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Abstract 22 

Fatigue is a state of exhaustion that influences our willingness to engage in effortful tasks. 23 

While both physical and cognitive exertion can cause fatigue, there is a limited 24 

understanding of how fatigue in one exertion domain (e.g., cognitive) affects decisions to 25 

exert in another (e.g., physical). We use functional magnetic resonance imaging (fMRI) 26 

to measure brain activity while human participants make decisions to exert prospective 27 

physical effort before and after engaging in a cognitively fatiguing working memory task. 28 

Using computational modeling of choice behavior, we show that fatiguing cognitive 29 

exertion increases participants’ subjective costs of physical effort compared to a baseline 30 

rested state. We describe how signals related to fatiguing cognitive exertion in the 31 

dorsolateral prefrontal cortex influence physical effort value computations instantiated by 32 

the insula, thereby increasing an individual’s subjective valuation of prospective physical 33 

effort while cognitively fatigued. Our results support the idea of a general fatigue signal 34 

that integrates exertion-specific information to guide effort-based choice. 35 

 36 

 37 
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Introduction 42 

Fatigue can be induced by both physically and cognitively effortful tasks, and it is often 43 

perceived that fatigue in one domain of exertion can influence feelings in another. For 44 

example, after a long day of cognitively draining grant writing, we might decide not to 45 

participate in a physically fatiguing after-work pickup soccer game. Recent studies have 46 

shown that fatigue will increase self-reported perceptions of effort (Greenhouse-Tucknott 47 

et al., 2020; Pageaux, 2014) and decrease willingness to exert (Chong et al., 2017; Hogan 48 

et al., 2020; Müller et al., 2021). Functional neuroimaging studies have implicated a 49 

network of brain regions, including the anterior cingulate cortex (ACC), insular cortex, and 50 

ventromedial prefrontal cortex (vmPFC), in both cognitive and physical effort-based 51 

decision-making (Hogan et al., 2019; Pessiglione et al., 2018; Shenhav et al., 2017; 52 

Westbrook et al., 2019) and shown that these regions are sensitive to fatigue state (Hogan 53 

et al., 2020; Müller et al., 2021; Wylie et al., 2020). However, there is a limited 54 

understanding of how fatigue in one exertion domain (e.g., cognitive) influences decisions 55 

to exert other types of effort (e.g., physical), and how the brain integrates information 56 

about different effort and fatigue modalities when making decisions to exert. 57 

 58 

 Previous behavioral experiments have shown that sustained cognitive and 59 

physical exertion increases perceptions of fatigue and is associated with decreased 60 

behavioral performance (Marcora et al., 2009; Pageaux, 2014; Pageaux and Lepers, 61 

2016). Crosstalk between cognitive fatigue and physical performance has been observed, 62 

with mental fatigue impairing physical endurance and motor skill performance, as well as 63 

perceptions of effort and feelings of general fatigue (Eddy et al., 2015; Marcora et al., 64 
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2009; Moore et al., 2012; Pageaux, 2014; Pageaux and Lepers, 2016). However, these 65 

works found that cognitive fatigue did not impair maximal motor exertion, suggesting that 66 

fatigue may influence the affective processing of effort independently from actual exertion 67 

capacity. While several studies have examined the behavioral influence of cognitive 68 

fatigue on physical exertion, there is a limited understanding of the neurobiological 69 

mechanisms through which cognitive fatigue impacts physical decision-making and 70 

willingness to exert. 71 

 72 

 Studies of the neural basis of cognitive and physical effort-based decision-making 73 

suggest a domain-general encoding of prospective effort value by brain regions including 74 

the vmPFC, anterior insula, and ACC (Aridan et al., 2019; Chong et al., 2017; Hogan et 75 

al., 2019; Hogan et al., 2020; Lopez-Gamundi et al., 2021; Massar et al., 2018; Müller 76 

and Apps, 2019; Pessiglione et al., 2018; Westbrook and Braver, 2015; Westbrook et al., 77 

2019). Beyond this common effort network, neuroimaging analyses have also implicated 78 

effort-specific brain regions related to exertion (e.g., physical exertion: premotor cortex, 79 

motor cortex, sensorimotor cortex (Hogan et al., 2019; Hogan et al., 2020; Müller and 80 

Apps, 2019); working memory cognitive exertion: dorsolateral prefrontal cortex (Barbey 81 

et al., 2013; Westbrook et al., 2019)).  82 

 83 

Recent theoretical and experimental studies have begun considering how fatigue 84 

impacts effort-based decision-making (Hogan et al., 2020; Müller et al., 2021; Renfree et 85 

al., 2014). These works have shown that fatigue inflates the subjective value of effort and 86 

makes individuals less willing to accept options associated with higher effort. 87 
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Neuroimaging and behavioral modeling of effort-based choice revealed that frontal cortex 88 

and insular cortex represent physical fatigue states while individuals make effort-based 89 

decisions. It has been suggested that information related to bodily state could modulate 90 

decisions to engage in physical activity (Hogan et al., 2020; Stephan et al., 2016). This 91 

information may be integrated by brain regions responsible for value-based decision-92 

making during choices to exert. These previous studies focused on how physical fatigue 93 

influenced physical effort-based decision-making and did not examine how different types 94 

of effort and fatigue interact when making decisions to exert (Hogan et al., 2020; Iodice 95 

et al., 2017; Müller et al., 2021). 96 

 97 

 This study investigated the neural mechanisms by which cognitive fatigue interacts 98 

with the brain’s valuation and decision-making circuitry when making choices to exert 99 

physical effort. Behaviorally, we hypothesize that cognitive fatigue, induced by repeated 100 

working memory exertion, will result in increased feelings of fatigue in both the cognitive 101 

and physical domains. This hypothesis is informed by studies that have examined the 102 

crosstalk between cognitive fatigue and physical exertion, which found that cognitive 103 

fatigue inflated individuals’ perceptions of physical effort (Pageaux, 2014; Pageaux and 104 

Lepers, 2016; Harris and Bray, 2019). We hypothesize that fatiguing cognitive exertion 105 

will result in an exaggerated subjective valuation of physical effort that manifests as 106 

diminished risk preferences for prospective physical effort. When individuals are faced 107 

with exerting a certain amount of physical effort versus a risky option involving either a 108 

greater amount of effort or no effort, they will be less willing to choose the risky option 109 

while in a cognitively fatigued state (compared to a rested state). Our predictions 110 
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regarding decisions when in a cognitively fatigued state are influenced by studies of 111 

physical fatigue and decision-making, which found that increased fatigue was associated 112 

with increased subjective valuation and risk preferences for effort (Hogan et al., 2020). 113 

These behavioral results would suggest a general fatigue signal influencing feelings of 114 

effort and choices to exert across effort domains. Neurally, we hypothesize that decisions 115 

about prospective effort exertion have their basis in a value signal encoded in the ACC 116 

and insula and that the cognitive fatigue state will modulate this value signal. Recent 117 

studies of physical fatigue and physical effort-based decision-making found that the 118 

insular cortex encodes feelings of effort during bouts of exertion and rest and is sensitive 119 

to changes in effort value as a function of physical fatigue (Hogan et al., 2020; Meyniel et 120 

al., 2013; Meyniel et al., 2014). We hypothesize that brain regions specifically responsible 121 

for executing cognitive effort will be functionally coupled with effort valuation regions such 122 

as the insula and that this network will inform effort-based decision-making when in a 123 

fatigued state. Together, these hypotheses form an account of how different types of effort 124 

and fatigue interact at the levels of brain and behavior to influence effort-based choice.  125 

 126 

Results 127 

To study how decisions about physical effort are influenced by cognitive fatigue, we 128 

scanned participants’ brains with functional magnetic resonance imaging (fMRI) while 129 

they made risky choices about prospective physical effort before and interspersed with 130 

bouts of fatiguing cognitive exertion. The first session of choices was used to characterize 131 

participant-specific subjective valuations of physical effort in a baseline, rested state 132 

(Figure 1A). After this baseline choice phase, participants performed blocks of cognitive 133 
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exertion trials in the form of an n-back working memory task (Figure 1B). Participants 134 

alternated between blocks of physical effort choice trials and fatiguing cognitive exertion 135 

trials (Figure 1D) and rated their cognitive and physical fatigue levels after exertion 136 

