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Network meta‐analysis is used to simultaneously compare multiple treatments in a

single analysis. However, network meta‐analyses may exhibit inconsistency, where

direct and different forms of indirect evidence are not in agreement with each

other, even after allowing for between‐study heterogeneity. Models for network

meta‐analysis with random inconsistency effects have the dual aim of allowing

for inconsistencies and estimating average treatment effects across the whole net-

work. To date, two classical estimation methods for fitting this type of model have

been developed: a method of moments that extends DerSimonian and Laird's

univariate method and maximum likelihood estimation. However, the Paule and

Mandel estimator is another recommended classical estimation method for univar-

iate meta‐analysis. In this paper, we extend the Paule and Mandel method so that

it can be used to fit models for network meta‐analysis with random inconsistency

effects. We apply all three estimation methods to a variety of examples that have

been used previously and we also examine a challenging new dataset that is highly

heterogenous. We perform a simulation study based on this new example. We find

that the proposed Paule and Mandel method performs satisfactorily and generally

better than the previously proposed method of moments because it provides more

accurate inferences. Furthermore, the Paule and Mandel method possesses some

advantages over likelihood‐based methods because it is both semiparametric and

requires no convergence diagnostics. Although restricted maximum likelihood

estimation remains the gold standard, the proposed methodology is a fully viable

alternative to this and other estimation methods.
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1 | INTRODUCTION

Meta‐analysis is now well established. Simple and transparent
univariate methods are typically used in systematic reviews
and meta‐analyses. However more sophisticated methodolo-
gies have been suggested in recent years and network meta‐
- - - - - - - - - - - - - - - - - - - - - - - - - -
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analysis1,2 is one such development that has attracted consid-
erable interest. Here, data from multiple (more than 2) treat-
ment groups are included in a single analysis. Network
meta‐analyses allow both direct and indirect evidence for mul-
tiple treatment groups to contribute to the analysis so that
more precise and coherent inferences about all possible
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treatment comparisons are possible. Models for network
meta‐analysis may include random‐effects to account for any
between‐study heterogeneity so that the usual univariate ran-
dom‐effects model for univariate meta‐analysis3-6 can be
extended to the network meta‐analysis setting.7 Assuming
that there is no between‐study heterogeneity is usually diffi-
cult to defend in both univariate and network meta‐analysis.

Network meta‐analysis raises additional concerns about
whether or not the various sources of evidence in the network
are consistent.Wewill take the consistency assumption tomean
that for example, to within‐study statistical error and between‐
study variation, that the relative effect of treatment B to treat-
ment A, plus the effect of treatment C to treatment B, equals
the relative effect of treatment C to treatment A. This assump-
tion means that the direct evidence for the AC comparison is
in agreement with the indirect evidence” (“AB+BC=AC”).
Estimated treatment effects that come from the same study will
satisfy this type of consistency equality without error. This is
because of the way that relative effects are calculated.

A direct way to model inconsistency is to allow studies
that include different combinations of treatment comparisons
to estimate different effects. If this occurs then any closed
loops, such as the ABC loop discussed above, will not “add
up correctly”: if studies that include treatments A and B
(“AB studies”) estimate different effects to BC and AC stud-
ies, then the consistency assumption will not hold.
Explaining inconsistency in this way is especially natural
because different treatment comparisons may have been
made at slightly different times, using different types of
patients or in other circumstances that affect the treatment
outcome. This may either be known, suspected, or unknown
to the analyst. The inconsistency modelling follows this intu-
ition, by allowing studies of each “design” to estimate differ-
ent effects (where “design” is taken only to refer to the
treatments included). This results in the design‐by‐treatment
interaction model.8,9 This type of modelling has also been
proposed by Piepho and colleagues.10,11 By allowing a full
interaction between the treatment effects and the type of
design we avoid the problems associated with loop‐inconsis-
tency models when multiarm studies are present.8,12 Briefly,
the difficulty with loop‐inconsistency models is that the form
of the model depends on the treatment ordering when multi‐
arm studies are present. The relationship between loop incon-
sistency models and the design‐by‐treatment interaction
model is briefly described below, and see Higgins et al8

and Jackson et al12 for full details.
We will adopt a relatively simple form of the design‐by‐

treatment interaction model that uses two unknown variance
parameters and has been described previously.13-15 One of
these variance parameters describes the extent of the
between‐study heterogeneity. The other describes the extent
of inconsistency, using a simple model eases model
identifiability and interpretation. Using random, rather than
fixed, inconsistency parameters means that the basic parame-
ters describe the average treatment effects across studies of all
designs. Hence, the decision to use random inconsistency
effects is motivated by the dual desire to include the possibil-
ity of inconsistency in the model and estimate meaningful
average treatment effects across the entire evidence base.

Bayesian estimation methods for our model have previ-
ously been suggested13,15 and two classical estimation
methods have also been developed. The first of these classical
methods uses the method of moments14 and extends the uni-
variate method proposed by DerSimonian and Laird.4 The
second instead uses likelihood‐based methods.15 The primary
contribution of this paper is to develop a third such estimation
method, this time extending the univariate method proposed
by Paule and Mandel.16 See Veroniki et al17 for details of this
and many other estimation methods that have been proposed
in the more familiar pairwise meta‐analysis setting.

The Paule and Mandel estimation method retains many of
the advantages of the method of moments because it is
semiparametric and requires no convergence diagnostics. Fur-
thermore, it has not been criticised for being inaccurate in the
way that the DerSimonian and Laird method has (eg,
Hoaglin18 and Kulinskaya et al19). Rukhin et al20 show that
the Paule and Mandel estimator is an approximate version of
using restricted maximum likelihood (REML). Viechtbauer
et al21 show that the Paule and Mandel estimator is the same
as the so‐called empirical Bayes estimator. Findings such as
these strengthen the case for using the Paule and Mandel esti-
mator. Although REML might reasonably be regarded as the
gold standard, this is a fully parametric estimation method,
whereas the Paule and Mandel and DerSimonian and Laird
methods allow us to estimate the unknown between‐study var-
iance without making normality assumptions. However, the
extent to which this is truly an advantage of using
semiparametric methods awaits investigation and is debatable,
because we can anticipate that likelihood based methods for
network meta‐analysis will be robust to departures from
non‐normality, just as they have been found to be in the uni-
variate setting.22,23 Furthermore both the likelihood and the
restricted likelihood must be maximised numerically and con-
vergence should be checked in practice. As we will see below,
the Paule and Mandel method requires no such convergence
diagnostics. The new Paule and Mandel method that we
develop for network meta‐analysis therefore possesses some
advantages over the other two classical methods.

