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Overview

Interferon-gamma (IFN-c) is a cytokine that plays an

important role in inducing and modulating an array of

immune responses. Cellular responses to IFN-c are

mediated by its heterodimeric cell-surface receptor (IFN-

cR), which activates downstream signal transduction

cascades, ultimately leading to the regulation of gene

expression. In order to study the role of IFN-c in a number

of immune responses and pathways, researchers have

generated mice with altered patterns of IFN-cR gene

expression. These studies, together with analyses of

naturally occurring mutations of the IFN-cR in man, have

been instrumental in elucidating the diverse functions of

IFN-c, and are the subject of this review.

Introduction

Originally identified 30 years ago as an agent with antiviral

activity, IFN-c has since been characterized as a homo-

dimeric glycoprotein with pleiotropic immunologic func-

tions (1±3). IFN-c is primarily secreted by activated T cells

and natural killer (NK) cells, and can promote macrophage

activation, mediate antiviral and antibacterial immunity,

enhance antigen presentation, orchestrate activation of the

innate immune system, coordinate lymphocyte±endothe-

lium interaction, regulate Th1/Th2 balance, and control

cellular proliferation and apoptosis (1, 2). It was not until 20

years after the identification of IFN-c that its cell-surface

receptor was discovered (4±9). The a chain of the IFN-cR,

also known as IFN-cR1 or CD119, was the first component

of the receptor to be identified and cloned (10±14). Although

it binds IFN-c with relatively high affinity, IFN-cR1 alone is
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unable to mediate the biologic responses to this cytokine

(12, 15±17). Subsequent complementation studies led to the

identification and cloning of an accessory factor (AF-1), also

known as the b receptor chain or IFN-cR2, as the protein

required, in addition to IFN-cR1, to endow a cell with the

ability to respond to IFN-c (15, 18±21). Specific residues

within the cytoplasmic domains of both the a and b chains

of the IFN-cR are critical for transducing the IFN-c signal

from the cell surface to the nucleus through the activation of

intracellular signaling pathways (22±25). Mutations in

either component of the IFN-c receptor that impair or

alter the ability of cells to respond to this ligand have global

consequences for IFN-c-mediated immunity, and therefore

serve as an important tool for analyzing the pleiotropic

effects of this cytokine (26, 27).

The biochemical and signaling properties of
the IFN-cR

The receptor complex that mediates the full biologic

function of IFN-c consists of at least two species-matched

chains: IFN-cR1, a 90-kDa glycoprotein (which is 472 amino

acids (aa) long in man, and 451aa in mice) encoded on human

chromosome 6 and mouse chromosome 10, and IFN-cR2, a

60±67-kDa glycoprotein (which is 316aa in man and 314aa in

mice) encoded on human chromosome 21 and mouse

chromosome 16 (4, 18, 20, 28±35). IFN-cR1 is the major

ligand-binding subunit, binding IFN-c with a Ka of 109±1010

M±1 and a receptor-to-ligand ratio of 2 : 1, as inferred from the

crystal structure of the occupied receptor and other studies

(4, 34, 36, 37). IFN-cR2 increases the affinity of IFN-cR1 for

its ligand, presumably by enhancing the stability of the

complex, but plays only a minor role in direct ligand binding

(38). The b chain is, however, obligatory for transducing the

IFN-c signal (21, 38, 39).

Both chains of the IFN-c receptor are members of the class

II family of cytokine receptors that includes tissue factor,

the IL-10 ligand-binding component, and both chains of the

IFN-a receptor (IFN-aR) (40, 41). Like other family members,

the IFN-cR a and b chains lack intrinsic kinase activity.

Signaling through the IFN-cR is mediated through JAK1 and

JAK2, members of the Janus family of protein tyrosine

kinases, which are constitutively associated with specific

membrane-proximal residues on the cytoplasmic domains

of IFN-cR (25, 34, 39, 42±44). JAK1 binds the 266LPKS269

motif (also known as the box 1 motif) on IFN-cR1, while

JAK2 binds the 263PPSIPLQIEEYL274 motif (or the box 1, box

2 motif) on IFN-cR2 (23, 25, 44±46). Ligand binding leads to

receptor oligomerization, with two IFN-cR1 chains bound to

one IFN-c homodimer, and the subsequent recruitment of

two IFN-cR2 chains to the complex (25, 37, 38, 45±48). IFN-

c-mediated aggregation of its receptor components brings

the inactive JAKs associated with the cytoplasmic tails of

the a and b chains into close proximity with one another

(Fig. 1). Once clustered, the JAKs are reciprocally activated

through sequential auto- and transphosphorylation events

(42, 49). Activated JAKs phosphorylate a specific tyrosine

residue near the C-terminus of the IFN-cR1 (Y440 in man)

(24, 42, 45, 50) (Fig. 1). This phosphorylated tyrosine residue

pair (one on each IFN-cR1 chain) is embedded within a

recognition sequence (440YDKPH444) to which STAT1 (a

member of the Signal Transducers and Activators of

Transcription family of latent cytoplasmic proteins) binds

through its SH2 (src homology 2) domain (24, 45, 51, 52). The

docking of STAT1 molecules at their target sequences on

the IFN-cR complex is followed by their phosphorylation on

tyrosine residue Y701 by the receptor-associated JAKs (53±

55) (Fig. 1). Once phosphorylated, two STAT1 proteins

homodimerize via reciprocal SH2-phosphotyrosine interac-

tions, forming a protein complex first identified as GAF

(gamma-activated factor) (51, 56). The STAT1 homodimer

then translocates to the nucleus, where it binds a nine-

nucleotide consensus sequence, TTNCNNNAA, known as

a GAS (gamma-activated site) element (57±59). This binding

site has been identified in the regulatory regions of over 200

genes; therefore, recognition of this element by STAT1

homodimers can modulate the expression of a vast array of

genes, thereby mediating the biologic functions of IFN-c (2).

Mechanistically, it has been suggested that after ligand

binding, IFN-c signaling is initiated by JAK2 autophos-

phorylation, followed by phosphorylation of JAK1 (34, 60).

Activated JAK1 is then thought to phosphorylate IFN-cR1,

providing a docking site for STAT1. After binding to its

receptor site, STAT1 is believed to be activated through

phosphorylation by JAK2. Studies with kinase-negative

JAK1 and JAK2 mutants have demonstrated that while the

mutant JAK2 cannot support IFN-c-stimulated gene tran-

scription, the kinase activity of JAK1 is not fully required for

its role in transducing the IFN-c signal (49).