(Figure 1C). The blocks of exertion trials were meant to maintain participants in a 137 

cognitively fatigued state and minimize the possibility of recovery during choice. All the 138 

choices were for prospective effort, and at the end of the experiment, ten trials were 139 

randomly selected to be played out so that participants’ decisions had actual 140 

consequences.  141 

 142 

Before performing fatiguing cognitive exertions, the majority of participants 143 

exhibited 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 1, indicating increasing sensitivity to changes in subjective physical 144 

effort cost as objective effort level increases (mean 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 2.25 (SD = 1.34); two-145 

tailed one-sample t-test against the null hypothesis that 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1: 𝑡25 = 4.78, 𝑝 ≪146 

0.001). 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 > 1 corresponds to participants being risk averse for effort. As in our 147 

previous work, there was considerable individual variability in participants’ 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 148 

reflecting individual differences in baseline subjective preferences for effort (Hogan et al., 149 

2019; Hogan et al., 2020; Umesh et al., 2020). 150 

 151 

Repeated cognitive exertion results in fatigue 152 

Participants' ratings of cognitive and physical fatigue increased through repeated 153 

cognitive exertion (Figure 2A). Ratings of cognitive fatigue significantly increased 154 

between the baseline and first session of the fatigue choice phase (average change in 155 

cognitive fatigue rating: 1.03 SD; two-tailed paired-sample t-test: 𝑡25 = 3.45, 𝑝 < 0.01), 156 
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and there was a trend of increased fatigue ratings with progressive blocks of cognitive 157 

exertion (hierarchical linear model: 𝛽 = 0.23, 𝑡518 = 12.44, 𝑝 ≪ 0.001). While physical 158 

fatigue ratings did not significantly increase between the baseline choice phase and the 159 

first session of the fatigue phase (average change in physical fatigue rating: -0.09 SD; 160 

two-tailed paired-sample t-test: 𝑡25 = −0.25, 𝑝 = 0.81), there was a trend of increased 161 

ratings of physical fatigue with progressive blocks of cognitive exertion (hierarchical linear 162 

model: 𝛽 = 0.14, 𝑡518 = 3.74 𝑝 < 0.01). The rate at which cognitive fatigue ratings 163 

increased over progressive exertion blocks was significantly greater than that for physical 164 

fatigue ratings (average difference in the slope of cognitive and physical fatigue ratings: 165 

0.10 SD/block; two-tailed paired-sample t-test: 𝑡25 = 2.70, 𝑝 < 0.05), and the rate at which 166 

participants ratings of cognitive and physical fatigue increased over exertion blocks was 167 

significantly correlated (Figure 2B; Spearman’s 𝜌 = 0.42, 𝑝 < 0.05) – individuals with 168 

greater rates of increase in cognitive fatigue also had higher rates of increase in physical 169 

fatigue. These results suggest that cognitively fatiguing exertion increases feelings of 170 

fatigue in both the domains of cognitive and physical effort and are consistent with a 171 

general feeling of fatigue that pervades across the different types of effort. 172 

 173 

 Perceptions of fatigue can be influenced by objective decreases in task 174 

performance, an effect called performance fatiguability (Kluger et al., 2013). Performance 175 

fatiguability may manifest as decreased reaction time or task success rate. To evaluate if 176 

performance fatiguability may contribute to participants’ fatigue ratings, we evaluated 177 

participants’ reaction times and success rates during the progressive blocks of cognitive 178 

exertion. We found that participants exhibited lower reaction times (average decrease in 179 
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RT: -0.017 seconds/block; two-tailed one-sample t-test: 𝑡25 = −5.61, 𝑝 ≪ 0.001) and 180 

higher success rates (average percent increase correct: 0.33 %/block; one-tailed one-181 

sample t-test: 𝑡25 = 1.93, 𝑝 < 0.05) over progressive blocks of the n-back cognitive 182 

exertion task, revealing patterns of performance that do not align with a fatiguability 183 

account. These results suggest that participants experienced increased cognitive and 184 

physical fatigue due to time spent on the cognitively fatiguing working memory task rather 185 

than performance changes in the task. 186 

 187 

Cognitive fatigue-induced changes in physical effort value 188 

Compared to the baseline choice phase, participants were more risk averse for physical 189 

effort during the cognitive fatigue choice phase. Most participants were less willing to take 190 

the chance of having to exert large amounts of physical effort, suggesting that their 191 

sensitivity to marginal changes in physical effort cost increased while in a cognitively 192 

fatigued state (Figure 2C shows group-averaged costs functions for physical effort for the 193 

baseline and fatigue choice phases). These cognitive fatigue-induced increases in 194 

physical effort cost and risk preferences manifested as a significant increase in 𝜌𝑓𝑎𝑡𝑖𝑔𝑢𝑒 195 

compared to 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (Figure 2D; mean ∆𝜌 = 0.28 (𝑆𝐷 = 0.82); one-tailed paired-sample 196 

t-test: 𝑡25 = 1.76, 𝑝 < 0.05). The parameter 𝜏, which represents participants’ randomness 197 

in choice, was not significantly different between the baseline and fatigue choice phases 198 

(∆𝜏 = 0.13 (𝑆𝐷 = 0.64); two-tailed paired-sample t-test: 𝑡25 = 0.90, 𝑝 = 0.38), indicating 199 

that increased fatigue did not have a significant effect on the variability in a participant’s 200 

choices when comparing between rested and cognitively fatigued states. 201 

 202 
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 To capture how cognitive fatigue influences effort-based choices over the course 203 

of repeated cognitive exertion, we designed a series of Bayesian hierarchical logistic 204 

regression models to measure the effects of cognitive and physical fatigue on the 205 

propensity to choose the risky physical effort option over the fatigue phase. We found that 206 

an interaction between cognitive fatigue rating and the offered sure value had a significant 207 

effect on choice behavior (Figure 2E; Bayesian hierarchical logistic regression: 𝛽 =208 

−0.31, 𝑆𝐸 = 0.10, 95% 𝐶𝐼 = [−0.52, −0.11], 𝑅̂ = 1.00, 𝐸𝑆𝑆 = 4,490; see Supplementary 209 

Figure 2 and Tables 1, 2 for quality analysis of Bayesian modeling), indicating that as 210 

cognitive fatigue increased, participants’ willingness to choose the sure option over the 211 

risky option increased. In a similar model using physical fatigue as a predictor of choice, 212 

we did not find a significant relationship between physical fatigue ratings and the value of 213 

the sure option (Supplementary Figure 1), suggesting that, although participants 214 

experienced increasing fatigue in both domains, only cognitive fatigue had a significant 215 

effect on choice behavior regarding physical effort exertion. A model comparison showed 216 

that the model that included cognitive fatigue ratings better described choice behavior 217 

than the physical fatigue rating model (cognitive fatigue model: 𝑊𝐴𝐼𝐶 = 900.0; physical 218 

fatigue model: 𝑊𝐴𝐼𝐶 = 912.8). 219 

 220 

Neural encoding of physical effort value. 221 

We found several brain regions, including the dorsal anterior cingulate cortex and bilateral 222 

insula, were sensitive to the difference between chosen and unchosen physical effort 223 

value across the baseline and fatigue choice phases (Figure 3A). Brain activity in these 224 

areas increased for the chosen effort option compared to the unchosen option, across 225 
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both the baseline and fatigue choice phases. This finding is consistent with previous 226 

studies of effort-based decision-making that have identified these regions as being 227 

implicated in effort valuation (Chong et al., 2017; Hogan et al., 2019; Hogan et al., 2020; 228 

Klein-Flügge et al., 2016; Meyniel et al., 2013; Meyniel et al., 2014). 229 

  230 

To test for regions of the brain that were sensitive to changes in physical effort 231 

value induced by cognitive fatigue, we contrasted the difference between the chosen and 232 

unchosen options between the baseline and fatigue choice phases. We found that right 233 

anterior insula (rIns) activity was modulated by physical effort value at the time of choice 234 

(Figure 3B) and was insensitive to chosen and unchosen effort value in the baseline 235 

choice phase (Figure 3C), suggesting that activity in rIns is sensitive to changes in 236 

physical effort value resulting from cognitive fatigue. These results align with previous 237 

studies of effortful exertion that have suggested that the rIns encodes representations of 238 

bodily state that influence decisions regarding bouts of exertion and rest (Meyniel et al., 239 

2013; Meyniel et al., 2014). Moreover, the region of rIns identified overlaps with the area 240 

we previously found for physical effort-based decision-making during physical fatigue 241 