The rest of the paper is set out as follows. In Section 2,
we describe the model, and in Section 3, we discuss the
previously proposed estimation methods. In Section 4, we
present the new Paule and Mandel estimators for network
meta‐analysis. In Section 5, we apply all 3 classical
methods to some examples that have been used previously
to illustrate these methods. We also apply these methods to
a challenging new example in this section. In Section 6,



418 JACKSON ET AL.
we perform a simulation study and we conclude with a
short discussion in Section 7.
2 | THE MODEL

Our model has been described previously,13-15 but we also
present it here. We model the estimated treatment effects
using the equation

Ydi ¼ δd þ Bdi þ ωd þ εdi (1)

where Ydi represents the cd×1 vector of estimated treatment
effects from the ith study of design d=1 , 2 , ⋯ ,D, where
cd is the number of treatment arms in design d minus one.
TheYdi are the estimated relative effects of different treatment
comparisons (such as log odds ratios or mean differences). We
therefore use contrast based models and analyses throughout.
An arm‐based analysis would instead model the average out-
come in each treatment arm (such as log odds or the sample
mean). The arguments for and against these contrasting types
of model are sometimes fierce24,25 but by adopting a contrast
based approach we use the more conventional approach.24

The εdi are the within‐study statistical errors, and we assume
that εdi~N(0,Sdi), where Sdi is the cd× cdwithin‐study covari-
ance matrix. The within‐study covariance matrix is estimated
in practice but is treated as fixed and known in the analysis.
Hence, we will use the conventional type of normal approxi-
mation that meta‐analysts will be familiar with. The terms
Bdi and ωd in model 1 are random effects that describe the
between‐study heterogeneity and the inconsistency, respec-
tively, and are described in more detail below.
2.1 | Calculating meta‐analysis data
To calculate the outcome data Ydi in model 1, we choose a
design‐specific baseline treatment group (eg, A in the ABC
design). The entries of Ydi are then obtained as the estimated
treatment effects of the other cd treatments compared to this
baseline treatment. For example if d=1 is taken to indicate
the ABC design then the Y1i vectors have two entries. If A
is taken as the baseline then these two entries of the Y1i are
estimated treatment effects of B and C relative to A. The main
diagonal entries of the Sdi are within‐study variances that can
be calculated using standard methods. The within‐study cor-
relations in the estimated effects from multiarm studies are
because they share a common baseline treatment. Hence the
within‐study covariances, the off‐main diagonal entries of
Sdi, are the variance of the average outcome (for example,
the log odds or the sample mean) in the baseline treatment
group. For designs that include only two treatment groups,
both Ydi and Sdi are scalars. Forming the outcome data Ydi

and the within‐study covariance matrices Sdi to be used in
analysis is only slightly more complicated for network
meta‐analysis than conventional univariate analyses.
2.2 | The basic parameters

We choose a reference treatment A for the entire network
meta‐analysis and we denote the average (ie, across all
designs and studies) treatment effects relative to A as
δAB, δAC, and so on, where we refer to these as “basic
parameters.” There are c of these basic parameters, where
c is the number of treatment groups minus one. Then the
fixed effect δd in model 1 represents the average treatment
effects of design d in terms of these basic parameters. For
designs that include the reference treatment A, the entries
of δd are simply given by the basic parameter that corre-
sponds to the appropriate treatment comparison; for exam-
ple continuing with the above example δ1= (δAB, δAC)T.
For designs that do not include the reference treatment
A, forming δd is a little more complicated. For example,
if d=2 indicates the CDE design we may take treatment
C as the design‐specific baseline so that the entries of
the Y2i are the estimated treatment effects of D and E rel-
ative to C. Then δ2= (δAD− δAC, δAE− δAC)T. In general,
the average effect of treatment J relative to treatment I
is δAJ− δAI, where we define δAA=0.
2.3 | The random‐effects
The Bdi are random‐effects that describe the between‐study
heterogeneity and the ωd are random‐effects that describe
the inconsistency. The inclusion of the ωd in model 1 means
that every design estimates a different set of effects. Hence,
we can describe the inconsistency in the way described in
the introduction. The simplest possible model in our frame-
work takes Bdi=ωd= 0. There is then no between‐study het-
erogeneity or inconsistency. We call this the “common‐effect
and consistent model.”

We assume that Bdi eN 0; τ2βPcd

� �
, where Pcd is a

square matrix of dimension cd with ones on the main
diagonal and halves everywhere else. Similarly, we assume
that ωdeN 0; τ2ωPcd

� �
. The unknown variances τ2β and τ2ω

describe the magnitude of the between‐study, and the
inconsistency, variance, respectively. These two parameters
can therefore be referred to as the between‐study variance
and the inconsistency variance. These are very simple
models for the between‐study heterogeneity and the incon-
sistency structure, which assume that the between‐study
and inconsistency variances are the same for all studies
and designs, respectively, regardless of the particular treat-
ments being compared.13-15 If τ2β ¼ 0 then all Bdi= 0 and

there is no between‐study heterogeneity, similarly, if τ2ω ¼
0, then all ωd= 0 and the data are consistent. If τ2ω > 0
then the estimates from studies of the same design are corre-
lated because they share a common inconsistency parameter.
These assumptions mean that the covariance matrix of
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Ydi is τ2β þ τ2ω

� �
Pcd þ Sdi and the covariance between Ydi

and Ydj of the same design is τ2ωPcd .
2.4 | Describing the entire dataset

Model 1 describes the estimated effects for each study sepa-
rately. To describe the entire dataset, we vertically stack the
Ydi to create Y, where model 1 implies that

YeN Xδ; τ2βM1 þ τ2ωM2 þ S
� �

; (2)

where δ is a vector that contains the basic parameters. This
vector is premultiplied by design matrix X, where the
design matrix ensures that model 2 provides the mean
structure implied by model 1. The block diagonal matrix
S contains the Sdi matrices along the main block diagonal,
so that the within‐study distributions in models 1 and 2 are
equivalent. Similarly, the terms τ2βM1 and τ2ωM2 ensure the

equivalence between the between‐study and inconsistency
variance structures, respectively, in models 1 and 2. This
is achieved by defining square matrices M1 and M2 so that
the covariance structure from Equation 1 is correctly spec-
ified in Equation 2. Specifically, M1 contains ones on the
main diagonal, so that M1ii=1 for all i. Furthermore, for
i≠ j, M1ij=1/2 if the corresponding entries (ie, rows) of
Y are from the same study, and M1ij=0 otherwise. We
similarly define M2 as containing ones on the main diago-
nal so that M2ii=1 for all i. Furthermore, for i≠ j, M2ij=1
if the corresponding entries of Y are from the same design
and refer to the same treatment comparison, M2ij=1/2 if
they are from the same design but refer to different treat-
ment comparisons, and M2ij=0 otherwise. Matrix M1 is
a block‐diagonal square matrix with blocks formed by the
studies and M2 a block‐diagonal square matrix with blocks
formed by the designs.

The matrices M1 and M2 were referred to as P1 and P2 in
the first description of this model,14 but in the recent
account,15 we use the letter M to denote these matrices to
avoid a clash of notation with Pcd . Matrices M1 and M2 are
both symmetrical matrices; this observation is important
when deriving some of the results that follow.
2.5 | Loop inconsistency models and the
consistency model

Loop inconsistency models7 are a special case of the design‐
by‐treatment interaction model.8,12 This means that loop
inconsistency models can be assumed by modifying M2.

14

All estimation methods below can similarly be modified to
accommodate this type of model by using the appropriate
M2 matrix. We can also assume a consistency model by tak-
ing τ2ω ¼ 0. Our proposal is to fit our full model but these and
possibly other reduced forms of our model may appeal to
some readers.
2.6 | A submodel for a single design

Jackson et al14 describe a submodel of Equation 2 that can be
used to describe outcome data from a particular design. Only
attempting to describe the outcome data from one design sim-
plifies matters. This is because inconsistency is
conceptualised as being differences between designs so that
the inconsistency (or “between‐designs”) variance τ2ω is not
identifiable unless two or more designs are modelled. This
also means that the Ydi from a particular design are consistent
with each other and from Equation 1 estimate βd= δd+ωd.
All entries of δ will not in general be identifiable when using
data from a single design because we will not observe all
treatments unless the design in question includes them all.
Finally, the vectors δd and ωd are aliased in model 1 when
all studies are of the same design, so we cannot identify δd
and ωd separately but we can identify their sum βd.