Signaling through the IFN-c receptor may be regulated at

several points along the pathway. One mechanism is the

modulation of receptor expression. Control of IFN-cR1

levels on the cell surface has been proposed to be a

mechanism through which a cell alters its sensitivity to

IFN-c (61±63). Attenuation of the IFN-c signal by this

mechanism has been linked to differences in the biologic
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responses it elicits in cells expressing different levels of IFN-

cR1. Moreover, downmodulation of IFN-cR2 expression in

IFN-c-producing T cell subsets renders these cells unre-

sponsive to IFN-c (64±66). Cells appear to have intracellular

mechanisms to regulate the IFN-c signal as well. Members

of the recently identified SOCS (Suppressors Of Cytokine

Signaling) family of proteins may negatively regulate

cytokine signaling through a number of potential mechan-

isms (67±69). For example, SOCS1 has been shown to

inhibit IFN-c signaling, presumably by preventing JAK

kinase activation (70, 71). In fact, the expression of SOCS-1

is induced by IFN-c, suggesting that a negative feedback

pathway exists in which cells may attenuate their sensi-

tivity to this cytokine after the activation of IFN-c signaling.

In contrast, the transcriptional activity of STAT1 (and

therefore the IFN-c signal) has been shown to be enhanced

through serine phosphorylation (72, 73). Additional intra-

cellular mechanisms thought to regulate IFN-c-mediated

signal transduction may include the dephosphorylation of

IFN-cR1, which would prevent STAT1 docking; the dephos-

phorylation of STAT1, which would prevent its homo-

dimerization; and the ubiquitination of STAT1, which

would lead to its degradation by targeting it to the

proteosome pathway (42, 51, 74, 75). These mechanisms

could limit the availability of activated STAT1, although

their importance in the regulation of IFN-c signaling is

unclear.

Disruption of IFN-cR1 expression in mice

To study the role of IFN-cR1 in mediating IFN-c signaling

and biologic responses, researchers have disrupted its

endogenous locus to generate IFN-cR1-null (-\-) mice (26).

These mice have not only proved to be a useful tool to study

IFN-c signal transduction, but also constitute one of the first

physiologic systems available to study IFN-c biology. IFN-

cR1-deficient mice develop normally to adulthood with no

phenotypic anomalies. They appear to have normal leuko-

cyte populations in lymphoid organs and normal baseline

levels of MHC class I and II molecule expression. However,

cells derived from these mice are unable to initiate signaling

in response to IFN-c. They are therefore insensitive to any of

the biologic effects of IFN-c, including its antiviral effects

and antitumor activity (26, 76). As described below, these

mice have severe defects in their immune responses.

Figure 1. IFN-c signaling cascade. A) IFN-cR is composed of a and b

chains. JAK1 is constitutively associated with IFN-cR1 while JAK2 is

constitutively associated with IFN-cR2. B) IFN-c binding to its receptor

leads to aggregation of receptor components. Subsequently, JAKs are

activated through auto- and transphosphorylation events. Activated

JAKs then phosphorylate tyrosine residue near C-terminus of IFN-cR1.

C) STAT1 molecules dock at phosphorylated receptor, and are then

phosphorylated by activated JAKs. D) Phosphorylated STAT1 proteins

homodimerize via reciprocal SH2-phosphotyrosine interactions, and

translocate to nucleus, where they regulate gene transcription.
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Macrophage function and IL-12 in IFN-cR1-deficient mice

IFN-c has long been thought to be the most important

activator of macrophages; in fact, it was, for a time, known

as macrophage-activating factor (MAF) (77). Nitric oxide

(NO) production and MHC class II upregulation are two key

effector mechanisms of macrophages, both critically depen-

dent on IFN-c, and are essential for cell-mediated and

Th1-type immune responses (1, 2, 77, 78). Therefore, it was

not surprising that the IFN-cR1 (-/-) mice exhibited severely

compromised macrophage functions, such as granuloma

formation (79±85). The IFN-c dependence of protective and

self-destructive immune responses mediated, in part, by

macrophages was examined in several infectious and

autoimmune models that are discussed in later sections of

this review.

IL-12 is a cytokine secreted primarily by activated

macrophages (2, 86±88). It induces IFN-c production by

NK cells and Th1 cells, while IL-12 production itself is

induced by IFN-c (89). IL-12 also primes naive T cells (Thp)

to differentiate along the Th1 pathway (90±94). It is,

however, unclear whether the biologic functions of IL-12

are mediated principally by IFN-c (95). A number of groups

utilized IFN-cR1-deficient mice to study the dependence of

the effector functions of IL-12 on IFN-c.

Systemic administration of IL-12 is known to inhibit

hematopoiesis, leading to a decrease in the number of

peripheral blood lymphocytes (PBLs) and a diminished bone-

marrow cellularity (96). Administration of IL-12 also

increases splenic cellularity, secondary to an influx of

activated macrophages and NK cells. In contrast, IFN-cR1

(-/-) mice injected with IL-12 mainly develop a severe, lethal

lung disorder characterized by interstitial and perivascular

infiltrates and diffuse pulmonary edema. Therefore, it

appears that, in the absence of IFN-c responses, many

effects of IL-12 are attenuated. On the other hand, IL-12

appears to induce a different set of immune disorders that

are independent of, or normally suppressed by, IFN-c. Other

experiments also suggest that IL-12 may have IFN-c-

independent effects. For example, in one study of collagen-

induced arthritis (CIA), the severity of this autoimmune

disease was attenuated in IFN-cR1-deficient mice after

treatment with anti-IL-12 neutralizing antibodies, which are

thought to suppress inflammatory disease by, in part,

indirectly inhibiting IFN-c secretion (97, 98). Therefore,

while many of the effects of IL-12 (such as cross-regulation

of type 2 inflammatory responses) are abrogated in IFN-cR1

(-/-) mice, other effector functions of IL-12 (such as direct

Th1 priming, which may explain the CIA phenotype) may be

independent of IFN-c (90, 97, 99, 100).

Primary CD4+ T-cell responses in IFN-cR1-deficient mice

Naive CD4+ cells, or Thp cells, are believed to have the

potential to develop into either of the two major subsets of

CD4+ T helper cells: Th1 and Th2 cells (100, 101) (Fig. 2).

Th1 cells are primarily defined by their ability to secrete

IFN-c, IL-2, and tumor necrosis factor (TNF)-b, and are

clinically associated with an ability to orchestrate cell-

mediated immune responses and organ-specific autoimmu-

nity (102). Differentiation of Thp cells toward the Th1

phenotype is dependent on the presence of IL-12 in their

microenvironment during stimulation throughout the T-

cell antigen receptor (TCR) (92, 103). Th1-polarizing effects

similar to those of IL-12 have been ascribed to IFN-c (104).

On the other hand, Th2 cells arise when IL-4 is present

during antigenic stimulation, and produce IL-4, IL-5, IL-10,

and IL-13 (105). These cells are clinically associated with

phagocyte-independent, antibody-mediated host defense

and allergic immune responses (102). Because of the

potential role of IFN-c in generating Th1 cells, mediating

their effector function and regulating Th1/Th2 balance, T-

cell responses were examined in IFN-cR1 (-/-) mice (94, 99,

106).