(Hogan et al., 2020), suggesting that rIns may track the value of physical effort as well as 242 

fatigue-induced changes in effort value, regardless of the source of fatigue (i.e., both 243 

physical and cognitive fatigue). 244 

  245 

To further test how rIns activity at the time of effort choice is modulated by general 246 

fatigue, we obtained an independent measure of the associations between participants’ 247 

ratings of cognitive and physical fatigue and used it as a covariate in the contrast 248 
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comparing the baseline and fatigue choice conditions (Figure 3B). The general fatigue 249 

measure was obtained by correlating each participant’s increases in cognitive and 250 

physical fatigue ratings over the course of repeated cognitive exertion blocks – larger 251 

values correspond to a greater agreement between the cognitive and physical fatigue 252 

ratings and, thus, greater crosstalk between these fatigue modalities. We found that 253 

individuals’ general fatigue metric was significantly related to rIns activity, at the time of 254 

choice (Figure 3D, E). Thus, participants with stronger relationships between cognitive 255 

and physical fatigue ratings exhibited a higher sensitivity in rIns to fatigue-induced 256 

changes in effort value. These results further support the idea of a general fatigue signal 257 

for cognitive and physical effort that influences effort-based decisions. 258 

 259 

Increased cognitive fatigue influences physical effort valuation. 260 

Next, we evaluated the relationship between cognitive fatigue induced by the working 261 

memory task and effort-based decision-making. We reasoned that to make informed 262 

decisions about effort, given feelings of fatigue, the brain should incorporate information 263 

about the cognitive state (induced by fatiguing cognitive exertion) at the time of choice. 264 

To test this idea, we first examined brain areas encoding increased cognitive exertion 265 

over the course of the fatigue choice phase. We found that activity in right dorsolateral 266 

prefrontal cortex (rdlPFC) increased through repeated cognitive exertion (Figure 4A, B), 267 

consistent with previous neuroimaging studies of working memory that have shown this 268 

brain region to be related to increased working memory load (Barbey et al., 2013; Chong 269 

et al., 2017; Westbrook and Braver, 2015; Westbrook et al., 2019). 270 

 271 
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 Finally, given our hypothesis that information about one’s cognitive fatigue state is 272 

incorporated into decisions about physical effort, we tested the idea that the neural circuit 273 

modulating effort value representations in rIns might be influenced by computations about 274 

cognitively fatiguing working memory instantiated in rdlPFC during choice. To test this 275 

hypothesis, we conducted a psychophysiological interaction (PPI) analysis between rIns 276 

(seed) and rdlPFC (target) at the time of choice, with baseline/fatigue state as a 277 

psychological variable (Figure 5A). This analysis revealed a modulation of functional 278 

connectivity between the rIns and rdlPFC as a function of fatigue state, and connectivity 279 

was increased in the fatigue choice phase compared to baseline (Figure 5B; mean 280 

increase in effect size in rdlPFC: 1.83 a.u.; two-tailed paired-sample t-test: 𝑡24 = 3.03, 𝑝 <281 

0.01). This analysis provides support for the hypothesis that activity in rdlPFC and rIns 282 

are functionally related during effort-based decision-making and suggests that 283 

interactions between these brain regions could facilitate the transfer of information about 284 

cognitive exertion and fatigue that is used to subserve choices about prospective physical 285 

effort. 286 

 287 

Discussion 288 

We show that repeated cognitive exertion increases feelings of cognitive and physical 289 

fatigue and the subjective cost of physical effort. These findings suggest a general fatigue 290 

signal influencing behavior across different effort domains. Our neural results reveal that 291 

cognitive fatigue-induced changes in physical effort valuation are encoded by rIns, and 292 

the functional connectivity between rIns and cognitive exertion-related signals in dlPFC 293 

are influenced by fatigue state. These findings are consistent with previous studies that 294 
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have implicated the anterior insula in an effort valuation network and show that it is 295 

sensitive to fatigue-induced changes in effort value (Aridan et al., 2019; Chong et al., 296 

2017; Hogan et al., 2020; Lopez-Gamundi et al., 2021; Massar et al., 2018; Müller and 297 

Apps, 2019; Pessiglione et al., 2018; Westbrook and Braver, 2015). However, our results 298 

go beyond previous studies by showing that fatigue in one domain of exertion (i.e., 299 

cognitive) influences brain signals related to effort valuation in a separate exertion domain 300 

(i.e., physical). Our results illustrate a network of brain activity through which disparate 301 

effort domains interact to influence decisions to exert.  302 

 303 

Effort domain-specific signals are critical for signaling fatigue. In the context of 304 

physical effort, fatigue could be related to exertion-induced changes in muscle physiology 305 

or motor cortical state (Hogan et al., 2020; Müller and Apps, 2019), while it has been 306 

suggested that neurotransmitter concentrations in cognitive exertion-related regions are 307 

associated with cognitive fatigue (Dobryakova et al., 2013; Kok, 2022; McMorris, 2018). 308 

Here we show that being in a cognitively fatigued state impacts ratings of physical fatigue 309 

and decisions to exert physical effort, suggesting a general fatigue signal that impacts 310 

decisions across cognitive and physical domains. We find that a region of rIns that we 311 

previously found to be sensitive to cognitive and physical effort-based decision-making 312 

while fatigued in those respective domains (Hogan et al., 2020; Steward and Chib, 2024; 313 

Westbrook and Braver, 2015), also mediates decisions to exert physical effort while in a 314 

cognitively fatigued state. At the time of choice, we find that specific working memory-315 

related cognitive exertion signals in dlPFC are functionally coupled to this region of rIns, 316 

suggesting that information about task-related neural activity plays a role in effort-based 317 
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choice. However, our data is not able to distinguish how signals related to cognitive and 318 

physical fatigue might be synthesized into a general fatigue signal that underlies choice. 319 

rIns is a candidate region that is sensitive to effort decisions in both cognitive and physical 320 

fatigue (Chong et al., 2017; Müller and Apps, 2019); however, it is not clear if other brain 321 

regions encode a general fatigue state across choices and exertion.  322 

 323 

It is important to monitor one’s internal state to make decisions about exertion while 324 

fatigued. The region of rIns that we have identified as being sensitive to physical effort 325 

value while in a cognitively fatigued state has also been shown to be sensitive to cognitive 326 

and physical fatigue while making effort choices in those domains of exertion (in which 327 

there was no crosstalk between types of effort; Hogan et al., 2020; Steward and Chib, 328 

2024). This region of rIns overlaps with the region identified in the computation of 329 

interoceptive sense (Craig, 2003; Craig, 2009; Critchley et al., 2004). One interpretation 330 

of rIns being sensitive to fatigue-induced changes in effort value could be that this region 331 

may be required to access effort domain-specific interoceptive feelings, which in turn, 332 

influence valuations and judgments of effort. In this framework, rIns could serve as a 333 

domain-general node in fatigue judgements. While our study did not directly assess 334 

participants’ interoceptive sense related to feelings of cognitive fatigue, it will be important 335 

in the future to design experimental paradigms that measure an individual’s interoceptive 336 

awareness of cognitive state while also requiring them to make decisions about 337 

prospective cognitive and physical exertion. Such an experimental design could allow for 338 

the dissociation of interoceptive signals and effort valuation in rIns. 339 

 340 
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Motivation is another key driver of effortful behavior generally impacted by fatigue. 341 

Cognitive and physical fatigue alter the cost-benefit analysis underlying decision-making, 342 

where the perceived effort required for tasks diminishes the subjective value of potential 343 

rewards, thereby reducing their motivational salience (Chong et al., 2017; Iodice et al., 344 

2017; Klein-Flügge et al., 2016; Massar et al., 2018; Westbrook et al., 2013). When 345 

motivation is low, the effort needed to achieve a reward can seem disproportionately 346 

burdensome, making the reward less appealing than it would be in a more motivated 347 

state. As fatigue accrues from sustained cognitive or physical exertion, exertion-related 348 

neural signals may influence the general brain regions integral to motivated behavior, 349 

such as the basal ganglia and prefrontal cortex. These signals could modulate internal 350 

assessments of whether future rewards justify the required effort. Our study examined 351 

how cognitive fatigue shapes decisions involving physical effort, revealing a functional 352 

network, including the dlPFC and rIns, which may be critical in motivating choices to exert 353 

effort. These regions potentially mediate the interplay between subjective effort valuation 354 

and motivated decision-making under fatigue. While our experiment did not test the 355 

influence of incentive motivation on decisions to exert, instead focusing on effort valuation 356 

in isolation, reward motivation would likely have a general impact on fatigue that 357 

influences decisions across effort domains. 358 

 359 

 Through a combination of behavioral and neural analysis, we show that cognitive 360 

fatigue impacts feelings of physical fatigue and decisions to exert physical effort. These 361 

findings suggest a domain-general fatigue network that draws on exertion-related neural 362 

signals to influence judgments of cognitive and physical effort. We show a mechanism by 363 
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which representations of physical effort value in rIns are modulated by cognitive fatigue-364 

induced changes in rdlPFC, and that these brain regions are functionally connected as 365 

part of an effort-fatigue network that influences effort-based decision-making.  366 

