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ABSTRACT

The elimination of endodontic biofilms and the maintenance of a leak-proof canal filling 
are key aspects of successful root canal treatment. Several materials have been introduced 
to treat endodontic disease, although treatment success is limited by the features of the 
biomaterials used. Silver nanoparticles (AgNPs) have been increasingly considered in dental 
applications, especially endodontics, due to their high antimicrobial activity. For the present 
study, an electronic search was conducted using MEDLINE (PubMed), the Cochrane Central 
Register of Controlled Trials (CENTRAL), Google Scholar, and EMBASE. This review provides 
insights into the unique characteristics of AgNPs, including their chemical, physical, and 
antimicrobial properties; limitations; and potential uses. Various studies involving different 
application methods of AgNPs were carefully examined. Based on previous clinical studies, 
the synthesis, means of obtaining, usage conditions, and potential cytotoxicity of AgNPs 
were evaluated. The findings indicate that AgNPs are effective antimicrobial agents for the 
elimination of endodontic biofilms.
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INTRODUCTION

A main cause of failure and secondary infection in root canal treatment (RCT) is the presence 
of biofilms [1], which are organized polymeric structures formed by microorganisms. The 
extracellular matrix of a biofilm is secreted by bacteria and is composed of metabolic-output 
polymers that adhere strongly to surfaces [2,3]. Biofilms develop in stages: initial adherence 
of microbes to a surface or bacterial cell, generation of microcolonies, maturation, and 
finally, the expansion of the biofilm [4,5]. The main purpose of endodontic treatment is to 
eliminate the complex, resistant polymeric biofilm structure. Therefore, in RCT, chemical 
irrigation agents and medicaments are used in addition to mechanical preparation. During 
the irrigation process, sodium hypochlorite (NaOCl), EDTA, and chlorhexidine (CHX) 
solutions are applied at different concentrations to eradicate the smear layer [6]. A number 
of hydrogel-based pharmaceuticals have also been produced for placement in the root canal 
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between treatments. However, no approach to treating stubborn infections has been entirely 
successful. Clinical research has shown variable success rates for non-surgical endodontic 
therapies, ranging from 73.5% to 92.3% [7].

Nanotechnology, which emerged in the 21st century, led to a paradigm shift in dentistry 
(Figure 1). Nanoparticles (1–100 nm) form the foundation of this technology [8]. Many 
nanomaterials occur naturally or arise via chemical synthesis. Because of their antibacterial 
properties and high surface-area-to-volume ratio [9], nanoparticles have attracted 
considerable attention from endodontic researchers and clinicians.

Metallic nanoparticles that disrupt bacterial cell membranes have long been available [10]. 
To treat persistent infections [11], nanoparticles of silver, gold, copper, or zinc—all of which 
have unique physical properties and mechanisms underlying their antimicrobial activities—
have been used [12,13]. Silver nanoparticles (AgNPs) are among the most well-studied due 
to their wide range of antimicrobial properties against various bacteria, viruses, and fungi 
[11,14]. In endodontics, AgNPs have been tested for use as endodontic retrofill materials, 
canal sealers, root canal pharmaceuticals, and irrigation solutions [15]. In this study, recent 
evidence from in vitro and in vivo studies was reviewed regarding the chemical, physical, and 
antimicrobial properties of AgNPs, as well as their dosage and cytotoxicity.