In some experimental models utilizing IFN-cR1 (-/-) mice,

there appeared to be a shift in the Th1/Th2 balance in

response to stimuli that normally induce Th1 immunity

(Fig. 2). For example, as described above, a predominant Th2

response ensued in response to systemic IL-12 administra-

tion in these mice (96). A similar Th2-directed immune

disorder was also seen in one model of schistosomiasis,

where not only were Th1-dependent immune responses

impaired, but also aberrant Th2 responses led to a severe

lung disorder (107). These observations support previous

work that suggested that, while IFN-c is normally con-

sidered an effector of inflammation, it may have an

important inhibitory role in certain immune responses

(108). In another study, Th2-mediated pulmonary inflam-

mation was induced by rechallenge of previously sensitized

mice with nasally administered OVA (109). This inflamma-

tory lung disease persisted in IFN-cR1 mutant mice long

after it was resolved by wild-type mice. Allergic pulmonary

inflammatory reactions are often mediated by a type 2

response characterized by eosinophils, IgE antibodies, and

cytokines such as IL-4 and IL-5 (110±112). Therefore, one

explanation of the observed lung phenotype in IFN-cR1

mutant mice is that, in the absence of the cross-regulation

Tau and Rothman . Functions of IFN-c receptors
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normally seen between Th1 and Th2 responses (with

Th1-derived IFN-c presumably suppressing the Th2

response), a Th2-mediated immune response can proceed

unhindered (99, 102). Alternatively, there may be other

mechanisms by which IFN-c suppresses inflammation (108,

113).

In another group of studies, the response to the pathogen

in mutant mice was normal, without a concomitant

Th2-mediated disorder, although abnormally high levels of

Th2 cytokines and/or Ig isotypes were detected (see Table 1

for a summary of all disease models in which IFN-cR1 (-/-)

mice were used). For instance, the outcome of mouse

mammary tumor virus (MMTV) infection is similar in

mutant and control mice, but is characterized by increased

IL-4 levels in the former (114). In other models, IFN-cR1 (-/-)

mice elaborated defective Th1 responses with no associated

Th2 response. For example, while wild-type mice are

resistant to infection by either coronavirus or Leishmania

major, IFN-cR1 mutant mice are susceptible to these

pathogens (115, 116). An analysis of the pathologic changes

in these mice revealed no evidence of a Th2-type immune

response.

In summary, some of these studies uncovered global

defects in T-cell responses, others demonstrated a specific

Th1 dysfunction, and yet others revealed an altered Th1/Th2

balance in IFN-cR1 (-/-) mice. However, the extent of the

difference in the clinical course of disease between wild-type

and mutant mice was found to be highly variable.

Nevertheless, these data suggest an interesting trend in T-

cell-mediated immunity in IFN-cR1 (-/-) mice: a Th2-bias

with impaired Th1 responses. The observed set of T-cell

phenotypes may be the consequence of a host of factors. For

instance, IFN-c-insensitive macrophages and dendritic cells

are impaired in their ability to upregulate expression of MHC

class II molecules on their cell surface (81). This defect in

antigen presentation may alter CD4+ T-cell activation in

these mice. IFN-cR1 (-/-) antigen-presenting cells (APCs) are

also unable to secrete normal amounts of IL-12, an important

Th1-polarizing stimulus (120). This may lead to a bias toward

Th2-type responses. Moreover, it is believed that Th1-derived

IFN-c can cross-regulate Th2 cells (99). Unresponsiveness of

Th2 cells to IFN-cwould therefore lead to a bias toward type 2

immune responses. It has also been suggested that in the

absence of IFN-c responses, monocytes can become alter-

natively activated, and immature dendritic cells can develop

into alternatively activated dendritic cells (Dc2) (121±123).

Alternatively activated macrophages and Dc2 cells have been

shown to support differentiation of Thp cells to the Th2

phenotype. The role of these unusual APCs in promoting the

Th2 pathway may, in part, account for the inability of IFN-c-

unresponsive mice to mount type 1 inflammatory processes.

Of course, it is also likely that IFN-cR1 (-/-) T cells have

intrinsic differences in their response to antigen. Robust type

2 responses seen in some of these immune models suggest

that Th2 cells are less dependent than Th1 cells on antigen

presentation by IFN-c-primed APCs (96, 109, 121, 122).

Finally, T cells must be able to migrate to their target sites in

order to be effective regulators and mediators of immunity.

The expression of adhesion molecules on vascular endothe-

lial cells and on T cells, as well as the production of a number

of chemokines, is regulated by IFN-c (117±119). Therefore,

part of the observed T-cell defect may be secondary to

impaired migration to target sites.

CD4+ T-cell memory in IFN-cR1-deficient mice

Like primary T-cell-mediated immunity, immunologic

memory, which relies on T helper cell function, may be

Figure 2. Effects of IFN-cR on T helper subset differentiation.
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affected by the absence of a functional IFN-c system (124±

126). To assay the role of IFN-c responsiveness in secondary

T-cell responses, IFN-cR1 (-/-) mice were used in a number

of immunization models. In every instance, mutant mice

were unable to respond normally to antigenic rechallenge.

Antigenic recall was impaired in these mice in response to

rechallenge with Chlamydia trachomatis, pseudorabies

virus, Schistosoma mansoni, and Plasmodium yoeli (107,

127±129). In fact, previously sensitized IFN-cR1 (-/-) mice

elaborate inappropriate, and therefore unproductive, T

helper cell-mediated responses upon re-exposure to S.

mansoni (129). While the normal response to rechallenge

with this pathogen is characterized by a strong Th1

component, helping contain the infection, the response in

mutant mice is Th2 in nature, and it is ineffective in

controlling parasitemia. Interestingly, repeated exposure of

IFN-cR1 (-/-) mice to P. yoeli led to lasting immunity against

this pathogen, thereby somehow bypassing the need for the

IFN-c system (129). It therefore appears that T-cell memory

and, perhaps more specifically, Th1-mediated secondary

responses are usually dependent on IFN-c signaling.

CD8+ T-cell function in IFN-cR1-deficient mice

Like CD4+ T helper cells, CD8+ cytotoxic T lymphocytes

(CTLs) are activated by an antigen presented in the context

Table 1. Summary of phenotype of IFN-cR1 (-/-) mice in models of infection

Pathogen Phenotype in normal mice Phenotype in IFN-cR1 (-/-) mice

Listeria monocytogenes Resistant Highly susceptible

Bordatella pertussis Contain infection Lower threshold of lethal dose with atypical disseminated disease

Bacillus Calmette-GueÂ rin Resistant Susceptible

Chlamydia trachomatis Healing response Severe and prolonged infection relative to normal mice

Resistant to secondary infection Susceptible to secondary infection

Yersinia enterocolitica Intermediate susceptibility on 129/SV background Highly susceptible on 129/SV background

Staphylococcus aureus Susceptible to intraperitoneal administration Earlier mortality than normal mice

E. coli Peritonitis and NO production Normal NO synthesis

Pseudorabies virus Vaccine effective; resistant to rechallenge Vaccine ineffective; susceptible to rechallenge