367 
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Methods 373 

Experimental setup.  374 

The presentation of visual stimuli and acquisition of behavioral data was accomplished 375 

using custom PsychoPy scripts (Pierce et al., 2019). During fMRI, visual feedback was 376 

presented by a projector located at the back of the room. Participants viewed a reflection 377 

of the projection via a mirror attached to the scanner head coil. 378 

 379 

 A hand-clench dynamometer (TSD121B–MRI, BIOPAC Systems, Inc., Goleta, CA) 380 

recorded grip force exertion. Signals from this sensor were sent to our custom-designed 381 

software for real-time visual feedback of participants’ exertions. Participants were 382 

instructed to exert a grip force on the sensor in their dominant hand while comfortably 383 

holding their arm to the side. 384 

 385 

 We used an MRI-compatible multiple button-press response box (Cedrus RB-830, 386 

Cedrus Corp., San Pedro, CA) held in the left hand to record participant decisions while 387 

in the scanner. 388 

 389 

Participants.  390 

All participants were right-handed and prescreened to exclude any individuals with a 391 

history of neuropsychiatric conditions. The Johns Hopkins School of Medicine Institutional 392 

Review Board approved this study, and all participants provided informed consent.  393 

 394 
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A total of 38 healthy participants were recruited from the Johns Hopkins 395 

community. Of these, 13 participants were excluded from behavioral analyses, and 14 396 

were excluded from neuroimaging analyses for one or more reasons. First, participants 397 

were excluded if they did not complete the study due to complications during scanning (n 398 

= 4). Second, participants were excluded if their choice parameters (𝜌 and 𝜏) were outliers 399 

(> 2 standard deviations from the mean; n = 2). Third, participants were excluded if their 400 

cognitive ratings displayed no variance (i.e., they did not increase or decrease throughout 401 

the experiment; n = 3). Fourth, participants were excluded if they made nonsensical 402 

choices (n = 4). Finally, one participant was included in the behavioral analysis but 403 

excluded from neuroimaging analysis due to excessive head movement. The final 404 

analysis included N = 25 participants (N = 24 for neuroimaging analysis) in total (mean 405 

age ± standard deviation, 24 ± 5y; range, 18 – 39y; 11 males) 406 

 407 

Experimental paradigm.  408 

Before the experiment, participants were informed they would receive a fixed show-up 409 

fee of $50. They were told that this fee did not depend on their performance or behavior 410 

during the experiment. The association, assessment, and choice phases of the 411 

experiment described below are similar to those we have previously used (Culbreth et al., 412 

2024; Hogan et al., 2019; Hogan et al., 2020; Hu et al., 2022; Padmanabhan et al., 2023; 413 

Umesh et al., 2020). 414 

  415 

The experiment began by measuring participants’ maximum voluntary contraction 416 

(MVC), by selecting the maximum grip exertion on the hand-clench dynamometer over 417 
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three successive trials. During these exertions, participants did not have knowledge about 418 

subsequent phases and were encouraged to squeeze with their maximum force. 419 

 420 

Following the MVC phase, participants underwent an association phase during 421 

which they learned to associate effort levels (relative to MVC) with the corresponding 422 

force they exerted on the dynamometer (Supplementary Figure 3A). Effort levels were 423 

presented on a scale ranging from 0 effort units (no exertion) to 100 effort units (80% of 424 

a participant’s MVC). Participants proceeded through a randomized order of training 425 

blocks, each consisting of five training trials for a single target effort level, ranging from 426 

10–80 effort units in increments of 10. We did not implement association trials at the 427 

highest levels of exertion (i.e., 100% of a participant’s MVC) to minimize the risk of 428 

participants becoming physically fatigued during this phase. Each trial of a training block 429 

began with the numeric presentation of the target effort level (2 s), followed by effort 430 

exertion with visual feedback in the form of a black vertical bar, similar in design to a 431 

thermometer, which increased in level the harder participants gripped the dynamometer 432 

(4 s). The bottom and top of this effort gauge represented effort levels 0 and 100, 433 

respectively. Participants were instructed to reach the target zone (±5 effort units of the 434 

target) as fast as possible and maintain their force within the target zone for as long as 435 

possible for 4 s. Visual indication of the target zone was colored green if the effort 436 

produced was within the target zone, and red otherwise. After exertion, if participants 437 

were within the target zone for more than two-thirds of the trial time (2.67 s), the trial was 438 

a success. Participants were provided feedback regarding their success or failure at 439 

maintaining the target effort after each trial. To minimize participants’ fatigue, a fixation 440 
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cross (2–5 s) separated the trails within a training block, and 60 s of rest were provided 441 

between training blocks. 442 

 443 

Following the association phase, participants performed an assessment phase, 444 

during which they performed an effort recall task that gauged their understanding of the 445 

association between the effort levels and their physical exertion (Supplementary Figure 446 

3B). All the effort levels from the association phase (10–80 in increments of 10 effort units) 447 

were presented randomly six times each. Each assessment trial began with the display 448 

of a black horizontal bar that participants were instructed to fill by grip exertion on the 449 

dynamometer. Visual feedback turned red to green once the target effort level was 450 

reached. A full bar did not correspond to an effort level of 100 as in the previous phase; 451 

here, it represented the target effort level required on each trial. Participants were told to 452 

reach the target zone as fast as possible, maintain their force production as long as 453 

possible, and estimate their effort level during exertion (4 s). Following this exertion, 454 

participants were presented with a number line ranging from 0 to 100 and told to select 455 

the effort level they believed they had just exerted. Selection was achieved by moving the 456 

computer mouse to the rating and clicking the left mouse button to finalize the response. 457 

Participants had 4 s to make this effort assessment; if they failed, the trial was counted 458 

as missed. No feedback was given to participants as to the accuracy of their selection. 459 

After each selection, a fixation cross (2–5 s) appeared on the screen to provide a rest 460 

period between trials. A longer rest period of 60 s was provided halfway through the 461 

phase. 462 

 463 
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Following the assessment phase, participants were introduced to the n-back task, 464 

a cognitive effort paradigm commonly used to engender cognitive exertion through 465 

repeated use of working memory (Westbrook et al., 2013). We chose this task because 466 

we could operationalize cognitive effort by modulating the working memory load by 467 

varying the value of ‘n’ (Westbrook et al., 2013). In this experiment, we employed a 3-468 

back version of the n-back task, wherein participants monitored a sequence of letters and 469 

identified any letter (i.e., target) that matched the one shown 3 frames previously (Figure 470 

1B). Participants completed a practice session of the 3-back task consisting of 40 letters, 471 

10 of which were targets. Participants identified target and non-target letters with 472 

keyboard presses. Participants were required to complete the practice session (correctly 473 

identifying five or more targets) before moving to the main experiment in the scanner.  474 

 475 

 To investigate the influence of cognitive fatigue on behavioral and neural 476 

representations of physical effort valuation, we scanned participants’ brains with fMRI 477 

while they made decisions about prospective physical effort. This was done before and 478 

after participants performed repeated 3-back tasks and reported their cognitive and 479 

physical fatigue levels. Before entering the scanner, participants were told that 10 of their 480 

decisions would be randomly selected and carried out at the end of the experiment and 481 

that they would have to remain in the testing area until they successfully achieved the 482 

selected exertions. Participants were also informed that they should treat each effort 483 

decision as separate and independent from the others. 484 

 485 
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During the scanning portion of the experiment, participants reported their baseline 486 

levels of cognitive and physical fatigue via a 7-point Likert scale (10 s), which asked them 487 

to indicate their level of agreement (on a scale of “Not at all” to “Extremely”) with the 488 

statement “I feel cognitively/physically fatigued” (Figure 1C). The order in which cognitive 489 

and physical fatigue questionnaires were presented was randomized. Fatigue levels were 490 

reported by pressing a hand-held button box with the left hand's second, third, and fourth 491 

digits. For the remainder of the baseline choice phase, which was designed to gauge 492 

effort preferences in a pre-fatigued state, participants were presented with a series of 493 

effort choices between two options shown (4 s): a risky decision to exert either a large 494 

amount of physical effort or no effort with equal probability (“Flip”), or exerting a small 495 

amount of physical effort with certainty (“Sure”) (Figure 1A). (See Table 3 in the 496 