REVIEW

Biofilm in endodontic diseases
Biofilms are highly organized, surface-adherent structures of microcolonies [16] (Figure 2). 
The main component of biofilms is an exopolymeric matrix consisting of polysaccharides, 
proteins, enzymes, and bacterial metabolites [17,18]. Exopolysaccharides are synthesized 
both intracellularly and extracellularly, and have skeletal functions [19] (Figure 3). Moreover, 
biofilms are in contact with other compounds that play roles in bacterial adhesion and 
resistance [20]. Another component of biofilms is protein, which facilitates stabilization 
and binding to dentin. The glucan-binding proteins of Streptococcus mutans, a major cause 
of dental caries, are well-studied components that are critical to biofilm formation [21,22]. 
The maturing biofilm varies depending on environmental and nutritional factors as well 
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Figure 1. Metallic nanoparticles that can be used for endodontic disinfection.
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as fluid movement [23]. The bacterial cells in these structures communicate via their own 
signals or those of other microbial cells [24]. Based on extracellular signal generation and 
detection, quorum sensing (a cell-to-cell communication process) increases with population 
density [25,26]. Microbial biofilm infections can reappear after long periods of inactivity 
[27]. Secondary endodontic infections can become acute due to asymptomatic processes. 
The main known cause of recurrent apical periodontitis after RCT is Enterococcus faecalis [28], 
a Gram-positive facultative anaerobic bacteria species that is among the most commonly 
isolated from root canal systems [29]. The removal of these bacteria from the canal is a major 
obstacle, since they can remain alive under a wide variety of acidic and basic conditions, as 
well as under conditions of long-term nutritional deprivation [28].

The biofilm of E. faecalis contains extracellular DNA (eDNA), which is released from the cell in 
various ways, as well as exopolysaccharides, proteins, and lipids [30]. A previous report showed 
that eDNA is produced during an early stage of E. faecalis biofilm formation [31]. This species 
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also has a peptidoglycan cell wall, which improves bacterial survival [32]. Scanning electron 
microscopy has shown that E. faecalis adheres to collagen structures, colonizes dentin surfaces, 
and can progress along dentin tubules of the root canal, resulting in organized biofilms [33].

Chemical irrigation solutions, intracanal preparations, and local antibiotics have been 
used for years to eliminate biofilms. However, microorganisms may develop resistance to 
these antimicrobial agents over time. Therefore, research has focused on new antibiofilm 
strategies [34,35].

Antimicrobial nanoparticles
Nanotechnology, or the examination and application of certain objects of extremely small 
size, can be adapted in different scientific fields, such as chemistry, biology, physics, 
materials science, and engineering, as well as the health sciences. A nanoparticle is defined 
as a nano-object, approximately 1 to 100 nm, with 3 external nanoscale dimensions.

Nanoparticles have gained many new applications in dentistry due to their remarkable 
physical properties, such as small size, large surface area, surface charge, and shape. To 
eliminate root canal infections, chemical and mechanical instrumentation is performed 
before filling. The use of nanoparticles in the disinfection process is a new strategy to 
reduce the treatment failure rate [36,37]. Previous studies have reported that particle size 
is an important factor in the antimicrobial activity of nanoparticles [38]. In addition, the 
high charge density and large surface areas of nanoparticles allow bacterial cells to interact 
more with the negatively charged surface [39]. Metallic and organic nanoparticles with 
different morphologies have been used in dentistry to combat drug-resistant bacteria. In 
addition, nanoparticles obtained from natural biopolymers such as chitosan or nanoparticle-
incorporated biomaterials have been found to exhibit superior antimicrobial properties 
[37,40]. Metallic nanoparticles, such as copper, gold, titanium, cerium, magnesium, iron, 
and zinc, exhibit antimicrobial activity upon contact with bacterial cells. After attachment 
to the cell membrane and entrance into the cell, nanoparticles interact with vital cell 
components such as DNA and RNA and alter the cell membrane permeability, genetic 
material, ribosomes, and proteins. These effects mainly depend on the capacity of metallic 
nanoparticles to produce reactive oxygen species (ROS), which can alter the metabolic activity 
of bacteria [13]. Major ROS that can cause oxidative cellular damage include superoxide, 
hydrogen peroxide, and hydroxyl radicals. Additionally, after metal ions are released from 
metal oxides and attach to the cell membrane, they can bind to functional groups of proteins 
and adversely impact normal cellular functions.

Although these nanoparticles are a potential technology for endodontic disinfection, their 
long contact time and toxicity can be significant disadvantages [41]. Among the metallic 
nanoparticles, AgNPs stand out due to their surface properties, particle reactivity in solution, 
and ion release.