Hence, a submodel, which is implied by model 2 and can
be identified when all studies are of a single design d, is

Yd eN Xdβd; τ
2
βMd þ Sd

� �
; (3)

where Yd is obtained by stacking the Ydi that are from design
d and Md ¼ Ind⊗Pcd ; here, nd is the number of studies of
design d, Ind denotes the nd× nd identity matrix, and ⊗
denotes the Kronecker product. Hence, Md ¼ Ind⊗Pcd is a
block diagonal square matrix where all submatrices along
the block diagonal are Pcd . The design matrix Xd is obtained
by stacking nd identity matrices of dimension cd. Finally Sd is
the block diagonal square matrix containing the Sdi matrices
for the design in question. The matrix Md is symmetrical.

Submodel 3 states that all Ydi from design d indepen-
dently estimate βd. There is therefore no inconsistency in
these estimates in this submodel because Equation 3 includes
no inconsistency effects or variances. Submodel 3 is implied
by model 2 regardless of the value of τ2ω and would also be
implied if the ωd were modelled differently, for example,
using a different random‐effects distribution or modelled
using fixed‐effects.
2.7 | Making inferences about the treatment
effects

The main statistical difficulty lies in estimating the unknown
variance components τ2β and τ2ω. Once these parameters have

been estimated, the standard procedure for making inferences
about the basic parameters, and so the treatment effects,
approximates these variance parameters with their estimates.
Inference for the basic parameters is then straightforward, as
analysis proceeds as a weighted regression where all weights
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are treated as fixed and known.14,15 Hence the estimation of
τ2β and τ2ω provides the focus of the rest of the paper.

The basic parameters describe the average treatment
effects across all studies of all designs, and so the entire
evidence base, of treatments relative to the reference treat-
ment A. We take the difference between two basic parame-
ters to make inferences about other average treatments. For
example the estimated average effect of treatment E relative

to treatment B is given by bδAE−bδAB. Upon approximating
the two unknown variances with their estimates, model 2
assumes that the outcome data are multivariate normal with

a known covariance matrix. Hence, bδ is also treated as mul-
tivariate normal with known covariance matrix, and making
inferences about any linear combination of the basic param-
eters is straightforward.
3 | PREVIOUSLY PROPOSED
ESTIMATION METHODS

A variety of estimation methods for our model have previ-
ously been proposed. We will briefly describe these alterna-
tive methods before describing the new Paule and Mandel
estimation method. The details given here for the previously
proposed estimation methods are necessarily concise, and
so we refer the reader to the original methodological papers
referred to below for full details.
3.1 | The “DerSimonian and Laird”
estimation method

The DerSimonian and Laird4 estimator for standard univari-
ate random‐effects meta‐analysis is based on the Q statistic.
To extend this estimation method to the network meta‐analy-
sis setting, Jackson et al14 define the scalar Q statistic for the
entire network meta‐analysis as

Q net ¼ Y−bY� �T
S−1 Y−bY� �

; (4)

where bY ¼ X XTS−1X
� �−1

XTS−1Y is the fitted outcome

vector under model 2 with τ2β ¼ τ2ω ¼ 0, that is, the com-

mon‐effect and consistent model. This is simply the usual
Q scalar heterogeneity statistic that is also used in multi-
variate meta‐regression.26,27 However the multivariate
meta‐regression model is not the same as the network
meta‐analysis model used here. Hence, the distribution
of Q net is different under these two models because of
the different types of assumptions made in these
contexts.

The decomposition of this Q statistic that was proposed
by Krahn et al,28 and used for estimation purposes by
Jackson et al,14 is
Q net ¼ ∑
D

d¼1
Q het

d þ Q inc ; (5)

where D is the number of different designs present. Here,
Q het

d is the Q statistic defined as in Equation 4 but we
use only data from design d. That is,

Q het
d ¼ Yd−bYd

� �T
S−1d Yd−bYd

� �
; (6)

where bYd is the fitted outcome vector for design d, under
the common‐effect and consistent model and using data
only from this design. The final term in Equation 5, Qinc ,
is obtained by subtraction.

Jackson et al14 show that the expectation of Q net is a lin-

ear equation in τ2β and τ
2
ω, and the expectation of∑D

d¼1 Q het
d

is linear in τ2β. Under the consistency assumption they suggest

matching Q net to its expectation to estimate τ2β. Under the full

model they suggest matching ∑D
d¼1 Q het

d to its expectation
to estimate τ2β. The latter estimate can then be substituted into

the expectation of Q net which similarly gives rise to the esti-
mate of τ2ω by matching moments. Any negative estimated
variance components are truncated to 0.
3.2 | Likelihood‐based estimation methods

Law et al15 explain how the rma.mv command in the R
package metafor29 can be used to perform likelihood‐
based inference under the full model and the consistency
model (τ2ω ¼ 0). By using normal approximations, the like-
lihood function can be evaluated and maximised numeri-
cally to simultaneously estimate all parameters.

However, the sample size in many meta‐analyses is
small.30 Maximum likelihood‐based estimates of unknown
variance components, such as the two included in our model,
are generally biased downwards in small datasets. REML
estimation helps to overcome this difficulty and so is gener-
ally recommended. The restricted likelihood function elimi-
nates the location parameters (here, these are the basic
parameters) and this function can also be maximised numer-
ically to estimate the unknown variance components.

Bayesian estimation has also been proposed. Bayesian
analyses are also based on the likelihood but make more
assumptions than classical analyses, where these additional
assumptions are made via the prior distributions. Analytical
solutions are difficult to obtain, so computationally more
expensive methods have been proposed. Jackson et al13 pro-
vide WinBUGS code for fitting the model. Law et al15 also
use WinBUGS and develop importance sampling algorithms
that assume lognormal priors for the unknown variance com-
ponents. An advantage of the Bayesian approach is that the
uncertainty in the two unknown variance components is fully
taken into account when making inferences about the
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treatment effects. In this paper, however, we will focus on
classical methods.
4 | THE PROPOSED PAULE AND
MANDEL ESTIMATION METHOD
FOR NETWORK META ‐ANALYSIS

To motivate our Paule and Mandel estimation method for
network meta‐analysis, we begin by describing this
established and recommended method for univariate
meta‐analysis.
4.1 | Univariate random‐effects meta‐analysis
In a univariate meta‐analysis, each study provides a single
estimate Yi of the same outcome or treatment comparison.
The random‐effects model for meta‐analysis is Yi= δ+Bi

+ εi, where δ is the average effect, Bi~N(0, τ
2) describes the

between‐study heterogeneity and εieN 0; σ2i
� �

. This model is
a much simpler version of model 1.

The quantity Q used in the Paule and Mandel estimation
method is a function of τ2, and we will emphasise this depen-
dence by writing this Q as

Q τ2
� � ¼ ∑

n

i¼1
wi τ

2� �
Yi−bδ τ2

� �� �2eχ2n−1; (7)

wherewi τ2ð Þ ¼ 1= σ2i þ τ2
� �

,bδ τ2
� � ¼ ∑n

i¼1 wi τ
2� �
Yi=∑n

i¼1 wi τ
2� �

and n is the number of studies. Q(τ2) is not a statistic because
it is a function of the unknown parameter τ2. However, it is a
pivot, and so we can use the distributional result in Equation 7
to make inferences.

