden context offers a sim-
ple, data-driven SIA optimization approach. Model extensions
such as age structure (30), subnational spatial correlation (10),
and disease importation (7) are active areas of research. These
studies, in conjunction with the method presented here, may
contribute to other aspects of SIA optimization, an important
problem for measles eradication with widespread global health
implications.

Methods
Pakistani Demographic and Surveillance Data. Population estimates for 2010
and 2015 and live-birth estimates for 2010, 2012, 2015, and 2020 were
obtained from WorldPop (18–20). These were aggregated to the district
level and linearly interpolated over time. Rates for the first dose of measles
vaccine were estimated using the 2012–2013 DHS (6) and treated as constant
over the 2012–2017 model period, while second-dose rates were estimated
using caregiver-reported dose histories associated with laboratory-rejected
cases.

Laboratory-confirmed and -rejected cases were obtained from Pakistan’s
WHO-affiliated laboratory. The rejected cases and corresponding self-
reported dose histories were used to estimate rates of second-dose
measles vaccine coverage in all provinces. Combining these estimates of
demographic quantities gives

Bt = B̃t [1− 0.9V1,t(1−V2,t)− 0.99V1,tV2,t],

where V1,t and V2,t are first- and second-dose measles vaccine coverage over
time, and B̃t is the estimated live births. The above model assumes the first
vaccine dose has a 90% seroconversion rate and the second dose has a 99%
seroconversion rate (16). For more details, see SI Appendix, section 1.

Fitting and Testing the Model. Model fitting to an observed Ct series pro-
ceeds in two steps, accounting for uncertainty due to underreporting and
transmission individually. In the first step, Eq. 1 is used to construct a
weighted least-squares regression of Bt against Ct which yields, for a given
µt , estimates of p and the relative fluctuations in the susceptible population.
Further assuming that susceptible fluctuations are small and βt = βtmod24,
i.e., that seasonality varies only within a year, Eq. 2 defines a generalized lin-
ear autoregression of It . Solving this regression problem yields estimates of
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βt and the remaining parameters including the variance due to transmission
uncertainty.

As mentioned in the main text, we assume µt =µPt , where Pt is a known
measure of target SIA population (17) and µ is an efficacy parameter com-
mon to all SIAs from 2012 to 2017. Since the regression approach above can
be carried out given a hypothetical µ, we take an approach similar to the
profile-likelihood optimization used by others (14, 15). In other words, a
range of µs are tested by repeated model fitting and subsequent goodness-
of-fit optimization. For mathematical details of the full model calibration
procedure and related sensitivity testing see SI Appendix, section 2.

Code and Data Availability. All analysis was done in Python 3.6.2,
and the associated code can be found in the GitHub repository,

https://github.com/NThakkar-IDM/campaign timing (31). All data came from
open-source providers noted in the references with the exception of the
laboratory reports which can be obtained only with permission from the
World Health Organization Country Office in Pakistan. To obtain per-
mission, contact the corresponding author (N.T.) or submit a request
to the WHO directly (details can be found in the WHO data policy,
https://www.who.int/publishing/datapolicy/en/).
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