Synthesis of AgNPs
Various physical, chemical, and biological methods have been adopted for the synthesis 
of AgNPs. A reliable and environmentally friendly methodology for the synthesis of metal 
nanoparticles is a key goal in nanotechnology [42]. Physical and chemical syntheses tend 
to be more difficult, expensive, and dangerous than the biosynthesis of AgNPs [43,44]. 
Biological procedures for the synthesis of AgNPs, which involve microorganisms and plants, 
have enormous advantages over physical and chemical methods due to the use of nontoxic 
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and biocompatible substrates and relatively easier synthesis in environmental terms [45]. 
In recent years, the development of bio-inspired green synthesis of AgNPs has been a 
focus in medical science and disease treatment [46]. Biomolecules in plant extracts, which 
are involved in the reduction of metal ions to nanoparticles, provide a single-stage and 
environmentally friendly synthesis. In addition to serving as reducing agents in the green 
synthesis of AgNPs and gold nanoparticles, these biomolecules act as capping or stabilizing 
agents [47]. Previous studies have suggested that the antimicrobial properties of AgNPs are 
affected by factors such as shape, size, and concentration. In a study by Hong et al., [48] 3 
types of AgNPs were synthesized, and their antimicrobial effects were compared against 
Escherichia coli. According to the results, nanocubes and nanospheres exhibited stronger 
antibacterial effects than nanowires. This can be attributed to the fact that nanocups and 
nanospheres interact faster and more frequently with the cell membrane, as they have larger 
surface areas and greater reactivity. Most such research has focused on various plant sources 
for synthesis, diverse characterization techniques for identification, and antimicrobial 
activity against pathogens [42]. Information about the physical appearance and the 
characterization of AgNPs can be revealed using ultraviolet-visible spectroscopy, electron 
microscopy, and energy-dispersing spectroscopy [49].

Mechanisms of action of AgNPs
Many studies have shown that the antimicrobial effects of AgNPs are associated with 
oxidative dissolution and silver ion release. Silver ions have high affinity for electron-
donating groups (such as sulfhydryl, amino, imidazole, phosphate, and carbonyl groups), 
which are densely located on membranes or proteins [50]. Thus, they can act on diverse 
components of bacterial cells (Figure 4). These ions can adhere to the cell wall and 
cytoplasmic membrane via electrostatic attraction, and they can also adhere to sulfur-
rich proteins, thereby increasing the permeability of the membrane and damaging these 
structures [51]. This can also result in the uptake of free silver ions into the cell, disrupting 
ATP molecules, thus preventing DNA replication or resulting in the formation of ROS via 
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Figure 4. Possible antibacterial mechanisms of AgNPs. AgNPs can: 1) bind to the cell membrane, membrane proteins, 
and DNA bases, leading to the disruption of normal function; 2) release silver ions, affecting the membrane, DNA, and 
proteins; and 3) generate ROS, which may also affect DNA, the cell membrane, and membrane proteins. 
AgNP, silver nanoparticle; ROS, reactive oxidative species.



AgNPs [52]. In Gram-negative bacteria, pores in the outer membrane also promote the 
uptake of AgNPs [53]. In addition, AgNPs modify the effects of phosphotyrosine, impairing 
communication between organelles [52,54]. All of these mechanisms result in oxidative 
stress in the cell and increased quantities of free oxygen radicals, as well as cell lysis due 
to protein denaturation [50,55]. Another important property of nanoparticles is their 
large surface area. AgNPs with a larger surface area have greater silver ion density [56,57]. 
Additionally, AgNPs further destabilize bacterial membranes, increase permeability, and 
cause leakage of cell components [37]. The response of microbial cells to silver ions can 
differ, so the properties of AgNPs and their relationships with cells should be elucidated to 
better understand antibiofilm activity [58].

AgNP characterization and analysis
Many techniques have been introduced and applied in laboratory research (Table 1), including 
scanning electron microscopy [33,59], transmission electron microscopy [44], scanning 
electrochemical microscopy [60], atomic force microscopy [61], dynamic light scattering [62], 
ultraviolet-visible spectroscopy [63], and confocal laser scanning microscopy analysis [64].