To estimate τ2, we take the expectation of Equation 7 and
replace τ2 with its estimate to obtain bτ2 as the solution to

Q bτ2� � ¼ n−1 (8)

Equation 8 is non‐linear and must be solved numeri-
cally. This is also the case for the Paule and Mandel esti-
mators for network meta‐analysis that follow, but this
presents very little difficulty in practice. This is because
Q(τ2) is a continuous and strictly decreasing function in
τ2 for the observed data,13,31,32 and limτ2→∞Q τ2ð Þ ¼ 0þ .
Hence, if Q(0)> n− 1, then a unique estimate arises from
solving Equation 8. Otherwise, bτ2 is truncated to 0, on the
grounds that the variation in the data is even less than
what would be expected if τ2=0. Paule and Mandel esti-
mators have also been developed for meta‐regression
models.33

Let us compare the quadratic form used by the
Paule and Mandel method in Equation 7 to the Q sta-
tistic used in the more familiar DerSimonian and Laird
estimation procedure for univariate meta‐analysis, which
is given by
Q ¼ Q 0ð Þ ¼ ∑
n

i¼1
σ−2i Yi−bδ� �2

(9)

where bδ ¼ ∑n
i¼1 σ−2i Yi=∑n

i¼1 σ−2i . The salient observa-
tion is that the DerSimonian and Laird method is
based on a special case of the Q(τ2) quantity used in
the Paule and Mandel estimation method, where the
unknown τ2 is set to 0 in the DerSimonian and Laird
weights in Equation 9. The DerSimonian and Laird
quadratic form therefore weights by the within‐study
precisions and the Paule‐Mandel method instead weights
by the total precisions, that is the reciprocals of the
sums of the within and the between‐study variances.

DerSimonian and Laird type Q statistics for network
meta‐analysis, which can be used to estimate the unknown
variance components, were described above in Section 3.1.
We will similarly define Paule and Mandel versions of these
Q statistics below. As in the univariate case, the Paule and
Mandel weights will be the total precision, rather than the
within‐study precisions S−1 and S−1d , in Equations 4 and 6,
respectively.
4.2 | Paule‐Mandel estimators for network
meta‐analysis
To extend the univariate Paule and Mandel estimators to the
network meta‐analysis setting, we must define some more
general versions of Equations 7 and 8 that are suitable for net-
work meta‐analysis. These will be inspired by the
DerSimonian and Laird Q statistics (Equations 4 and 6) and
the connection between the univariate DerSimonian and
Laird and Paule and Mandel quadratic forms described
above. We begin by explaining how to estimate τ2β under

the consistency assumption. This is because estimation is
much simpler under this assumption. Hence, we describe this
estimation to make this option available but, with the excep-
tion of the further investigation of the discrepancies between
our results for one of our examples below, we do not apply it
in this paper.
4.2.1 | The first Paule‐Mandel pivot for net-
work meta‐analysis: estimating τ2β under the
consistency assumption

Equation 4 is the DerSimonian and Laird Q statistic for the
entire network, where the weights are the within‐study preci-
sion S−1. Jackson et al14 suggest using Equation 4 to estimate
τ2β under the consistency assumption. Under the consistency

assumption, the total precision is τ2βM1 þ S
� �−1

. This obser-

vation and the relationship between the DerSimonian and
Laird and Paule and Mandel quadratic forms described at
the end of Section 4.1 suggests using the pivot
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Q net τ2β

� �
¼ Y−bY τ2β

� �� �T
τ2βM1 þ S

� �−1
Y−bY τ2β

� �� �e χ2n−c (10)

where bY τ2β

� �
¼ X XT τ2βM1 þ S

� �−1
X

� �−1

XT τ2βM1

�
þSÞ−1Y, n is now the number of estimates (the length of
Y, which is equal to the number of studies if and only if
all studies include 2 treatment groups) and c continues to
be the number of basic parameters. The χ2n−c distributional
statement in Equation 10 is correct under model 2 and the
consistency assumption, ie, τ2ω ¼ 0 so that all ωd= 0. The
quadratic form in Equation 10 is very similar to Equation 4
but where the total, rather than just the within‐study, preci-
sion under the consistency model is used as the weight.
This is the same as the relationship the between the qua-
dratics used in the univariate estimation methods described
in Section 4.1. Briefly, the χ2 distributional statement in
Equation 10, and those that follow below are because if
the outcome data Y follow a multivariate normal distribu-
tion, whose mean depends linearly on c unknown location
parameters and the corresponding covariance matrix V is

given, then Y−bY� �T
V−1 Y−bY� �eχ2n−c.

Upon taking the expectation of Equation 10 and replacing
τ2β with its estimate under the consistency assumption, in the

same way as in Equations 7 and 8 when deriving the Paule
and Mandel estimator for univariate meta‐analysis, we obtain
the estimating equation

Q net bτ2β;con� �
¼ n−c (11)

This estimating equation provides an analogous Paule
and Mandel type estimate to the DerSimonian and Laird esti-
mate of τ2β under the consistency assumption. The expectation

of quadratic forms of this type does not require normality
assumptions (Searle p.55, 34). Hence, the Paule and Mandel
estimators are semiparametric in the sense that they provide
estimates of the unknown variance components without
requiring normality.

We will establish below that if Q net (0)> n− c then the
solution to Equation 11 is unique, and otherwise, we truncatebτ2β;con ¼ 0 for the same reasons as in the univariate case.
Q net τ2β; τ
2
ω

� �
¼ Y−bY τ2β; τ

2
ω

� �� �T
τ2βM1 þ τ2ωM2 þ S

� �−1
Y−bY τ2β; τ

2
ω

� �� �eχ2n−c; (14)
4.2.2 | The second Paule‐Mandel pivot for
network meta‐analysis: estimating τ2β

The estimate of τ2β in Section 4.2.1 is valid only under the

consistency assumption. Our intention is to relax this
assumption, and so we require an alternative estimate that is
valid under the full model. Using similar arguments as in
the previous section, Equation 6 suggests that the use of the
design‐specific pivot

Q het
d τ2β

� �
¼ Yd−bYd τ2β

� �� �T
τ2βMd þ Sd

� �−1
Yd−bYd τ2β

� �� �eχ2nd−1ð Þcd

(12)

where bYd τ2β

� �
¼ Xd XT

d τ2βMd þ Sd
� �−1

Xd

� �−1

XT
d τ2βMd

�
þSdÞ−1Yd. The χ2nd−1ð Þcd distribution in Equation 12 follows

from submodel 3 that is used to describe data from a
single design; there are ndcd treatment effects from studies
of design d, and cd location parameters are estimated (the
entries of βd), so the degrees of freedom are ndcd− cd=
(nd− 1)cd.