Sendai virus Clear infection Clear infection

Murine c-herpesvirus 68 Resistant to large-vessel disease Develop large-vessel arteritis and splenic disorder

Vaccinia virus Resistant Increased susceptibility, but normal CTL response

Vesicular stomatitis virus Mount CTL response Normal CTL response

LCMV Transient immunodeficiency phenomenon No transient immune deficiency

Impaired viral clearance with persistent infection in one model

Theiler's virus Resistant on 129/SV background Develop chronic disease

Coronavirus Develop hepatitis More severe hepatitis with increased mortality

Murine cytomegalovirus Clear infection Do not resolve, develops chronic arteritis

MMTV Same clinical phenotype as normal mice

Increased Th2 parameters

Leishmania major Resistant mouse strains clear infection Lethal in resistant genetic background

Plasmodium chabaudi chabaudi Resistant Increased susceptibility

Plasmodium yoeli Vaccine protective Vaccine ineffective; prolonged parasitemia in primary challenge

Toxoplasma gondii Contain pathogen, but develop chronic infection Pathogen causes greater disorder than in normal mice

Encephalitozoon intestinalis Resistant Chronic, nonhealing disease

Schistosoma mansoni Contain pathogen, but develop chronic infection Develop greater immune-mediated disorder

Impaired granuloma formation with increased Th2 parameters

Same clinical outcome as wild-type mice (in another study)

Vaccine protective Vaccine ineffective

Trypanosoma cruzi Contain pathogen, but develop chronic infection Succumb to infection

African trypanosome Chronic disease with anaemia Increased parasitemia but reduced anemia relative to normal mice

Severe immunosuppression Less severe immunosuppression

Tau and Rothman . Functions of IFN-c receptors
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of an MHC molecule. However, unlike MHC class II, MHC

class I molecules (which present intracellularly derived

peptides to CD8 cells) are ubiquitously expressed (130, 131).

Interestingly, recent evidence suggests that CD8+ T cells

must first be activated by dendritic cells (that, in this case,

encounter and then present extracellularly derived antigen

in the context of MHC class I molecules) before leaving

lymphoid areas and surveying the periphery (132). Moreover,

whereas antigen presentation through the MHC class II

pathway is enhanced mainly by IFN-c, antigen presentation

through the MHC class I pathway can be stimulated by

either IFN-c or IFN-a (2, 130, 131, 133, 134). Tc1 cells, which

constitute the predominant CD8+ T-cell subset, secrete

substantial amounts of the IFN-c that is thought to

participate in some aspects of their effector function (135).

It was therefore of interest to examine CTL function in IFN-

cR1 (-/-) mice in order to clarify the relevance of IFN-c

sensitivity to the function of these cells.

CTLs derived from IFN-cR1 mutant mice infected with

vaccinia virus lysed target cells infected with this virus

normally, suggesting that IFN-c-insensitive CTLs are cap-

able of elaborating normal cytotoxic effector and memory

functions (26). CD8+ cells in LCMV-infected IFN-cR1 (-/-)

mice exhibited delayed kinetics of clonal exhaustion as

compared to wild-type mice, indicating that they are less

susceptible to activation-induced cell death (AICD), perhaps

owing to inefficient activation (which may be secondary to

either an antigen presentation or an intrinsic T-cell defect)

(136).

A number of studies suggest that CD8+ T cells are

important mediators of the effector phase of contact

hypersensitivity (CHS) responses to haptens (137±140).

Although tissue swelling in response to oxazolone and

TNCB was comparable in IFN-cR1 (-/-) mice and wild-type

mice, mutant mice had reduced dermal mononuclear

infiltrates (141). Because of the complexity of this model

of immunity, impaired CHS may be caused by defects in

either the sensitization phase (dendritic cell function,

homing, or antigen presentation) or elicitation phase

(chemokine secretion; CD8 T-cell activation or migration)

of this response (142±144). Therefore, reduced dermal

mononuclear infiltrates in IFN-cR1-deficient mice may

not be caused by an intrinsic CD8+ T-cell defect.

Although CD8+ CTL also participate in graft rejection

(145±147), models of allo- and xeno-transplantation failed to

uncover differences in the ability of wild-type and IFN-cR1

mutant mice to reject transplanted grafts (148, 149). These

data suggest that, for the most part, intrinsic CTL function

appears to be intact; CD8+ T cells can elaborate normal

effector and memory functions despite their inability to

transduce an IFN-c signal.

Resistance of IFN-cR1 (-/-) mice to viral infection

Both IFN-cR1- and the IFN-aR-deficient mice proved to be

valuable model systems in elucidating the specific roles of

types I and II interferons (IFN-a/b and IFN-c, respectively) in

fighting viral infection (114, 115, 128, 150±153). In vitro

studies have revealed that interferons must initiate signal-

ing via their respective cell-surface receptors in order to

protect cells against the cytopathic effects of viruses (26, 76).

In vivo studies, on the other hand, demonstrated that while

type I interferons are essential for protection against viral

infection, the relative importance of IFN-c is pathogen-

dependent, suggesting that the antiviral actions of type II

interferon are partially redundant, as they duplicate those

of type I interferons (114, 115, 128, 150±153). IFN-

cR1-deficient mice were found to be resistant to some

viruses (such as vesicular stomatitis virus, LCMV, and

MMTV) while susceptible to others (such as murine c-

herpesvirus, vaccinia virus, Theiler's virus, murine cyto-

megalovirus, and coronavirus) (114, 115, 128, 150±153).

Even though IFN-cR1-deficient mice were able to resolve

some viral infections, they developed exacerbated disease in

response to these pathogens as compared to control mice.

For example, mutant mice could clear an infection with

LCMV but exhibited delayed kinetics of viral clearance as

compared to wild-type mice (151). LCMV-infected IFN-cR1

(-/-) mice developed greater organ abnormality and had an

increased frequency of latently infected cells relative to

control mice. These studies suggest that the immune

system elaborates a number of simultaneous and/or sequen-

tial, functionally complementary, antiviral responses. Some

of these may be dependent on IFN-c, although not all may be

essential for a healing or normal response.

Intracellular bacterial infection in IFN-cR1 (-/-) mice

Survival and clearance of infection with intracellular

bacteria are dependent upon innate and cell-mediated

immunity (154, 155). IFN-cR1-deficient mice uniformly

exhibit greater susceptibility to, or increased severity of

bacterial infection relative to wild-type mice. Infection of

mutant mice with Chlamydia trachomatis is characterized

by a longer resolution time than in normal mice (156, 157).

While mice normally contain and resolve infections with

intracellular bacteria such as bacillus Calmette-GueÂrin

(an attenuated form of Mycobacterium bovis), Bordetella
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pertussis, and Listeria monocytogenes, these pathogens

disseminate, often fatally, in mutant mice (82, 156, 157).