Endodontic applications of AgNPs
The success of RCTs depends on the removal of endodontic biofilms from canal walls, the 
elimination of microorganisms, and leak-proof canal filling. For the endodontic treatment 
of teeth with complex root canal anatomy, chemomechanical canal preparation should be 
performed during instrumentation. Nanoparticles have also been used for disinfection 
in endodontics. Metallic nanoparticles are attractive due to their clinically effective 
antimicrobial properties. Many studies have involved the use of AgNPs to eliminate biofilm 
layers, which are the main cause of secondary infections [9,15,34]. Lotfi et al. compared the 
effectiveness of AgNPs against E. faecalis with that of NaOCl in an irrigation solution; 5.25% 
NaOCl and low-concentration AgNPs showed similar bactericidal effects [65]. Hiraishi et 
al. reported that biofilms were completely eliminated 60 minutes after administration of 
3.8% sodium diamine fluoride [66]. Another study found that an AgNP solution destroyed 
fewer bacteria than a CHX solution, but dissolved more biofilm [67]. Wu et al. suggested that 
antimicrobial efficacy varies by application technique [68]. Treatment with 0.02% AgNP 
medicament gel was significantly more successful in disrupting biofilm structure than 
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Table 1. Current analysis methods used for silver nanoparticle characterization
Methods Abbreviation Uniqueness of the method Reference
Scanning electron 
microscopy

SEM SEM can be used to completely differentiate particle sizes, size distributions, 
nanomaterial shapes, and surface morphologies of synthesized particles in microscale 
and nanoscale. Additionally, a histogram can be derived from the images by manually 
measuring and counting particles or using specific software.

Fissan et al., 2014 [59]

Transmission electron 
microscopy

TEM While TEM has advantages that include good spatial resolution and additional analytical 
measurements, sample preparation is time-consuming.

Zhang et al., 2016 [44]

Scanning electrochemical 
microscopy

SECM SECM is a noninvasive method developed to measure load/mass transport rates across 
surface film using electrodes.

Blanchard et al., 2016 
[60]

Atomic force microscopy AFM AFM can also be used to characterize the real-time interaction of nanomaterials with 
supported lipid layers. However, a major disadvantage is that the lateral dimensions of 
the samples are overestimated.

Zhang et al., 2016 [44] 
and Eaton and Batziou, 
2019 [61]

Dynamic light scattering DLS DLS, a method that depends on the interaction of light with particles, is used to 
characterize the particle size and dimension distribution in aqueous or physiological 
solutions.

Leung et al., 2006 [62]

Ultraviolet-visible 
spectroscopy

UVS UV-Vis spectroscopy is quick, simple, precise, and selective for nanoparticles. 
Additionally, it requires only a short time for measurement, and calibration is not 
required for particle characterization of colloidal suspensions.

Zhang et al., 2016 [44] 
and Das et al., 2009 [63]

Confocal laser scanning 
microscopy

CLSM Rapid visualization of dynamic processes in fixed and live cells enables the detailed 
morphological analysis of tissues and automatic collection of 3-dimensional data.

Paddock and Eliceiri, 
2014 [64]



treatment with 0.01% AgNP gel, 0.01% AgNP irrigation solution, and calcium hydroxide. 
When AgNPs are employed as a medicament, an extended interaction occurs between 
positively-charged AgNPs and negatively-charged biofilm bacteria. In another in vitro study, 
researchers investigated the effectiveness of AgNPs against E. faecalis, Klebsiella pneumoniae, 
and Candida albicans, and they found that the greatest antimicrobial effect was achieved with a 
combination of 15 µg/mL AgNP and 2% CHX solution [69].