Taking the sum of theQ het
d τ2β

� �
and then the expectation

results in the estimating equation,

∑
D

d¼1
Q het

d bτ2β� �
¼ ∑

D

d¼1
nd−1ð Þcd (13)

This estimating equation provides an analogous
Paule and Mandel type estimate to the DerSimonian
and Laird estimate of τ2β under the full model. We will

establish below that if ∑D
d¼1 Q het

d 0ð Þ> nd−1ð Þcd then
the solution to Equation 13 is unique, and otherwise,
we truncate bτ2β ¼ 0.
4.2.3 | The third Paule‐Mandel pivot for net-
work meta‐analysis: estimating τ2ω
Jackson et al14 also use Qnet to provide a further estimating
equation in both τ2β and τ

2
ω and so estimate τ2ω after estimating

τ2β (although this process is equivalent to solving the pair of

simultaneous linear equations, as explained by Jackson
et al14) The total precision under the full model is

τ2βM1 þ τ2ωM2 þ S
� �−1

so that similar arguments as above

suggest using the pivot
where bY τ2β; τ
2
ω

� �
¼ X XT τ2βM1 þ τ2ωM2 þ S

� �−1
X

� �−1

XT τ2βM1 þ τ2ωM2 þ S
� �−1

Y . Taking the expectation of

Equation 14 results in the estimating equation
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Q net bτ2β;bτ2ω� �
¼ n−c (15)

As in the previously proposed DerSimonian and Laird
estimating procedure, we suggest solving Equations 13 and
15 simultaneously to estimate τ2β and τ

2
ω under the full model.

These equations can easily be solved because estimating
Equation 13 depends on only one estimate and immediately
leads tobτ2β, which can be substituted into Equation 15. Hence,
when estimating the inconsistency variance τ2ω, our proposal

is effectively to use the pivot in Equation 14 with τ2β ¼ bτ2β .
Therefore, τ2β is held fixed at its estimate from Equation 13

when estimating τ2ω using Equation 15. Equation 15 has mul-
tiple solutions but there can only be one solution that also sat-
isfies Equation 13, and we take the solutions of these two
simultaneous non‐linear equations as our estimates.

We establish below that if Q net bτ2β; 0� �
>n−c then the

resulting positive estimate bτ2ω is unique. Otherwise, we takebτ2ω ¼ 0, again following similar arguments as before, so that
unique estimates of both unknown variance components are
obtained.
4.3 | Ensuring unique solutions to the
estimating equations

To ensure that the estimates from Equations 11, 13, and 15
are unique, we must establish that the 3 pivots (Equations 10,
12, and 14) are strictly decreasing in the variance parameter
to be estimated from them. This is because if these pivots
are not strictly decreasing in this way then the estimating
equations (Equations 11, 13, and 15) could instead have mul-
tiple solutions. In fact, we require only that the sum of the

pivots Q het
d τ2β

� �
in Equation 12 are strictly decreasing in

τ2β to ensure a unique solution to Equation 13, but we will

establish the stronger condition that all Q het
d τ2β

� �
are strictly

decreasing in τ2β.

This type of strictly decreasing property has already been
shown for the pivots used in meta‐analysis31,32 and meta‐
regression,33 but in the presence of multi‐arm studies, matters
are more complicated because then the estimates are no lon-
ger independent. To ensure that estimates can always be
obtained, we also require that the pivots are continuous and
differentiable in the variance parameter to be estimated and
also that the pivots tend towards zero as this variance
becomes large. These extra conditions, in conjunction with
the condition that the pivots are strictly decreasing, ensure
that unique solutions to the estimating equations can always
be found (although sometimes we will need to truncate the
estimated variance components to zero). This is because then
if Equations 11, 13, or 15 are more than their associated
degrees of freedom when taking the unknown variance to
be zero, we can simply increase the unknown variance until
the corresponding estimating equation is satisfied; if Equa-
tion 11, 13, or 15 is instead less than or equal to their degrees
of freedom when taking the unknown variance to be 0, then
we truncate the estimate to 0. Hence, with all these conditions
established, even very simple numerical methods can be
safely used to solve, the estimating equations and there are
no possible convergence problems.

It is easy to establish that both of these additional condi-
tions are satisfied. Firstly, all values that contribute to the
computation of the Q pivots are continuous and differentiable
in the variance parameter to be estimated; hence so are the
pivots. Secondly, as an unknown variance becomes large,
the weights in the regressions become dominated by the M
matrix associated with this variance. Hence, the fitted values,
and so the residuals, tend towards the corresponding values
from the regression where the weights are the inverse of M.
Furthermore, as the unknown variance becomes large, the
entries of precision matrices (the inverses of the total vari-
ances that appear in Equations 10, 12, and 14) tend towards
0. With the residuals stable and the entries of the precision
matrices tending towards 0, all three Q pivots used for esti-
mation tend towards 0 as the variance to be estimated using
them becomes large.

Proving that all three types of Q pivot are strictly decreas-
ing in the unknown variance to be estimated is more difficult.
However, we provide this proof in the Appendix A. The
Paule and Mandel estimates are therefore uniquely defined
by the estimating equations.
5 | APPLICATIONS

We now apply all three classical estimation methods to a vari-
ety of real examples. In particular, it will be interesting to
compare the results using the new Paule and Mandel estima-
tors to those using the previously proposed extension of
DerSimonian and Laird's method14 and REML.15
5.1 | Application to three previous examples

We begin by applying all three classical estimation methods
to some examples that have been used previously. The first
and second examples were used by Law et al,15 and the sec-
ond and third examples were used by Jackson et al.14 Briefly,
the first example concerns treatments for prostate cancer.
Here, there are 8 treatments, where the outcome is all‐cause
mortality, where a negative relative effect (log odds ratio)
indicates treatment benefit. The second example concerns
treatments for chronically discharging ears. Here, there are
4 treatments for treating discharge, where a negative relative
effect (log odds ratio) indicates treatment benefit. In the first
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and second examples, the outcome is binary and we use con-
ventional normal approximations to the log odds ratios used
in analysis. The third example concerns treatments for osteo-
arthritis of the knee (OAK). Here, there are 22 treatments for
pain relief, where a negative relative effect (standardised
mean difference) indicates treatment benefit. See Jackson
et al14 and Law et al15 for more details of these datasets and
their supplementary materials that provide the data.

The estimated unknown variance components are shown
in Table 1. The approximate 95% confidence intervals corre-
sponding to the REML estimates were obtained using the
profile likelihood and the code provided by Law et al.15 This
method for calculating confidence intervals when using
REML is an advantage of using a likelihood based approach.
We return to the issue of how these confidence intervals
might be obtained using the other two estimation methods
in the discussion. Given the uncertainty in the point estimates
of the unknown variance components, the results in Table 1
are in broad agreement but there are also notable differences
between the estimates from the three methods. This suggests
that all three estimation methods perform satisfactorily for
these examples. This is also the case for the basic parameters
(results shown in Supplementary data files S1 and S2).

The agreement between the results is particularly strong
for the first example where all methods result in bτ2β ¼ bτ2ω ¼
0, and so the same inference, as appropriate for this highly
homogenous example.15 Given the extent of the parameter
uncertainty, perhaps the most notable disagreement between
the results is for the third example. Although all estimation
methods provide bτ2ω ¼ 0, which indicates some good agree-
ment, the proposed Paule and Mandel method provides a
much larger estimate of bτ2β ¼ 0:35 . This estimate lies just

above the REML confidence interval of (0.09, 0.31). The
Bayesian results of Jackson et al13 are in better agreement
with the DerSimonian and Laird method and REML.

However OAK is a challenging example involving
many treatments and relatively little replication within
designs (as Jackson et al14 explain that there are 87 stud-
ies and 38 designs), which makes the identification of τ2β
TABLE 1 Estimated unknown variance components for 3 previously used

Dataset PM DL

bτ2β bτ2ω bτ2β bτ2ω
PC 0 0 0 0

CDE 0.36 0.52 0.25 0.30

OAK 0.35 0 0.18 0

Point estimates of τ2β and τ2ω are given for all 3 methods. Approximate 95% confiden
likelihood.