Supplementary Materials for the full choice set.) Participants selected between the two 497 

options by pressing the same button box with either the third or fourth digits of the left 498 

hand. Choices were not realized within the scanner. One hundred effort choices were 499 

presented consecutively in a randomized order. Participants were encouraged to make a 500 

choice on every trial; however, missing a trial was not penalized. Missed trials (including 501 

those for the fatigue surveys) were recorded as such and were not repeated. Previous 502 

studies used a similar effort-based decision-making task (Hogan et al., 2019; Hogan et 503 

al., 2020). 504 

 505 

Following the baseline choice phase, participants completed the fatigue choice 506 

phase of the experiment, in which they alternated between cognitively fatiguing working 507 

memory blocks and choice blocks (Figure 1D). A working memory block consisted of 508 
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fatigue surveys (the same as those used in the baseline choice phase) immediately 509 

preceding and following two successful bouts of the 3-back task. Participants completed 510 

the 3-back task by pressing the button box with the second or third digits of the left hand. 511 

The 3-back task was repeated until participants reached two successful completions. 512 

Following a working memory block, participants performed a choice block of 10 effort 513 

decisions pseudo-randomly sampled from the same set used in the baseline choice 514 

phase.  515 

 516 

Following the fatigue choice phase, participants exited the scanner and completed 517 

10 choice trials drawn from decisions made during both the baseline and fatigue choice 518 

phases. Participants remained in the testing area until they achieved the target exertions 519 

from the chosen trials. 520 

 521 

MRI protocol.  522 

A 3 Tesla Philips Ingenia Elition X-series MRI scanner and radio frequency coil was used 523 

for all MR scanning sessions. High-resolution structural images were collected using a 524 

standard MPRAGE pulse sequence, providing full brain coverage at a resolution of 0.946 525 

mm × 0.946 mm × 1 mm. Functional images were collected at an angle of 30° from the 526 

anterior commissure-posterior commissure (AC-PC) axis, which reduced signal dropout 527 

in the orbitofrontal cortex (Deichmann et al., 2003). Forty-eight slices were acquired at a 528 

resolution of 1.87 mm × 1.88 mm × 3 mm, providing whole brain coverage. An echo-529 

planar imaging (FE EPI) pulse sequence was used (TR = 2800 ms, TE = 30 ms, FOV = 530 

240, flip angle = 70°). 531 
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 532 

Effort choice analysis.  533 

We used a two-parameter model to capture the subjective cost of effort. We assumed a 534 

participant’s cost function 𝑉(𝑥) for physical effort 𝑥 to be of the form: 535 

 536 

𝑉(𝑥) = −(−𝑥)𝜌, 𝑥 ≤ 0. (1) 537 

 538 

Here, 𝑥 is defined as the objective value of effort and is negative to match our assumption 539 

that effort is perceived as a cost. The parameter 𝜌 represents sensitivity to changes in 540 

subjective effort value as the value of 𝑥 changes. A large 𝜌 represents a high sensitivity 541 

to increases in objective effort. If 𝜌 = 1, then the subjective cost of effort is the objective 542 

cost. 543 

 544 

 Representing the effort levels as prospective costs, and assuming participants 545 

combine probabilities and utilities linearly, the relative value between the risky and sure 546 

effort options can be written as: 547 

 548 

𝑅𝑉𝑠𝑢𝑟𝑒(𝐺, 𝑆) = 𝑉𝑎𝑙𝑢𝑒(𝑠𝑢𝑟𝑒) − 𝑉𝑎𝑙𝑢𝑒(𝑔𝑎𝑚𝑏𝑙𝑒), (2) 549 

 550 

𝑅𝑉𝑠𝑢𝑟𝑒(𝐺, 𝑆) = −(−𝑆)𝜌 − (−0.5(−𝐺)𝜌), (3) 551 

 552 

𝑅𝑉𝑠𝑢𝑟𝑒(𝐺, 𝑆) = 0.5(−𝐺)𝜌−(−𝑆)𝜌, (4) 553 

 554 
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where 𝑅𝑉𝑠𝑢𝑟𝑒 is the difference between the two options, and both 𝐺 < 0 and 𝑆 < 0 for all 555 

trials. 556 

 557 

We used a softmax function to calculate the probability that a participant chooses 558 

the sure option on the kth choice trial: 559 

 560 

𝑃𝑡(𝑅𝑉𝑠𝑢𝑟𝑒(𝐺, 𝑆)) =
1

1 + exp(−𝜏𝑅𝑉𝑠𝑢𝑟𝑒(𝐺, 𝑆))
, (5) 561 

 562 

where 𝜏 is a non-negative temperature parameter measuring the stochasticity of a 563 

participants’ choices. If 𝜏 = 0, then choices were made randomly. 564 

 565 

 Using maximum likelihood estimation, we extracted the 𝜌 and 𝜏 parameters for 566 

each participant, using 100 trials of effort choices. A participant’s choice is denoted by 567 

𝑦 𝜖 {0,1}. 𝑦 = 1 indicates the sure option was chosen. Parameters were estimated by 568 

maximizing the following likelihood function individually for each participant: 569 

 570 

∑ 𝑦𝑖 log(𝑃𝑡(𝐺, 𝑆)) + (1 − 𝑦𝑖) log(1 − 𝑃𝑡(𝐺, 𝑆))

100

𝑡=1

. (6) 571 

 572 

Parameters were estimated separately for the baseline and fatigue choice phases. We 573 

acquired 𝜌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝜏𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝜌𝑓𝑎𝑡𝑖𝑔𝑢𝑒, and 𝜏𝑓𝑎𝑡𝑖𝑔𝑢𝑒 parameters for each participant. 574 

 575 

 576 
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Hierarchical modeling of effort choices.  577 

We used Bayesian hierarchical logistic regression using the brms package (Bürkner, 578 

2017) in R to estimate the trial-to-trial effects of cognitive and physical fatigue on choice 579 

behavior. We opted for a Bayesian analysis to account for the quasi-separation in our 580 

choice set due to the inclusion of the catch trials in which the raw value of the flip option 581 

was always lower than the sure alternative. Such separation can inflate regression 582 

coefficients and influence interpretation of the results; thus, we employed penalized 583 

regression through the Bayesian method of setting priors for the fixed effects of our model. 584 

Before estimating any models, we specified a seed for the pseudo-random number 585 

generator; this seed can be downloaded from the Supplementary Materials for exact 586 

reproducibility of the model results. We followed the BARG method (Kruschke, 2021) in 587 

detailing our model interpretation and reporting. 588 

 589 

 We estimated the following model to measure the influence of cognitive and 590 

physical fatigue on effort choice: 591 

 592 

𝐶ℎ𝑜𝑖𝑐𝑒𝑡 = 1 + 𝛽1 ∗ 𝑆𝑢𝑟𝑒𝑡 + 𝛽2 ∗ 𝐹𝑙𝑖𝑝𝑡 + 𝛽3 ∗ 𝑅𝑎𝑡𝑖𝑛𝑔𝑡 + 𝛽4(𝑆𝑢𝑟𝑒𝑡 ∗ 𝑅𝑎𝑡𝑖𝑛𝑔𝑏) +

(1 + 𝑆𝑢𝑟𝑒 + 𝐹𝑙𝑖𝑝 + 𝑅𝑎𝑡𝑖𝑛𝑔 + (𝑆𝑢𝑟𝑒 ∗ 𝑅𝑎𝑡𝑖𝑛𝑔)|𝑃𝑖). (7)
 593 

 594 

𝐶ℎ𝑜𝑖𝑐𝑒𝑡 is a binary variable representing whether the sure or risky option was picked (0 = 595 

sure, 1 = flip) on a given trial 𝑡, 𝑆𝑢𝑟𝑒𝑡 is the expected value of the sure option on trial 𝑡, 596 

𝐹𝑙𝑖𝑝𝑡 is the expected value of the risky option on trial 𝑡, 𝑅𝑎𝑡𝑖𝑛𝑔𝑏 is the most recent 597 

cognitive or physical fatigue rating, and 𝑃𝑖 is a categorical identifier for each participant. 598 