Recently, Yousefshahi et al. applied calcium hydroxide with silver, copper, zinc, or magnesium; 
the combination of 1% AgNP and calcium hydroxide was more effective against biofilms 
than calcium hydroxide paste alone, but a mixture of 1% copper and calcium hydroxide paste 
was the most effective [70]. Additionally, less leakage has been found to occur when using 
nanosilver-coated gutta-percha points [71]. In another study, calcium-disilicate-based mineral 
trioxide aggregate (MTA), which has known antibacterial properties, was combined with 
AgNPs; the AgNP-MTA formulation inhibited the growth of Aggregatibacter actinomycetemcomitans, 
Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia [72]. Additionally, Baras 
and Melo et al. combined 5% dimethylaminohexadecyl methacrylate sealer with 0.15% AgNPs 
and reported a strong antibiofilm effect with no reduction in sealing ability [73].

In summary, nanotechnology has been used in a wide range of endodontic applications 
(Table 2). Clinicians should be aware of the latest developments and information on how best 
to use nanoparticles.

Efficacy of AgNPs against E. faecalis
Endodontic treatments aim to annihilate microorganisms and their biofilm architecture 
and thereby minimize the treatment failure rate. In many studies, AgNPs have been applied 
through various methods for this purpose. Almedia et al. reported that a solution of 1% 
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Table 2. Recent applications of silver nanoparticles in endodontics
Related area Application procedure Main results Reference
Irrigation solution The antimicrobial effects of 6 solutions were compared: 0.85% 

saline (control), 2% CHX, 5% NaOCl, 1% NaOCl, 1% AgNP, and 
26% ZnONP.

The 1% AgNP and 26% ZnONP solutions were similarly 
effective against E. faecalis biofilm relative to 
conventional endodontic irrigants.

De Almeida et 
al., 2018 [74]

Irrigation solution Equal amounts of 2% CHX and 15 µg/mL AgNPs were mixed 
homogeneously and compared with the solutions used 
individually.

The CHX-AgNP combined solution exhibited higher 
efficacy than the individual solutions.

Charannya et 
al., 2018 [69]

Root canal 
medicaments 
solution and gel form

The antibacterial efficacy of silver nanoparticles as an irrigant 
(0.1% AgNP) or medicament (0.02% and 0.01% AgNP) against 
E. faecalis biofilms was evaluated.

As a medication, 0.02% AgNP gel significantly impaired 
the structural integrity of the biofilm and resulted in the 
fewest viable E. faecalis cells remaining after treatment.

Wu et al., 2014 
[68]

Development of 
bioactive material

The antibacterial activities of NanoAg and NanoAg-MTA against 
4 types of anaerobic pathogens were tested in vitro. Each gram 
of MTA powder was mixed with 350 µL of 25 ppm, 12.5 ppm, and 
6.25 ppm preparations of NanoAg solution on sterile glass slabs 
using a sterile spatula.

AgNPs can effectively enhance the antibacterial activity 
of MTA against anaerobic periodontal/endodontic 
pathogens.

Bahador et al., 
2015 [72]

Root canal sealer Methacrylate-resin dual-cured root canal sealer contained 
5% dimethylaminohexadecyl methacrylate (DMAHDM), 0.15% 
AgNP, and nanoparticles of amorphous calcium phosphate 
(NACP) at 10%, 20%, and 30% mass fractions. Antibacterial 
properties against E. faecalis were measured.

The novel therapeutic root canal sealer with triple 
bioactive agents of DMAHDM, AgNP, and NACP neutralized 
acid and raised the pH, regenerated dentin minerals, and 
increased root dentin hardness.

Baras et al., 
2019 [73]

Regenerative 
endodontic 
procedures

In regenerative endodontics, the antibacterial effectiveness 
of double antibiotic paste (1 mg/mL DAP), silver nanoparticle 
(0.02% AgNP) gel, and tailored amorphous multiporous 
bioactive glass (100 mg/mL TAMP-BG) against 3 weeks of E. 
faecalis biofilms were evaluated.

These medicaments can function as potent intracanal 
drugs for regenerative endodontic procedures. However, 
complete elimination of E. faecalis biofilms occurred only 
at recommended concentrations and was made possible 
with AgNPs.