Abbreviations: PM, the proposed Paule and Mandel estimation method; DL, a generalis
likelihood.
in the full model challenging. Under the consistency
assumption, which is supported by the three bτ2ω ¼ 0, the
estimates of τ2β are Paule and Mandel: 0.25; DerSimonian

and Laird: 0.15; REML: 0.18, 95% CI, (0.10‐0.31). The
REML point estimate of τ2β is the same under the consis-

tency and the full model because REML provides bτ2ω ¼ 0.
However, the two moments based estimates differ under
these two models, despite all bτ2ω ¼ 0 , because different
estimating equations for τ2β are used under the consistency

and full models when using these two methods. When
using the proposed Paule and Mandel method, τ2β is esti-

mated under these two models using Equations 11 and
13, respectively. This is discussed for the DerSimonian
and Laird estimator in Jackson et al.14

Upon using the information contained in the consistency
assumption so that replication within designs is not needed
when estimating τ2β , the Paule and Mandel estimator is in

much better agreement with the other methods. The discrep-
ancy between the Paule and Mandel estimate of τ2β for the

OAK data appears to be largely because of the difficulty in
estimating τ2β in the full model, which is due to the relative

lack of replication within designs. We conclude that the over-
all picture is that the results from the three estimation
methods are reasonably compatible, despite the notable dif-
ferences that have been observed. Our results indicate that
all estimation methods have performed satisfactorily for these
three examples, but it is also evident that alternative estima-
tion methods can result in important differences in practice.
Applied meta‐analysts may therefore wish to explore the
use of all three estimation methods, to determine how robust
their inferences are to their choice of estimation procedure.
5.2 | Application to a challenging new example

We now apply our methods to a challenging new example
from Tricco et al.35 This concerns the comparative effective-
ness of cognitive enhancers for treating Alzheimer's demen-
tia, and we focus on data from one outcome of several
examples, using 3 different estimation methods

REML

bτ2β bτ2ω 95% CI: τ2β 95% CI: τ2ω

0 0 (0, 0.07) (0, 0.62)

0.10 0.54 (0, 1.67) (0, 3.96)

0.18 0 (0.09, 0.31) (0, 0.12)

ce intervals (CIs) using REML are also given and are obtained from the profile

ation of DerSimonian and Laird's univariate method; REML, restricted maximum
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considered by Tricco et al, the mini‐mental state examination.
Tricco et al35 impute standard deviations for studies that do
not report these; however, here, we restrict analysis to studies
where this imputation is not necessary, to provide a dataset
where inconsistency is more evident and so better illustrate
our methods. This results in 41 studies, 37 of which compare
2 treatments, 3 of which compare 3 treatments and a single 4‐
arm study. There are 9 treatments in the network: (A) pla-
cebo, (B) donepezil, (C) galantamine, (D) rivastigmine oral,
(E) rivastigmine patch, (F) memantine, (G) rivastigmine
patch and memantine, (H) donepezil and memantine, and
(I) galantamine and memantine. The mean difference was
used as the outcome, where a positive difference indicates
treatment benefit. The within‐study covariance structure
was calculated without the unnecessary assumption that the
standard deviation is the same in arms from the same study.
For example, in a 2‐arm study with reported standard devia-
tions of s1 and s2 and sample sizes of N1 and N2, the within‐
study variance was computed as s21=N1þ s22=N2. A network
diagram is shown in Figure 1, where the thickness of the lines
are proportional to the number of direct comparisons
between each treatment pair. The absence of a line indicates
that there is no direct comparison. This Figure was produced
using the netmeta package36 in R.

As we will see below, these data provide large esti-
mates of τ2β and τ2ω . However, they are also challenging

because the study sizes differ greatly. There are some very
FIGURE 1 Network diagram for the Alzheimer's dementia dataset.
The thickness of the lines is proportional to the number of direct
comparisons between each pair of treatments. (A) Placebo, (B)
donepezil, (C) galantamine, (D) rivastigmine oral, (E) rivastigmine
patch, (F) memantine, (G) rivastigmine patch and memantine, (H)
donepezil and memantine, and (I) galantamine and memantine
small studies present (for example, the 3 smallest studies'
total numbers of patients are just 14, 17, and 20) and
some much larger studies (the largest study has 2 arms
and 1765 patients). Hence, these data are very heteroge-
neous both in the study sizes and the mini‐mental state
examination study results. There is also relatively little
data (46 estimates) to estimate 10 parameters (8 basic
parameters and 2 unknown variances). These data there-
fore present a very considerable challenge to the 3 estima-
tion methods.

Using the proposed Paule and Mandel estimation
method we obtain bτ2β ¼ 0:51 and bτ2ω ¼ 0:91. These estimates

indicate that there is substantial between‐study heterogene-
ity and inconsistency. These findings are corroborated by
the REML estimates of bτ2β ¼ 0:68 and bτ2ω ¼ 0:54 , with

95% confidence intervals of (0.31, 1.55) and (0, 2.94),
respectively. The wide REML confidence interval for τ2ω
indicates that the inconsistency variance is difficult to iden-
tify and because this interval contains 0 and that there is
insufficient evidence to reject the null hypothesis that the
consistency assumption is true.

The DerSimonian and Laird method provides some-
what different estimates of bτ2β ¼ 1:20 and bτ2ω ¼ 0, so that

the fitted model collapses to the consistency model. How-
ever, these estimates lie within the REML confidence
intervals and so are also reasonably consistent with the
likelihood based results. This difference in the estimated
covariance structure results in slightly different point esti-
mates of effect and markedly smaller standard errors, as
shown in Table 2. In this table, we show the estimated
effects for all pairwise comparisons. To obtain the stan-
dard error for comparisons that do not involve treatment
A, we require the covariance matrix of the basic parame-
ters. This covariance matrix is provided by all sets of
computing codes, and as the matrix “vb” in the object
created by the rma.mv command from the metafor pack-
age29 when using REML. See Law et al15 for examples
of computing codes that use the rma.mv command.

There is robust evidence in this network that treatments E
and H are better than placebo. We will use this final dataset,
and the corresponding REML estimates, to motivate a simu-
lation study in Section 6, to examine the 3 methods in more
detail and also to determine which method performs best in
these challenging circumstances.
6 | SIMULATION STUDY

It is interesting that the DerSimonian and Laird method
attributed all the excess variation in the previous example
to between‐study heterogeneity. The other two methods
instead attributed this to a mixture of between‐study



TABLE 2 Estimated average treatment effects for the Alzheimer's dementia data using 3 different estimation methods

Comparison Parameters PM DL REML

AB δAB 0.60 (0.59) 0.71 (0.27) 0.60 (0.51)

AC δAC 0.18 (0.69) 0.31 (0.49) 0.21 (0.61)

AD δAD 0.09 (0.60) 0.19 (0.44) 0.11 (0.53)

AE δAE 1.72 (0.64) 1.75 (0.57) 1.71 (0.59)

AF δAF 0.93 (0.79) 0.79 (0.52) 0.89 (0.70)

AG δAG 1.58 (1.04) 1.56 (0.93) 1.56 (0.97)

AH δAH 2.23 (0.88) 2.22 (0.78) 2.20 (0.82)

AI δAI 2.16 (1.31) 2.10 (1.18) 2.13 (1.22)

BC δAC− δAB −0.42 (0.66) −0.40 (0.49) −0.39 (0.59)

BD δAD− δAB −0.51 (0.66) −0.52 (0.48) −0.49 (0.60)