Given individual differences between participants in their valuations of physical effort and 599 
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initial and subsequent fatigue levels, maximal models were built with random effects for 600 

slope and intercept. All regressors were z-scored before input into the model, and 601 

separate models were estimated for cognitive and physical fatigue ratings. Model results 602 

for each parameter are reported as the mean, standard deviation, and 95% credible 603 

intervals of the posterior distribution. Significant results were identified by observing 604 

whether the 95% credible intervals for each parameter crossed 0. 605 

 606 

Models were assigned to the Bernoulli statistical family with a logit link function to 607 

account for the dual nature of the effort choices. We used broad, weakly informative priors 608 

in the form of 𝑛𝑜𝑟𝑚𝑎𝑙(0, 10) for all fixed effects, assuming that the coefficient for the sure 609 

option would be positive (indicating that an increasing value of sure option increases the 610 

odds of picking the risky option) and that the coefficients for the risky option, fatigue rating, 611 

and the interaction between sure and fatigue rating would all be negative (indicating that 612 

an increasing value of the risky option and increasing fatigue reduces the odds of picking 613 

the flip option). Both models for cognitive and physical fatigue were estimated using the 614 

brms package’s Markov chain Monte Carlo method, which had 4 chains and 2,000 615 

iterations per chain. The first 1,000 iterations served as the warm-up period, while the 616 

remaining iterations acted as the sampling period. 617 

 618 

We performed a posterior predictive check on each cognitive and physical fatigue 619 

model by qualitatively observing whether the posterior predictive distributions generated 620 

by the pp_check function in the brms package encapsulated the actual distributions 621 
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(Supplementary Figure 2). Model comparison was conducted by comparing weighted AIC 622 

scores generated by the WAIC function in the brms package. 623 

 624 

We confirmed the reliability and efficiency of each model by observing the 𝑅̂ 625 

convergence diagnostic and ESS of each relevant parameter—namely, sure option, risky 626 

option, fatigue rating, and sure*fatigue rating. We were satisfied if 𝑅̂ < 1.05 and 𝐸𝑆𝑆 >627 

1,000 for each relevant parameter. To ensure the reliability of our results, we performed 628 

a sensitivity analysis by conducting Bayesian hierarchical logistic regression with other 629 

broad priors that were more or less informative than the prior described above. In the 630 

order of most informative to least informative, these priors included: 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1), 631 

𝑛𝑜𝑟𝑚𝑎𝑙(0, 106), and 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1, ∞), the final prior being the brms package’s default prior. 632 

The results of this analysis can be viewed in Supplementary Table 1. 633 

 634 

Image processing and fMRI statistical analysis.  635 

Image preprocessing. 636 

The SPM12 software package was used to analyze the MRI data (Wellcome Trust Centre 637 

for Neuroimaging, Institute of Neurology; London, UK). A slice-timing correction was 638 

applied to the functional images to adjust for different slices within each image being 639 

acquired at slightly different time points. Images were corrected for head motion by 640 

registering all images to the first image, spatially transformed to match a standard echo-641 

planar imaging template brain, and smoothed using a 3D Gaussian kernel (8 mm FWHM) 642 

to account for anatomical differences between participants. Following pre-processing, the 643 

data were analyzed statistically with a general linear model (GLM). 644 
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 645 

General linear model.  646 

A GLM was used to estimate participant-specific (first-level), voxel-wise, statistical 647 

parametric maps (SPMs) from the fMRI data. Our GLM included a categorical boxcar 648 

regressor for choice trials, in both the baseline and fatigue choice phases, beginning 649 

when a choice was presented and ending when a decision was made. This regressor 650 

included unorthogonalized parametric modulators corresponding to the objective value of 651 

the risky and sure effort options. Missed choice trials were modeled as a separate 652 

nuisance regressor. In the fatigue choice phase, another categorical boxcar regressor 653 

was used to model blocks of the working memory (3-back) task, beginning with the first 654 

round and ending after the second completed round (unsuccessful rounds were included 655 

in this timeframe). Finally, regressors modeling head motion as derived from the affine 656 

part of the realignment procedure of the preprocessing pipeline were included in the 657 

model.  658 

 659 

The regressors included in our imaging model were as follows:  660 

 661 

1. Choice trials during the baseline choice phase (Box-car categorical regressor 662 

beginning at the time of choice presentation and ending at the time of response)  663 

a. Parametric modulator: Value of the chosen option 664 

b. Parametric modulator: Value of the unchosen option 665 

2. Choice trials during the fatigue choice phase (Box-car categorical regressor 666 

beginning at the time of choice presentation and ending at the time of response)  667 
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a. Parametric modulator: Value of the chosen option 668 

b. Parametric modulator: Value of the unchosen option 669 

3. Working memory blocks during the fatigue choice phase (Box-car categorical 670 

regressor beginning at the time of presentation of the first round of the 3-back 671 

task and ending at the conclusion of the second successful round of the 3-back 672 

task) 673 

4. Choice trials in which no decision was made in the allotted time (i.e., missed 674 

trials) 675 

5. Regressors modeling head motion as derived from the affine part of the 676 

realignment procedure of the preprocessing pipeline. 677 

 678 

We used these first-level models to create group-level (second-level) models to 679 

test for brain areas that were generally sensitive to effort value and cognitive exertion. 680 

We created contrasts using the aforementioned parametric modulators for chosen and 681 

unchosen effort values, at the time of choice, to identify brain areas sensitive to 682 

differences between chosen and unchosen options, both across and between the 683 

baseline and fatigue choice phases. To identify brain regions encoding decision values 684 

for effort, regardless of fatigue state, we created a contrast that modeled the difference 685 

between chosen and unchosen effort value. This contrast was constructed by subtracting 686 

the parametric modulator for the unchosen risky and sure options (1.b and 2.b) from the 687 

chosen risky and sure options (1.a and 2.a). Additionally, we tested for brain regions 688 

encoding decision values that were influenced by the effect of fatigue by taking the 689 

difference between the value of the chosen and unchosen options between the fatigue 690 
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and baseline choice phases ([2.a – 2.b] – [1.a – 1.b]). To test for brain regions sensitive 691 

to increases in cognitive fatigue, we created a contrast that assigned linearly increasing 692 

weights to the categorical regressor for each n-back working memory block across the 693 

duration of the fatigue choice phase. 694 

 695 

Statistical inference.  696 

We analyzed brain signals related to chosen effort value within independent ROIs taken 697 

at peak coordinates from Neurosynth.org (Gorgolewski et al., 2016) when using the term 698 

“effort”: right anterior insula (rIns) MNI coordinates (x, y, z) = [36, 22, 0]; left anterior insula 699 

(lIns) MNI coordinates (x, y, z) = [−36, 22, 0]; ACC MNI coordinates (x, y, z) = [0, 14, 46]. 700 

Brain regions typically involved in working memory processes include right and left dlPFC 701 

and we used Neurosynth.org with the search term “working memory” to obtain 702 

independent ROIs for these regions: rdlPFC MNI coordinates (x, y, z) = [48, 10, 28]; 703 

ldlPFC MNI coordinates (x, y, z) = [-46, 8, 28].  704 

 705 

To display modulations in rIns and rdlPFC activity during the fatigue choice phase, 706 

we used SPM12’s marsbar (Brett et al., 2002) and rfxplot (Gläscher, 2009) toolboxes to 707 

extract effects sizes. Plots used for statistical inference (Figs. 3D, 5B) were created by 708 

extracting BOLD activations using 5-mm spheres centered at the peak coordinates 709 

inferred from Neurosynth.org (see above). Otherwise, effect sizes were extracted 5-mm 710 

spheres at the peak of activity in our data (Figs. 3C, 4B) – these signals were not 711 

statistically independent (Kriegeskorte et al., 2009), and these plots were not used for 712 

statistical inference and used only for illustrative purposes. 713 
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 714 

Psychophysiological interaction (PPI) analysis 715 

We performed a PPI analysis to assess changes in connectivity between the rIns striatum 716 

and dlPFC as a function of fatigue state. PPI is a measure of context-dependent 717 

connectivity, which explains the activity of other brain regions in terms of the interaction 718 

between responses in a seed region and cognitive processes (Friston et al., 1997).  719 

 720 

The PPI terms were generated by computing formal interactions between the 721 

physiological variable (Y) and the psychological variable (P). The physiological variable 722 

Y was the blood-oxygen-level-dependent (BOLD) time courses taken from the participant-723 

specific coordinates of peak activation in an anatomical mask of anterior rIns and 724 

deconvolved using a model of a canonical hemodynamic response function. The 725 

anatomical mask of rIns was generated using SPM’s Neuromorphometrics Atlas from the 726 

area labeled “right anterior insula”. To construct the psychological variable P, we 727 

contrasted the baseline and fatigue conditions at the time of choice, irrespective of effort 728 

value. We generated PPI regressors for the rIns using these physiological and 729 

psychological variables. 730 

 731 

 732 

 733 

734 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 735 

1. Aridan N, Malecek NJ, Poldrack RA, Schonberg T (2019) Neural correlates of effort-736 

based valuation with prospective choices. Neuroimage 185:446-454. 737 

2. Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to 738 

human working memory. Cortex 49:1195-1205. 739 

3. Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for 740 

confirmatory hypothesis testing: Keeping it maximal. Journal of Memory and 741 

Language 68:255-278. 742 

4. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models 743 

using lme4. Journal of Statistical Software 67:1-48. 744 

5. Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using 745 

an SPM toolbox [abstract] Presented at the 8th International Conference on Functional 746 

Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM 747 

in NeuroImage, Vol 16, No 2. 748 

6. Bürkner PC (2017) brms: An R package for Bayesian multilevel models using Stan. 749 

Journal of Statistical Software 80:1-28. 750 

7. Chong TT-J, Apps M, Giehl K, Sillence A, Grima LL, Husain M (2017) 751 

Neurocomputation mechanisms underlying subjective valuation of effort costs. PLOS 752 

Biology 15: e1002598. 753 

8. Craig AD (2003) Interoception: The sense of the physiological condition of the body. 754 

Current Opinion in Neurobiology 13:500-505. 755 

9. Craig AD (2009) How do you feel — now? The anterior insula and human awareness. 756 

Nature Reviews Neuroscience 10:59-70. 757 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Critchley HD, Wiens S, Rotshtein Pia, Öhman A, Dolan RJ (2004) Neural systems 758 

supporting interoceptive awareness. Nature Neuroscience 7:189-195. 759 

11. Culbreth AJ, Chib VS, Riaz SS, Manohar SG, Husain M, Waltz JA, Gold JM (2024) 760 

Increased sensitivity to effort and perception of effort in people with schizophrenia. 761 

Schizophrenia Bulletin sbae162. 762 

12. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies 763 

of the orbitofrontal cortex. Neuroimage 19:430-431. 764 

13. Dobryakova E, DeLuca J, Genova HM, Wylie GR (2013) Neural correlates of cognitive 765 

fatigue: Cortico-striatal circuitry and effort-reward imbalance. Journal of the 766 

International Neuropsychological Society 19:849-853. 767 

14. Eddy MD, Hasselquist L, Giles G, Hayes JF, Howe J, Rourke J, Coyne M, O’Donovan 768 

M, Batty J, Brunyé TT, Mahoney CR (2015) The effects of load carriage and physical 769 

fatigue on cognitive performance. PLOS One 10: e0130817. 770 

15. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) 771 

Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 772 

6:218-229. 773 

16. Gläscher L (2009) Visualization of group inference data in functional neuroimaging. 774 

Neuroinform 7:73-82. 775 

17. Gorgolewski KJ, Varoquaux G, Rivera G, Schwarz Y, Ghosh SS, Maumet C, Sochat 776 

VV, Nichols TE, Poldrack RA, Poline J-B, Yarkoni T, Margulies DS (2015) 777 

NeuroVault.org: A web-based repository for collecting and sharing unthresholded 778 

statistical maps of the human brain. Neuroinform 9:1-9. 779 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Harris S and Bray ST (2019) Effects of mental fatigue on exercise decision-making. 780 

Psychology of Sport and Exercise 44:1-8. 781 

19. Hogan PS, Galaro JK, Chib VS (2019) Roles of ventromedial prefrontal cortex and 782 

anterior cingulate in subjective valuation of prospective effort. Cerebral Cortex 783 

29:4277-4290. 784 

20. Hogan PS, Chen SX, Teh WW, Chib VS (2020) Neural mechanisms underlying the 785 

effects of physical fatigue on effort-based choice. Nature Communications 11:4026-786 

4040. 787 

21. Hu EJ, Casamento-Moran A, Galaro JK, Chan KL, Edden RAE, Puts NAJ, Chib VS 788 

(2022) Sensorimotor cortex GABA moderates the relationship between physical 789 

exertion and assessments of effort. Journal of Neuroscience 42: 6121-6130. 790 

22. Iodice P, Calluso C, Barca L, Bertollo M, Ripari P, Pezzulo G (2017) Fatigue 791 

increases the perception of future effort during decision making. Psychology of Sport 792 

and Exercise 33:150-160.  793 

23. Klein-Flügge MC, Kennerley SW, Friston K, Bestmann S (2016) Neural signatures of 794 

value comparison in human cingulate cortex during decisions requiring an effort-795 

reward trade-off. Journal of Neuroscience 36:10002-10015. 796 

24. Kok A (2022) Cognitive control, motivation and fatigue: A cognitive neuroscience 797 

perspective. Brain and Cognition 160:105880. 798 

25. Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in 799 

systems neuroscience: The dangers of double dipping. Nature Neuroscience 12:535-800 

540. 801 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Kruschke JK (2021) Bayesian analysis reporting guidelines. Nature Human Behavior 802 

5:1282-1291. 803 

27. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in 804 

linear mixed effects models. Journal of Statistical Software 82:1-26. 805 

28. Lieberman MD and Cunningham WA (2009) Type I and Type II error concerns in fMRI 806 

research: Re-balancing the scale. Social, Cognitive, and Affective Neuroscience 807 

4:423-428. 808 

29. Lopez-Gamundi P, Yao Y-W, Chong TT-J, Heekeren HR, Mas-Herrero E, Marco-809 

Pallarés (2021) The neural basis of effort valuation: A meta-analysis of functional 810 

magnetic resonance imaging studies. Neuroscience and Biobehavioral Reviews 811 

131:1275-1287. 812 

30. Massar SAA, Casthó A, Van der Linden D (2018) Quantifying the motivational effects 813 

of cognitive fatigue through effort-based decision making. Frontiers in Psychology 9:1-814 

5. 815 

31. McMorris T (2018) Cognitive fatigue effects on physical performance: The role of 816 

interoception. Sports Medicine 50:1703-1708. 817 

32. Meyniel F, Sergent C, Rigoux L, Daunizeau J, Pessiglione M (2013) 818 

Neurocomputational account of how the human brain decides when to have a break. 819 

PNAS 110:2641-2646. 820 

33. Meyniel F, Safra L, Rigoux L, Pessiglione M (2014) How the brain decides when to 821 

work and when to rest: Dissociation of implicit-reactive from explicit-predictive 822 

computational processes. PLoS Computational Biology 10:e1003584. 823 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


34. Moore RD, Romine MW, O’connor PJ, Tomporowski PD (2012) The influence of 824 

exercise-induced fatigue on cognitive function. Journal of Sports Sciences 30:841-825 

850. 826 

35. Müller T and Apps MAJ (2019) Motivational fatigue: A neurocognitive framework for 827 

the impact of effortful exertion on subsequent motivation. Neuropsychologia 123:141-828 

151. 829 

36. Müller T, Klein-Flügge, Manohar SG, Husain M, Apps MAJ (2021) Neural and 830 

computational mechanisms of momentary fatigue and persistence in effort-based 831 

choice. Nature Communications 12:4593-4606. 832 

37. Padmanabhan P, Casamento-Moran A, Kim A, Gonzalez AJ, Pantelyat A, Roemmich 833 

RT, Chib VS (2023) Dopamine facilitates the translation of physical exertion into 834 

assessments of effort. npj Parkinson’s Disease 9:51. 835 

38. Pageaux B (2014) The psychobiological model of endurance performance: An effort-836 

based decision-making theory to explain self-paced endurance performance. Sports 837 

Medicine 44:1319-1320. 838 

39. Pageaux B and Lepers R (2016) Fatigue induced by physical and mental exertion 839 

increases perception of effort impairs subsequent endurance performance. Frontiers 840 

in Psychology 7:1-9. 841 

40. Pierce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Lindeløv JK 842 

(2019) PsychoPy2: Experiments in behavior made easy. Behavioral Research 843 

Methods 51:195-203. 844 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Pessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R (2018) Why not try 845 

harder? Computation approach to motivation deficits in neuro-psychiatric diseases. 846 

Brain 141:629-650. 847 

42. R Core Team (2021) R: A language and environment for statistical computing. R 848 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-849 

project.org/. 850 

43. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, Botvinick MM (2017) 851 

Toward a rational mechanistic account of mental effort. Annual Review of 852 

Neuroscience 40:99-124. 853 

44. Steward G and Chib VS (2024) The neurobiology of cognitive fatigue and its influence 854 

on effort-based choice. bioRxiv 2024.07.15.603598. 855 

https://doi.org/10.1101/2024.07.15.603598. 856 

45. Umesh A, Kutten KS, Hogan PS, Ratnanather JT, Chib VS (2020) Motor cortical 857 

thickness is related to effort-based decision-making in humans. Journal of 858 

Neurophysiology 123:2373-2381. 859 

46. Westbrook A, Kester D, Braver TS (2013) What is the subjective cost of cognitive 860 

effort? Load, trait, and aging effects revealed by economic preference. PLOS One 861 