As discussed earlier, IFN-c is an important activating

stimulus for macrophages, which are involved in granuloma

formation, a mechanism essential for containing and

eliminating intracellular bacteria. Activated macrophages

also undergo a respiratory burst, producing reactive oxygen

species and NO, both of which are important for their

bactericidal function (2). Therefore, it is likely that an

underlying macrophage defect is the cause of the exquisite

sensitivity of IFN-cR1 (-/-) mice to infection with intracel-

lular bacteria (81).

Resistance of IFN-cR1 (-/-) mice to protozoan and helminth

infection

Control of parasitic infection is dependent upon the

development of an appropriate immune response. In general,

Th1 responses are associated with healing responses to

intracellular parasites, such as Leishmania major, whereas

Th2 responses are associated with protection from extra-

cellular pathogens, such as Nippostrongylus brasiliensis

(158, 159). The innate immune system is also important in

protection against parasites. The role of IFN-c in protection

against parasitic infection and in the development of Th1-

and Th2-type immune responses was explored with IFN-cR1

(-/-) mice.

Protection against infection with L. major depends on

normal macrophage and Th1 function (160, 161). Infection of

IFN-cR1 (-/-) mice with L. major or trypanosomes is

associated with significantly greater mortality than that

seen in control mice in the absence of any detectable

parameters of Th2-type immunity (80, 83, 116).

Interestingly, iNOS (inducible nitric oxide synthase)-defi-

cient mice display a similar phenotype in response to

Trypanosoma cruzi infection to the IFN-cR1 (-/-) (80). These

studies show that the IFN-c system is critical for host

defense against these intracellular pathogens, and indicate a

defect in macrophage function as a key contributor to the

observed phenotype. Studies of infection with Toxoplasma

gondii suggest that the primary defect in antiprotozoan

immunity in IFN-cR1-deficient mice may not be due to a T-

cell dysfunction (79). When infected with a low-virulence

form of this protozoan, normal mice are able to control

infection, but develop chronic toxoplasmosis. On the other

hand, IFN-cR1 (-/-) mice are unable to control infection,

developing a necrotizing hepatitis, and ultimately succumb-

ing to the pathogen. T. gondii-specific memory T cells

derived from wild-type mice are unable to confer immunity

when adoptively transferred to mutant mice. Furthermore,

hepatic macrophages in infected IFN-cR1 (-/-) mice produced

lower levels of TNF-a, iNOS, and IL-1-b (79). These

observations suggest that the specific impaired response to

T. gondii infection in IFN-cR1 (-/-) mice may be secondary to

alteration of macrophage function.

Infection of IFN-cR1 (-/-) mice with Plasmodium species

recapitulates some of the immune system dysfunction seen

in other infections studies (129, 163). Relative to normal

mice, the symptoms of infections with a number of

Plasmodium species of mutant mice range from prolonged

convalescence to increased incidence of death. The immune

response in IFN-cR1-deficient mice to some of these

pathogens was Th2-biased relative to the anti-

Plasmodium immunity seen in normal mice. This, again,

suggests that in the absence of IFN-c signaling, the

elaboration of Th1 responses is impaired. In sum, mutant

mice infected with parasites elaborate impaired or inap-

propriate immune responses that alter the clinical course of

the disease, and at times lead to increased mortality as

compared to normal mice.

Autoimmunity in IFN-cR1 (-/-) diseases

Organ-specific autoimmune diseases are believed to be

mediated and regulated by Th1 cells and IFN-c (102, 113,

164). This paradigm, however, is not all-encompassing since

the relationship between IFN-c and organ-specific auto-

immune disorder is complex. IFN-c has been shown to have

differential effects on disease progression based on the mode

(local vs systemic) and timing (early or late in disease) of its

administration or neutralization (113). To explore the IFN-c

dependence of organ-specific autoimmune diseases, the IFN-

cR1 (-/-) mice have been used in a number of model systems

including CIA, nonobese diabetes (NOD), autoimmune

lupus nephritis, experimental autoimmune thyroiditis

(EAT), experimental autoimmune myasthenia gravis

(EAMG), and experimental autoimmune encephalomyelitis

(EAE) (165±168). In most cases, the development of organ-

specific autoimmune diseases in IFN-cR1-deficient mice

follows this Th1/Th2 paradigm. For example, IFN-cR1 (-/-)

mice are less susceptible to these pathologic processes and

exhibit reduced penetrance, delayed onset, or attenuated

severity of disorder as compared to normal mice in diseases

such as diabetes (both NOD and the BDC2.5 insulinogenic

TCR transgenic system), EAMG, and EAT (167, 168).

Additionally, administration of soluble IFN-cR1 (which

neutralizes IFN-c) reduces the severity of NOD in wild-type

mice (169). These studies demonstrate the importance of the
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IFN-c system in the development of these organ-specific

autoimmune diseases.

CIA is induced in susceptible mouse strains, such as DBA/

1, by immunization with type II collagen protein (170, 171).

This autoimmune model has been used as a tool for studying

the development and treatment of rheumatoid arthritis in

man. The development and regulation of CIA in mice has

been shown to rely on IL-12 and, less consistently, on IFN-c

(98, 172). Neutralization of IL-12 leads to attenuation of

disease, suggesting that it is Th1-mediated, with cellular

immunity and IgG2a-type antibodies causing the abnorm-

ality. Studies with IFN-c-deficient and IFN-cR1 (-/-) mice

corroborated this observation; these mice were more

resistant to CIA induction (166). However, in other studies

of CIA, IFN-cR (-/-) mice developed a more severe disease

than did normal mice, suggesting that, in some cases, IFN-c

may have immunosuppressive functions (173).

IFN-c also appears to attenuate the severity of disease in

the MOG (myelin oligodendrocyte glycoprotein) peptide-

induced EAE system (174). Wild-type 129/Sv mice are

resistant to EAE, whereas IFN-cR1 (-/-) are susceptible.

This suggests that IFN-c can not only promote inflamma-

tion, but also serve in an inflammation-limiting capacity in

certain cases. In fact, mechanistically, immunosuppressive

properties have previously been ascribed to IFN-c secondary

to its ability to induce NO production in macrophages, a

production which has a downmodulatory effect on T-cell

activation and proliferation (2, 108, 162). Furthermore,

adoptive transfer of splenocytes from MOG-immunized

IFN-cR1-deficient mice can induce disease in naive wild-

type recipients, suggesting the presence of functional

memory or effector CD4+ T cells or, perhaps, a functional

CD8-mediated component in this disease (174).