BE δAE− δAB 1.13 (0.75) 1.04 (0.60) 1.12 (0.69)

BF δAF− δAB 0.34 (0.86) 0.08 (0.57) 0.29 (0.77)

BG δAG− δAB 0.99 (1.08) 0.85 (0.95) 0.96 (1.01)

BH δAH− δAB 1.63 (0.88) 1.51 (0.78) 1.60 (0.82)

BI δAI− δAB 1.56 (1.33) 1.39 (1.19) 1.53 (1.25)

CD δAD− δAC −0.09 (0.76) −0.12 (0.61) −0.10 (0.69)

CE δAE− δAC 1.55 (0.82) 1.45 (0.70) 1.51 (0.76)

CF δAF− δAC 0.76 (0.98) 0.48 (0.71) 0.68 (0.88)

CG δAG− δAC 1.41 (1.16) 1.25 (1.03) 1.35 (1.08)

CH δAH− δAC 2.05 (1.02) 1.91 (0.90) 1.99 (0.95)

CI δAI− δAC 1.98 (1.41) 1.79 (1.26) 1.92 (1.32)

DE δAE− δAD 1.64 (0.68) 1.56 (0.61) 1.61 (0.63)

DF δAF− δAD 0.85 (0.93) 0.60 (0.68) 0.78 (0.84)

DG δAG− δAD 1.50 (1.10) 1.37 (0.99) 1.45 (1.03)

DH δAH− δAD 2.14 (0.98) 2.03 (0.87) 2.09 (0.92)

DI δAI− δAD 2.07 (1.38) 1.91 (1.24) 2.02 (1.29)

EF δAF− δAE −0.79 (0.94) −0.96 (0.74) −0.83 (0.86)

EG δAG− δAE −0.14 (1.00) −0.20 (0.92) −0.16 (0.94)

EH δAH− δAE 0.51 (0.99) 0.46 (0.91) 0.48 (0.93)

EI δAI− δAE 0.43 (1.36) 0.35 (1.25) 0.41 (1.27)

FG δAG− δAF 0.65 (1.09) 0.77 (0.97) 0.67 (1.02)

FH δAH− δAF 1.30 (0.97) 1.43 (0.84) 1.31 (0.91)

FI δAI− δAF 1.22 (1.26) 1.31 (1.17) 1.24 (1.19)

GH δAH− δAG 0.65 (1.10) 0.66 (1.03) 0.64 (1.04)

GI δAI− δAG 0.57 (1.31) 0.54 (1.23) 0.57 (1.24)

HI δAI− δAH −0.07 (1.26) −0.12 (1.17) −0.07 (1.19)

Standard errors are given in parentheses. (A) placebo, (B) donepezil, (C) galantamine, (D) rivastigmine oral, (E) rivastigmine patch, (F) memantine, (G) rivastigmine patch
and memantine, (H) donepezil and memantine, and (I) galantamine and memantine.

Abbreviations: PM, the proposed Paule and Mandel estimation method; DL, A generalisation of DerSimonian and Laird's univariate method; REML, restricted maximum
likelihood.
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heterogeneity and inconsistency. To better understand
why this might be the case and also to compare the dif-
ferent methods in a challenging and real setting, a simu-
lation study based on this example was performed.

6.1 | Simulation study design

As explained above, the study sizes differ considerably in this
example, and so it is difficult to determine a typical study
size. This difficulty is reflected in the notably different mea-
sures of a typical study size for this example: the mean uni-
variate within‐study variance is 0.53, the median is 0.29
and the representative within‐study variance of Higgins and
Thompson37 is just 0.02. We decided to base our simulation
study on the REML point estimates, whilst also allowing
for a variety of variance structures, and so examined 5 differ-
ent values of τ2β ¼ 0; 0:25; 0:5; 0:75; 1. This explores a wide

range of between‐study heterogeneities in relation to the
study sizes and includes the REML estimatebτ2β ¼ 0:68within

the range considered.
The REML estimate of bτ2ω ¼ 0:54 is large, and so we

examined 3 different values of τ2ω ¼ 0; 0:25; 0:5, to provide
15 simulation settings. As explained by Jackson et al,14 very
large inconsistencies should discourage the use of network
meta‐analysis per se, and so we did not explore the use of
larger inconsistency variances such as 0.75 and 1, as used
for τ2β, or the large point estimate of τ2ω that was obtained using

the Paule and Mandel method. Our 3 values of τ2ω cover a
wide range of possibilities where the use of network meta‐
analysis is likely to be encouraged. In particular, the combi-
nation of τ2β ¼ 0:75and τ2ω ¼ 0:5 reflects the REML estimates

for the real example, and we also explore a range of other
possibilities that are compatible with the real data and also
represent situations where the data are not so inconsistent
as to entirely discourage network meta‐analysis.

We simulated data directly from model 2 assuming that
all basic parameters are 0; however, this choice of δ is imma-
terial because the estimation of the unknown variance com-
ponents is location invariant and the estimates of the basic
parameters are directly shifted by using other values. To sim-
ulate data in an especially transparent way and also to simu-
late data when the assumed model is true, we take the
within‐study covariance matrix S be its numerical value from
the example for all simulated datasets. This ignores the uncer-
tainty in the within‐study variance components and we return
to this issue below.

A thousand simulated datasets were produced for each
combination of τ2β and τ

2
ω so that in total 15 000 simulated net-

work meta‐analyses were generated. All three estimation
methods were applied to the same simulated datasets. In just
4 of these 15 000 simulated datasets the metafor package
failed to provide results using REML with the defaults of
rma.mv. This is due to the difficulties associated with the
numerical methods used, rather than the REML estimator
itself. This is a remarkably small proportion given that
REML requires the numerical maximisation of the restricted
log likelihood that depends on 2 unknown parameters. The
results of these 4 datasets were discarded when calculating
the repeated sampling properties of REML, and their impact
on the overall results will in any case be negligible. In prac-
tice, however, a skilled statistician would be likely to change
the defaults and so force convergence and/or investigate the
reasons for this in real applications. Three of these 4 datasets
occurred when τ2β ¼ τ2ω ¼ 0, which suggests that it may be

more difficult to estimate excess variances when no such
additional variation is present.

For all 15 parameter combinations, we calculated the
mean estimate of τ2β and τ2ω, and the empirical standard devi-

ation of these estimates. We also calculated the correlations
between pairs of these estimates, with the conjecture that this
might be highest between the Paule and Mandel and REML
estimators because these were in better numerical agreement
in the real example. Using correlations to determine the asso-
ciation between variables that are truncated at zero, as is the
case here (this often occurs when the unknown variance com-
ponents are 0 or small) is not ideal but these correlations were
still thought to have the potential to determine which of the
three estimation methods agree most closely. We use the
ordered triple ρβ to denote the estimated correlation between
the Paule and Mandel and the DerSimonian and Laird bτ2β, the
Paule and Mandel and the REML bτ2β , and the DerSimonian

and Laird and the REML bτ2β, in that order. The ordered triple

ρω contains these same correlations for the bτ2ω.
It is also of interest to know if better estimation of

unknown variance components leads to better inference for
the treatment effects, and so the coverage probability of the
nominal 95% confidence intervals for basic parameters
(across all 8 basic parameters) was also calculated. Recall
that the inference for the treatment effects proceeds as a
weighted regression where all weights are treated as known
(but τ2β and τ2ω are estimated) so that it was anticipated that

the actual coverage probabilities would deviate from the
nominal 95% coverage probability and in general would be
slightly less than this.
6.2 | Simulation study results