8:e68210. 862 

47. Westbrook A and Braver TS (2015) Cognitive effort: A neuroeconomic approach. 863 

Cognitive, Affective, and Behavioral Neuroscience 14:395-415. 864 

48. Westbrook A, Lamichhane B, Braver T (2019) The subjective value of cognitive effort 865 

is encoded by a domain-general valuation network. Journal of Neuroscience 39:3934-866 

3947. 867 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


49. Wylie GR, Yao B, Genova HM, Chen MH, DeLuca J (2020) Using functional 868 

connectivity changes associated with cognitive fatigue to delineate a fatigue network. 869 

Scientific Reports 10:21927-21938. 870 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


  1 

 2 

 3 

 4 

  5 

A B 

C 

D 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Experimental paradigm. (A) During effort-based choice trials, participants 6 

completed a series of choices involving the selection of one of two options: a risky option 7 

to exert a large amount of physical effort or no effort with equal probability (“Flip”) or 8 

exerting a lower amount of physical effort with certainty (“Sure”). Effort amounts were 9 

presented on a 0 to 100 scale, which participants were trained on during an association 10 

phase before making effort-based choices. An effort level of zero corresponded to no 11 

physical exertion and 100 to 80% of a participant’s maximum exertion. To study the 12 

effects of cognitive fatigue on effort-based decision-making, blocks of cognitive exertion 13 

trials were interspersed with blocks of effort-based choice. (B) Cognitive fatigue was 14 

induced by having participants perform repeated 3-back working memory trials. 15 

Participants were instructed to track a sequence of pseudorandomized letters and identify 16 

whether the current letter onscreen (starred “D”) matched the letter appearing three 17 

frames previously. (C) Participants were queried about their feelings of cognitive and 18 

physical fatigue between blocks of physical effort choices and fatiguing cognitive exertion. 19 

(D) Experiment schedule. The experiment comprised a baseline choice phase followed 20 

by a fatigue choice phase, both performed while participants were scanned with fMRI. 21 

Participants were questioned about their cognitive and physical fatigue ratings at the 22 

beginning and end of each choice block. The baseline choice phase, designed to assess 23 

effort preferences in a rested state, comprised 100 randomly presented choices to exert 24 

prospective physical effort. In the fatigue choice phase, the same 100 physical effort 25 

choices were distributed into 10-trial choice blocks interspersed with blocks of effortful 26 

cognitive exertion. During cognitive exertion blocks, participants performed 3-back 27 

working memory trials until two sequences were successfully completed (𝑛𝑖 indicates the 28 
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additional number of 3-back tasks before participants reached two successful 29 

completions). This process continued until ten back-to-back blocks of cognitive exertion 30 

and choice tasks had been completed.31 
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Figure 2 Behavioral results (n = 25). (A) Self-reported group-mean cognitive and 33 

physical fatigue ratings. Baseline fatigue ratings were collected at the start of the baseline 34 

choice phase, and all subsequent ratings were collected before and after each working 35 

memory block in the fatigue choice phase. Lines connecting points indicate ratings from 36 

the same cognitive fatigue block. Both cognitive and physical fatigue increased 37 

significantly throughout the fatigue choice phase; however, cognitive fatigue ratings 38 

increased at a greater rate than physical fatigue ratings (average difference in the slope 39 

between cognitive and physical fatigue ratings: 0.10 SD/block; two-tailed paired-sample 40 

t-test: 𝑝 < 0.05). Error bars indicate SEM. (B) Participants' sensitivity to increasing 41 

cognitive and physical fatigue ratings were positively correlated. Participants who 42 

reported more rapid increases in cognitive fatigue also reported greater increases in 43 

physical fatigue. (C) The function used to model the subjective cost of physical effort. This 44 

function takes the form of 𝑉(𝑥) = −(−𝑥)𝜌. Effort cost functions using mean values of the 45 

ρ estimates are indicated by the solid lines (baseline: gray; fatigue: black). Undergoing 46 

fatiguing exertions increases the marginal cost of effort. To better illustrate the cost 47 

functions, the x- and y-axes shown are not to the same scale. (D) The effort subjectivity 48 

parameter (ρ) increased significantly between the baseline and fatigue choice phases. A 49 

significant increase in ρ indicates that, compared to baseline, exertion-induced fatigue 50 

makes the subjective value of physical effort even more costly to participants. Error bars 51 

indicate SEM. One-tailed paired-sample t-test: *𝑝 < 0.05. (E) Bayesian hierarchical 52 

logistic regression predicting choices to select the risky option during the fatigue choice 53 

phase. An interaction between cognitive fatigue rating and the value of the sure option 54 

increases the likelihood of individuals selecting the sure option. The asterisks show 55 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.627274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.06.627274
http://creativecommons.org/licenses/by-nc-nd/4.0/


significant regressors (*: p < 0.05; **: p < 0.01; ***: p < 0.001). Bars indicate standard 56 

deviations, and lines are 95% credible intervals of the posterior distributions of each 57 

parameter. 58 
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Figure 3 Neural representations of physical effort value (n = 24). (A) General physical 61 

effort value encoding. Whole brain results thresholded at voxelwise p < 0.005. Activity in 62 

bilateral insula (rIns: peak = [34, 24, 4]; lIns: peak = [-38, 18, 2]; small volume corrected 63 

p < 0.05 in a priori ROI) illustrates the difference between chosen and unchosen effort 64 

value at the time of choice, across the baseline and fatigue choice phases. Activity was 65 

also observed in ACC (MNI coordinate: peak = [10, 28, 32]); however, it does not survive 66 

small volume correction in our a priori ACC ROI. (B) Activity encoding effort value in rIns 67 

increases with fatigue. Increased activation in rIns (peak = [34, 26, 0]; small volume 68 

corrected p < 0.05 in a priori ROI) indicates the difference of chosen and unchosen effort 69 

value between the baseline and fatigue choice phases. (C) Effects in rIns (5-mm sphere 70 

centered at [34, 26, 0]) for chosen and unchosen effort value between the baseline and 71 

fatigue choice phases. This plot was not used for statistical inference (which was carried 72 

out in the SPM framework) and is shown to illustrate the pattern of the BOLD signal. Error 73 

bars indicate SEM. (D) Between participant regression analysis considering the 74 

correlation between the progression of cognitive and physical fatigue ratings (Figure 2A), 75 

as a covariate for fatigue-induced changes in effort value (peak = [x, y, z]; small volume 76 

corrected p < 0.05 in a priori ROI). (E) Participants with stronger correlations between 77 

physical and cognitive fatigue ratings, rIns exhibited greater sensitivity to changes in 78 

physical effort value while in a state of cognitive fatigue. This plot was included to illustrate 79 

the relationship between behavior and brain activity and was not used for statistical 80 

inference, which was carried out in the SPM framework.  81 
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 82 

Figure 4 Neural representations of cognitive exertion (n = 24). (A) Cognitive exertion-83 

induced changes in brain activity. Whole brain results thresholded at voxelwise p < 0.005. 84 

Activity in right dlPFC (peak = [46, 14, 28]; small volume corrected p < 0.05 in a priori 85 

ROI) increased with repeated working memory exertion. Activity was also observed in left 86 

dlPFC (MNI coordinate: peak = [-56, 20, 22]); however, it does not survive small volume 87 

correction in our a priori dlPFC ROI. (B) Effects in rdlPFC (5-mm sphere centered at [46, 88 

14, 28]) were positively correlated with exertion block number during the fatigue choice 89 

phase. This plot was not used for statistical inference, which was carried out in the SPM 90 

framework. Error bars indicate SEM. 91 
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 94 

Figure 5 Functional connectivity between rIns and rdLPFC (n = 24). (A) Illustration of 95 

the psychophysiological interaction (PPI) analysis. We computed a PPI between rIns and 96 

rdlPFC with the psychological variable of the baseline/choice phase at the time of choice. 97 

(B) Effect size in rdlPFC (5-mm sphere centered at [48, 10, 28]) extracted from an a prior 98 

ROI showing a modulation in connectivity between this rdlPFC and rIns as a function of 99 

fatigue state. Functional connectivity was increased in the fatigue choice phase compared 100 

to baseline (average increase in effect size in rdlPFC: 1.83 a.u.; two-tailed paired-sample 101 

t-test: 𝑝 < 0.01). Error bars indicate SEM. 102 
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