A number of studies utilized strains of mice that are

predisposed to systemic autoimmunity, in order to examine

the importance of IFN-c in the development of autoanti-

bodies and immune complex deposition-induced kidney

disease. Mice on the MRL-Faslpr and the NZB X NZW

genetic backgrounds lacking IFN-cR1 expression develop

attenuated disease relative to normal mice (175±177). IFN-

cR1 (-/-) mice in these autoimmune models produce fewer

antibodies (with Th1- and Th2-dependent Ig isotypes equally

affected) and, therefore, develop less severe immune

complex-induced nephritis and show reduced incidence of

death as compared to control mice. T-cell activation, T:B-

cell interaction, or an intrinsic B-cell defect may underlie

impaired antibody production in the absence of IFN-c

signaling. Like NOD, the disease phenotype in normal

NZB X NZW mice can be attenuated by systemic admin-

istration of soluble IFN-cR1 (178). Crescentic glomerulo-

nephritis is experimentally induced by administration of

anti-glomerular basement membrane (GBM) Abs. IFN-

cR1-deficient mice treated with aGBM Abs developed

slightly less severe glomerular disease than wild-type

mice, suggesting that antibody production in autoantibody-

mediated immune disorder is primarily affected in the

absence of an IFN-c signal, rather than the events that ensue

after immune complex deposition (179).

Disrupting IFN-c signaling with a mutant
IFN-cR1

Tissue-specific transgenic mouse model of IFN-c insensitivity

To distinguish among the effects of IFN-c on the various cell

types whose function is thought to be particularly affected

by this cytokine, it is useful to disrupt IFN-c signaling in

only a subset of cells. Schreiber's group developed a

transgenic system in which the expression of a dominant

negative IFN-cR1 is driven by a tissue-specific promoter,

thereby conferring unresponsiveness to IFN-c in one cell

type, while leaving all others intact (180). The dominant

negative receptor a chain (mgRDIC) lacks the intracellular

domain of the wild-type protein; therefore, while it can

participate in ligand binding and receptor complex forma-

tion, it is unable to transmit the IFN-c signal (181).

In order to generate mice in which only macrophages are

unable to respond to the IFN-c signal, the human lysozyme

promoter (hLP) was used to drive expression of the

dominant-negative transgene (hLP-myc-mgRDIC) (180).

The dominant negative a chain was indeed specifically

expressed on macrophages, and inhibited IFN-c responses in

these cells. As such, macrophages derived from this mouse

were unable to produce NO in response to stimuli such as

IFN-c and lipopolysaccharide (LPS) (180, 182). Macrophages

derived from IFN-cR1 (-/-) mice showed diminished

responses to LPS as well (82). hLP-myc-mgRDIC transgenic

mice were found to be more susceptible to infection with L.

monocytogenes than littermate controls. Moreover, the

authors have found that neither hLP-myc-mgRDIC TG

macrophages nor IFN-cR1 (-/-) macrophages were able to

produce IL-12 after treatment with either IFN-c or heat-

killed L. monocytogenes (HKLM), whereas control macro-

phages responded robustly. Macrophages from these two

mutant mouse strains were also unable to support HKLM-

specific memory responses by wild-type Th1 cells in vitro.

Therefore, it can be inferred that IFN-c is pivotal in
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activation and function of macrophages as well as in their

ability to serve as APCs to CD4+ T cells.

For determination of whether the impaired T-cell function

seen in IFN-cR1 (-/-) mice was secondary to an intrinsic T-

cell defect, transgenic mice (lck-myc-mgRDIC) with T-cell-

specific expression of this mutant receptor were generated

with the lck proximal promoter (180). In vitro, lck-myc-

mgRDIC TG T cells were resistant to the antiproliferative

effects of IFN-c as compared to nontransgenic T cells.

Interestingly, the transgene did not affect in vitro T helper

cell differentiation under Th1-polarizing conditions (in

the presence of IL-12), nonpolarizing conditions, or

Th2-polarizing conditions (in the presence of IL-12-neutra-

lizing Abs). In contrast, polarization of transgenic T cells

toward the Th2 phenotype (driven by IL-4) may have been

slightly enhanced, supporting the inhibitory role IFN-c may

play in this differentiative process. This evidence suggests

that the in vitro generation of Th1 cells can occur

independently of an IFN-c signal in the presence of IL-12.

The IFN-cR signal and antitumor immunity

IFN-c has been shown to participate in antitumor immune

responses (1, 2). However, the potential differential effects of

this cytokine on the tumor, as opposed to the host, have not

been explored. The dominant negative transgenic system

described above was utilized to evaluate the role of IFN-c

signaling by cancer cells in antitumor immune responses in

a normal host. The dominant-negative IFN-cR1 mutant was

introduced into the Meth A fibrosarcoma cell line, rendering

these cells unresponsive to IFN-c (183). Modified cells were

resistant to LPS-induced rejection in a normal syngeneic

host and exhibited a greater tumorigenic potential than the

IFN-c-responsive parental cell line. Furthermore, IFN-c-

insensitive cells were ineffective in priming their host to

reject subsequent tumor grafts, and did not elicit antitumor

immunity when grafted into a host previously sensitized by

the parental cell line. One interpretation of these observa-

tions is that IFN-c-resistant tumor cells are not inherently

more aggressive in lesion formation per se, but are less

immunogenic than their IFN-c-sensitive counterparts. In a

more recent study, Lee's group modified two transformed

murine cell lines (SKC and K1735) to be unresponsive to

IFN-c, utilizing a similar dominant-negative IFN-cR1 con-

struct, and subsequently tested their ability to form tumors

in mouse hosts (184). IFN-c-resistant cell lines were more

tumorigenic than IFN-c-responsive parental lines, corrobor-

ating previous studies. IFN-c augments antigen presentation

through both the MHC class I and class II pathways, thereby

increasing the immunogenicity of tumor cells and enhan-

cing their detection and killing by immune surveillance and

effector mechanisms (131, 185±187). It is also believed that

IFN-c alters the types of peptides that are presented through

the MHC class I pathway by inducing expression of alternate

LMP and TAP molecules. Therefore, in the absence of IFN-c

signaling, tumor cells may be unable to present peptides that

normally activate antitumor immunity, thereby evading

detection by surveillance mechanisms.

The effects of disruption of IFN-cR2
expression in mice

To study the importance of the b chain of the IFN-cR for

mediating the biologic functions of IFN-c, our laboratory

generated mice carrying a targeted mutation in the IFN-cR2

locus, abrogating its expression (27). These mice developed

normally in a pathogen-free facility, with a normal

composition of lymphocyte populations in lymphoid

organs. IFN-c signaling, however, was abrogated at all

steps of the cascade. Cells derived from IFN-cR2(-/-) mice

were unable to activate JAK1, JAK2, and STAT1 (all

expressed at normal levels) or to express IFN-c-inducible

genes in response to IFN-c treatment. When cultured on

anti-CD3 antibody-coated plates, naive CD4+ T cells iso-

lated from spleens of IFN-cR2 (-/-) were impaired in their

ability to differentiate toward the Th1 subset under

Th1-polarizing conditions (in the presence of either IFN-c

or IL-12), but exhibited normal Th2 differentiation (Fig. 2).

Interestingly, no default toward the Th2 phenotype was

observed when these cells were cultured under neutral

conditions.

Consistent with these in vitro findings, IFN-cR2 (-/-) mice

have profound defects in Th1-mediated immunity, such as

Th1 memory responses to rechallenge with protein antigen.