Athanassiads et 
al., 2007 [76]

Fiber post 
cementation

The effect of AgNP solution on the mechanical properties of 
resin cements used for fiber post bonding was investigated.

The results indicate that the AgNP solution can be used as 
an irrigation protocol before glass fiber post cementation.

Suzuki et al., 
2019 [77]

CHX, chlorhexidine; NaOCl, sodium hypochlorite; AgNP, silver nanoparticle; ZnONP, zinc oxide nanoparticle; MTA, mineral trioxide aggregate; E. faecalis, 
Enterococcus faecalis.



AgNPs had effects against E. faecalis similar to those of conventional irrigation solutions [74]. 
Likewise, Halkai et al. found that biosynthesized AgNPs greatly inhibited E. faecalis [75]. Calcium 
hydroxide paste has been used as a medication for RCT for many years [76]. However, this 
material has also been shown to fail to provide adequate disinfection and biofilm elimination. 
Afkhami et al. used AgNPs as carriers for calcium hydroxide and found that this treatment had 
the potential to remove E. faecalis from root dentin [78]. In another study, Wu et al. noted that the 
effectiveness of AgNPs depends on the method of application; 0.02% AgNP medicament gel 
significantly altered biofilm structures and resulted in fewer post-treatment E. faecalis cells than 
treatment with 0.01% AgNP gel and calcium hydroxide [68]. In another study, it was found that 
Ag–Ca–Si mesoporous nanoparticles had an enhanced ability to prevent the growth of E. faecalis 
on the dentin surface. Findings also included high pH and the continuous release of Ag, Ca2+, 
and SiO3

2− ions, although this method did not completely eliminate E. faecalis [79]. Laboratory 
research on this subject is still ongoing.

Potential toxicity of AgNPs
Over the years, numerous in vitro and in vivo experiments have been conducted to investigate the 
toxic effects of AgNPs on living tissues and organisms [80]. The factors that affect the toxicity 
of AgNPs include particle shape, size, and surface chemistry; crystallinity; capping agents; ionic 
strength; pH; and the presence of ligands, divalent cations, and macromolecules [81]. Due 
to the exposed and complex nature of AgNPs, uncertainty (and to some degree controversy) 
remains regarding the extent to which each constituent ion, ion-protein complex, and particle 
contributes to cellular toxicity [82]. In some in vitro studies, it has even been reported that 
AgNPs cause oxidative stress and disrupt the mitochondrial function of human cells [83]. Paná\
xc4\x8dek et al. used low concentrations of AgNPs against multiresistant bacteria and noted 
that low concentrations were not cytotoxic for potential medical applications in mammalian 
cells [84]. It has also been suggested that the green synthesis of AgNPs does not affect 
human dermal fibroblasts when administered at a concentration of less than 32 μg/mL [85]. 
This underscores the importance of the method of synthesis and the concentration density. 
Importantly, the toxicity is always related to the dose and duration of contact. Direct contact 
with the oral cavity, teeth, and surrounding tissues is an important consideration due to the 
potentially harmful effects of AgNP treatment in endodontic applications.

Over the past decades, the application of AgNPs in endodontics has attracted increasing 
attention. Using the published literature, we reviewed recent findings regarding the unique 
chemical, physical, and antimicrobial properties of AgNPs, as well as dosage and cytotoxicity. 
Although several studies have revealed promising clinical treatment results, the potential 
cytotoxicity of AgNPs should also be taken into consideration, even given the superior 
antimicrobial properties of these particles in endodontic disinfection.

CONCLUSIONS

Biofilms are an important factor that should be eliminated in the treatment of primary and 
recurring endodontic infections. Nanoparticles present new opportunities for endodontic 
disinfection. Based on their superior antimicrobial properties, AgNPs have attracted 
attention in this field, and many studies have been conducted. Based on these studies, it 
can be concluded that treatment with AgNPs is an effective method to eliminate endodontic 
biofilms. In light of this finding, studies on the applications of nanoparticles in endodontics 
should be continued.
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