The ability of IFN-cR2 (-/-) B cells to undergo immunoglo-

bulin heavy-chain class switching to IFN-c-dependent

isotypes, such as IgG2a, was also impaired. Additionally,

the inhibition of class switching to IL-4-dependent isotypes,

such as IgG1 and IgE, normally observed when B cells are

cultured in the presence of both IL-4 and IFN-c, was not seen

under these conditions. As in IFN-cR1 (-/-) mice, impaired

macrophage function may be central to the immune disorder

in IFN-cR2 (-/-) mice. b chain-deficient mice are highly

susceptible to infection with L. monocytogenes, a pathogen

that primarily infects macrophages and requires their proper

function for a healing response. Additionally, contact

hypersensitivity responses were defective in these mice.
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These studies not only establish the obligatory role of IFN-

cR2 in transducing the IFN-c signal and thus its biologic

function, but also demonstrate that IFN-c is critical for the

development of functional Th1 cells and Th1-dependent

immunity. Though Th1 cells are normally unresponsive to

IFN-c (see below), abrogation of their ability to regulate

responsiveness to this cytokine during their development

may impair their generation and function. Alternatively, the

T-cell defect seen in IFN-cR2 (-/-) mice may be, in part,

secondary to impaired APC function, which may ineffi-

ciently activate or polarize CD4+ T cells. Furthermore, IL-12

did not seem to have a Th1-polarizing effect, suggesting that,

in this system, this function of IL-12 requires IFN-c.

In general, mice deficient in either a or b chains of the

IFN-cR had similar defects in their immune systems.

Interestingly, while in vitro Th1-polarized CD4+ T cells

expressing the dominant-negative IFN-cR1 transgene were

able to produce IFN-c as well as normal CD4+ cells, helper

T cells derived from IFN-cR2-deficient mice could not. The

discrepancy between these studies may be due to differences

in the type of stimuli used; mgRDIC TG T cells were

stimulated with APC+ peptide whereas IFN-cR2 (-/-) T cells

were stimulated with aCD3. This is consistent with

previous studies that have shown that the quality of the

activating stimulus can affect T helper subset phenotype

acquisition (188). It is also possible that the reason under-

lying the difference between the in vitro differentiation

potential of T cells from these two lines of mutant mice is

that the dominant-negative IFN-cR1 construct does not

completely abolish the IFN-c signal in T cells but, instead,

attenuates it considerably.

Obligate IFN-c responsiveness imparted by
IFN-cR2 transgene

Several groups have previously shown that, whereas Th2

cells are responsive to IFN-c, Th1 cells are unable to activate

IFN-c signaling in response to this cytokine (64±66, 189,

190). These data corroborate earlier studies demonstrating

differential growth arrest of Th1 and Th2 clones upon IFN-c

treatment, with only the latter helper T-cell subset

susceptible to the antiproliferative effects of this cytokine

(191). Further analysis of the components of the IFN-c

response pathway in Th cells revealed that, unlike Th2 cells,

Th1 cells do not express mRNA encoding IFN-cR2 (65)

(Fig. 2). Transfecting an IFN-cR2 construct into Th1 cells

rescues their IFN-c-unresponsive phenotype (65). These data

suggest that during T helper subset differentiation, respon-

siveness to IFN-c is regulated by expression of IFN-cR2.

Analysis of the immune functions of IFN-c-insensitive

mice suggests that IFN-c promotes Th1 cell development

and function. Therefore, Th1 cells must be able to respond to

this cytokine during their development, phenotype acquisi-

tion, and/or other points during their growth cycle.

However, during their differentiation, Th1 cells stop

expressing IFN-cR2 and become unresponsive to IFN-c.

We hypothesized that downmodulation of IFN-cR2 expres-

sion, and therefore the loss of responsiveness to IFN-c, is a

significant event in the process of Th1 phenotype acquisi-

tion and may, in fact, be important for normal Th1 cell

function. To test this hypothesis, we engineered mice in

which expression of IFN-cR2 cDNA is driven by the human

CD2 locus control region (LCR); thus, all CD2+ cells (TNK,

and some B cells) would constitutively express this receptor

(192). The b chain transgene rescued the IFN-c-insensitive

phenotype of Th1 cells, as Th1 cells cloned from transgenic

(TG) mice were responsive to IFN-c, whereas wild-type Th1

cells were not.

Like IFN-cR-deficient mice, IFN-cR2 TG mice exhibited

no gross developmental abnormalities and had normal

lymphocyte numbers and composition in lymphoid

organs; however, when challenged, IFN-cR2 TG mice were

found to have specific immunologic defects. IFN-cR2 TG

mice were impaired in their ability to generate Th1 cells in

vitro (Fig. 2). These mice were also unable to elaborate

Th1-mediated memory responses such as DTH (delayed-

type hypersensitivity) in vivo, and responses to protein and

bacterial antigens (such as keyhole limpet hemocyanin and

heat-killed L. monocytogenes, respectively) in vitro (192,

193).

Unlike T-cell function, antigen presentation in IFN-cR2

TG appears to be normal. In vitro, TG APCs are able to

support normal T-cell activation, whereas normal APCs

were unable to remedy the T-cell defect in TG T cells (192,

193). Survival of primary listeriosis is dependent on innate

immunity including leukocytes such as neutrophils, NK

cells, and especially macrophages (154, 155). Naive IFN-cR2

TG mice withstood challenge with L. monocytogenes,

indicating that macrophage function is intact in these

mice (193). It is possible that the IFN-c necessary for normal

macrophage activation is secreted by NK cells in these mice.

While host defense against L. monocytogenes depends

primarily on the innate immune system, survival of

infection with Leishmania major also requires normal

Th1 function (160). TG mice are susceptible to infection

with L. major, and develop nonhealing lesions, suggesting,
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once again, that Th1 responses in these mice are impaired

(192).

CNS pathology in EAE (a model of autoimmune demye-

linating disease) is believed to be mediated by Th1 cells

(164). We examined the effect of forced responsiveness to

IFN-c in Th1 cells on the induction of this organ-specific

autoimmune disease (193). While control mice developed

severe and often fatal paralysis, IFN-cR2 TG mice were

generally resistant to EAE induction. The ability to

modulate IFN-cR2 expression in Th cells is therefore

required for a broad range of Th1 effector functions

including autoimmunity.

Like helper T cells, CD8+ T cells can be grouped into an

IFN-c-producing subset (Tc1) and an IL-4-producing subset

(Tc2) (194, 195). We have recently examined patterns of IFN-

c responsiveness in Tc subsets and found that, like Th1

cells, Tc1 cells lack IFN-cR2 and are therefore unable to

activate STAT1 or upregulate cell-surface expression of

MHC class I molecules in response to IFN-c (193). Tc1

clones generated from IFN-cR2 TG mice are responsive to

IFN-c, whereas those generated from littermate controls do

not respond to IFN-c. TG Tc1 clones have profound defects

in their cytotoxicity (measured by their ability to lyse target

cells) as compared to wild-type CTLs. TG Tc1 clones,

however, do not show impaired activation, proliferation, or

IFN-c secretion, indicating that the cytolytic effector

functions of these cells are not necessarily dependent on

IFN-c. It is possible that other effector mechanisms of Tc1

cells, such as FasL expression or perforin production, may be

impaired. Contact hypersensitivity responses to haptens in

IFN-cR2 TG mice are markedly diminished (192). As

discussed earlier, CHS is dependent on normal APC and

CD8+ T-cell function. Since antigen presentation appears

normal in these mice, the defect in this in vivo model of

CTL function may lie in the CD8+ T-cell compartment.

Interestingly, earlier studies demonstrated that although

exogenous IFN-c can augment CTL activity and prolifera-

tion in vitro, this cytokine is not required for their effector

activity (196, 197).

Taken together, these studies demonstrate that IFN-cR2 is

obligatory in transducing the IFN-c signal and in mediating

its immunologic function. Furthermore, forced responsive-

ness to IFN-c results in severe Th1 and CTL dysfunction

that is intrinsic to these cells and is unlikely to be related to

impaired antigen presentation. Therefore, modulation of

responsiveness to IFN-c (by regulating expression of the IFN-

cR2 gene) during Th1 and Tc1 differentiation, and probably

in the mature Th1 and Tc1 states, is essential for the

generation of these cells and their proper function.

Naturally occurring IFN-cR mutations in
man

Man is normally resistant to nontuberculous mycobacteria

(NTM) and BCG. Nevertheless, cases of disseminated

atypical mycobacterial infection in children have been

reported (198±200). The underlying causes in most of

these cases were found to be classical immunodeficiencies

such as severe combined immunodeficiency (SCID) or

chronic granulomatous disease. Genetic mapping and

Mendelian analysis of idiopathic cases have revealed

mutations in either IFN-cR1 or IFN-cR2 that are transmitted

in an autosomal recessive pattern. Interestingly, children

unresponsive to IFN-c were found to be resistant to most

common viral and microbial infections or fungi, and

presented solely with disseminated mycobacterial infection

(Mycobacterium fortuitum, M. avium, M. bovis, BCG, M.

chelonei, M. smegmatis, and M. tuberculosis), Salmonella

enteritidis, or L. monocytogenes (201±207). A genetically

heterogeneous array of alterations (missense, nonsense,

insertions, deletions, and splice mutations) in the IFN-cR1

locus were identified. In contrast, only one case in which the

mutation lay in the IFN-cR2 locus has been reported (202).

These cases of idiopathic, disseminated mycobacterial

infection can be grouped into two phenotypic categories by

their clinical presentation and outcome: complete and

partial IFN-c insensitivity. Children with complete IFN-c

insensitivity respond poorly to antimycobacterial treat-

ment, either succumbing to the pathogen or developing

chronic infection. These patients form poorly differentiated

and poorly circumscribed granulomas and are therefore

unable to control effectively their mycobacterial infection

(204). Mutations underlying complete IFN-c insensitivity

result in a truncated IFN-cR1 or IFN-cR2 peptide that is not

expressed on the cell surface.

In contrast, the two siblings with partial IFN-c insensi-

tivity were found to have a missense mutation in the IFN-

cR1 extracellular domain (I187T) (207). Although it is

expressed, this IFN-cR1 mutant binds IFN-cR with very

low affinity, and cells carrying this mutation respond only to

very high doses of IFN-c. In vitro analysis of T cells isolated

from these kindred and their parents show diminished

parameters of antigenic recall such as T-cell proliferative

responses and IFN-c secretion. Granulomas in

mycobacteria-infected partially IFN-c-insensitive indivi-

duals are well defined with fully differentiated, multi-

nucleated epithelioid cells, and are circumscribed by

lymphocytes. These patients respond to antimycobacterial
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treatment and can survive pathogen-free without prophy-

laxis.

Cases of idiopathic mycobacterial infection arising from

mutations in either of the IFN-cR chains are helpful for

defining the subset of nonredundant immunologic function

of IFN-c essential for survival in a natural environment. All

such kindred presented with cases of mycobacterial infec-

tion either secondary to immunization with BCG or

naturally acquired, indicating that IFN-c plays a critical,

nonredundant role in mediating antimycobacterial immu-

nity (208). However, the absence of consistent presentation

with other infections does not preclude the participation of

IFN-c in immunity to other pathogens, but does suggest that

IFN-c is redundant in other immune mechanisms. These

findings suggest that responsiveness to IFN-c, and therefore

IFN-cR, is required for host defense against these intracel-

lular pathogens whose clearance is mediated by macro-

phages. Impaired antigenic recall in these individuals

suggests that IFN-cR is important in the development of

Th1-mediated immunologic memory, although this defect

may be, in part, caused by APC dysfunction rather than fully

by T-cell-intrinsic mechanisms (209).

Commentary

The study of mice and human subjects with altered IFN-cR

expression pattern has told us a great deal about the diverse

roles IFN-c plays in inducing and modulating immune

responses. First and foremost, both the a and b chains of IFN-

cR are obligatory in initiating the known IFN-c signaling

pathway through JAK1, JAK2, and STAT1 and in mediating

the cellular effects of this cytokine. IFN-c responsiveness

has been shown to be essential to, or at least to participate

in, host defense against a wide array of pathogens including

viruses, bacteria, and protozoa. Much of the phenotype in

IFN-cR-deficient animals can be attributed to a defect in

macrophage function. IFN-c responsiveness is critical for

macrophage activation, function, and antigen presentation.

These cells play a pivotal role in both innate and acquired

immune responses. They must be activated for clearance of

intracellular pathogens such as Listeria and mycobacteria

and the development of their phagocytic functions. They are

also important in further activating NK cells by secreting IL-

12. Neutrophils are also activated by IFN-c (182). Therefore,

in infections such as listeriosis, where the first leukocyte

line of defense is mediated by neutrophils, impaired

function of these cells undoubtedly enhances the suscept-

ibility of IFN-c-unresponsive mice to such infections.

Unlike the IFN-cR (-/-) mice, in which a macrophage

defect supersedes the T-cell defect, T-cell function is clearly

impaired in IFN-cR2 TG mice. These animals have allowed

us to explore the functional role of IFN-c-responsiveness and

the ability of T cells to modulate it. We have demonstrated

that Th1 and Tc1 cells that are constitutively responsive to

IFN-c are unable to elaborate their respective effector

functions. It is possible that constitutive signaling through

the IFN-cR (such as in TG Th1 and Tc1 cells which are

continuously bathed in an IFN-c-rich milieu) activates

inhibitory pathways, or inactivates an effector mechanism

in these cells, thereby causing the observed defect.

Therefore, not only must cells be responsive to IFN-c for

normal innate, acquired, and antitumor immunity, but IFN-

c-secreting T cells also must be able to regulate their ability

to respond to IFN-c for their normal function. It appears that

for IFN-c, as for life in general, timing is everything.
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