The results are shown in Table 3. With a few exceptions, the
Paule and Mandel estimates of τ2β and τ2ω appear to exhibit a

little positive bias (where the average estimated value is
greater than the true value), as expected because any esti-
mates that would otherwise be negative are truncated at 0.
The exceptions to this are for the estimates of τ2ω when τ2β ¼
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0, which are negatively biased. The Paule and Mandel esti-
mates of τ2β appear to be the most positively biased when τ2β ¼
0, which explains the smaller averagebτ2ω and the negative bias
for the Paule and Mandel estimator of τ2ω in this setting.
Recall that we substitute the estimate of τ2β into the non‐linear
equation Equation 15 when calculatingbτ2ω so that an implica-
tion of using a positively biased estimate of τ2β is likely to be

negative bias in bτ2ω. The proposed Paule and Mandel method
therefore performs least favourably when τ2β ¼ 0 but the

resulting bias in bτ2ω is not very severe. When τ2ω ¼ 0, so that
the data are consistent, all methods perform satisfactorily. In
general, the precision of the estimation depends on the esti-
mation method used and in most settings the DerSimonian
and Laird method has performed poorly in this respect. Over-
all, the proposed method performs well.

We simulate outcome data under the model 2 so that the
truncation of the DerSimonian and Laird estimates of τ2β and

τ2ω results in positive bias.14 This bias is generally evident in

Table 3 (the mean values of bτ2β of 0.72, when τ2β ¼ 0:75, can

be explained by Monte Carlo error). Although many of the
results for the proposed Paule and Mandel and the
DerSimonian and Laird method are similar, there are also
some important differences. In particular, for all simulations
where τ2β>0, the empirical standard deviations of the Paule

and Mandel estimates in Table 3 are smaller. The proposed
Paule and Mandel method therefore provides more precise
estimates of the unknown variance components than the
DerSimonian and Laird method when between‐study hetero-
geneity is present. Furthermore, the Paule and Mandel
method appears to help to reduce the positive bias in many
of the DerSimonian and Laird estimates of τ2ω. Provided that
between‐study heterogeneity is present, as is usually
suspected to be the case, the proposed Paule and Mandel
method appears to provide more accurate estimates of the
unknown variance components. However, the DerSimonian
and Laird method performs best when τ2β ¼ 0 and so can

also be expected to perform best when the between‐study
heterogeneity is very small. Neither of these two estima-
tors consistently outperforms the other, but on balance, it
seems reasonable to assert that the Paule and Mandel esti-
mator has outperformed the DerSimonian and Laird
estimator.

However, REML can be seen to have performed best,
because it generally provides the least biased and most
precise estimates of τ2β and τ2ω . In comparison, the pro-

posed Paule and Mandel provides viable a semiparametric
alternative where convergence is assured even when using
very simple numerical methods. Despite this, REML
retains its position as the gold standard estimation
method.
The correlations between the estimated variance compo-
nents shown in Table 3 are generally strongest between the
Paule and Mandel and REML estimators, and these correla-
tions are around 0.9 when τ2β is large. This helps to explain

why the Paule and Mandel and REML results for the hetero-
geneous real example are in better agreement than with those
from the DerSimonian and Laird method. The only exception
to this is that the correlations between the Paule and Mandel
and DerSimonian and Laird estimates of τ2β are very high

when τ2β ¼ 0. Interpreting correlations in this setting is diffi-

cult when many estimators are truncated to 0, but this sug-
gests that the Paule and Mandel estimator of τ2β agrees well

with the DerSimonian and Laird estimator when τ2β is small

but instead agrees well with the REML estimator when this
parameter is larger.

Better estimation of the unknown variance components
does seem to feed into more accurate inference concerning
the basic parameters, but this effect is not very impressive.
All methods are conservative (the estimated actual coverage
probabilities are more than the nominal 95%) when τ2β ¼
τ2ω ¼ 0, as expected as we then unnecessarily include vari-
ance components in the model. However, the estimated
REML coverage probabilities do not drop below 90% in
any setting, whilst this happens twice for the Paule and Man-
del method and 7 (out of 15) times for the DerSimonian and
Laird method. This shows that making better inference for
one aspect of a fitted model can have desirable outcomes
for other aspects. This and other conclusions should however
be interpreted with caution, as our findings may not general-
ise to other settings, and we discuss possibilities for further
simulation studies below.
6.3 | Possibilities for future simulation studies

There is a very wide range of possibilities to explore in future
simulation studies. In particular, the simulation study
described above does not allow for the uncertainty in the
between‐study covariance structure. Future simulation stud-
ies could examine how the estimation methods perform when
the assumed model is not true, for example, by allowing for
the uncertainty in the standard deviations, and so the
within‐study covariance structure, for continuous data. This
type of issue becomes an even more pressing concern when
applying methods that use normal approximations, such as
ours, to noncontinuous data. In particular, future simulation
studies could focus on the implications of using normal
approximations when the outcome is binary, for example,
when using log‐odds ratios or risk differences as the out-
comes. Future work could also explore a variety of realistic
distributions of study sizes and other important parameters.
This is important because conclusions, such as those made
above, might depend on the distribution of the study sizes
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or other aspects of the simulation study. If this is the case,
then our conclusions are not likely to generalise to other
settings.

We further suggest that the need for more simulation stud-
ies, and also large‐scale empirical investigations, is now
pressing. This is because we now have three of the main uni-
variate estimation methods successfully generalised to the
network meta‐analysis setting. This simulation work should
include scenarios where the model used for analysis is both
true and an approximation. This is so that the implications
of misspecifying the model can be assessed. Extensive simu-
lation studies are likely to form the subject of further work and
we encourage others to also consider this possibility. For now,
the four real examples and our simulation study provide proof
of concept that the proposed methodology performs well. Fur-
ther simulation studies, and large‐scale empirical work, are
however beyond the scope of the present paper.
7 | DISCUSSION

We have developed a new estimation method for network
meta‐analysis that extends the univariate Paule and Mandel
estimator. The proposed method has been found to perform
well in some examples, and also in a simulation study that
was based on a new example. In particular, the proposed
Paule‐Mandel estimator appears to outperform the also
semi‐parametric DerSimonian and Laird method. However,
the so‐called two‐step univariate DerSimonian and Laird esti-
mators are possible,38 and it is also straightforward to extend
the corresponding network DerSimonian and Laird method
in this manner. This provides a potential way to improve
the DerSimonian and Laird method to make it more attrac-
tive, and this may form the subject of future work. Good clas-
sical solutions for fitting models for network meta‐analysis
now have the potential to have a huge impact in applied work.
In situations where analysts are content to make normality
assumptions for the unknown random‐effects, and there are
no convergence problems, then REML would seem to be
the best estimation method. We emphasise again that REML
is the current gold standard. However, the proposed Paule‐
Mandel method is likely to be the preferred approach if nor-
mality assumptions are to be explicitly avoided and, at the
very least, provides a suitable sensitivity analysis when using
likelihood based analyses as the primary analysis.

Extensions of the model and estimation methods are
likely to be of interest. The model can easily be extended to
include study level covariates, by including these in the
design matrix X and in the location parameters δ in model
2. All three classical estimation methods can also be extended
to include these covariates. Subsequent work will show how
this can be achieved using DerSimonian and Laird type
methods. The Paule and Mandel estimators that we propose
here apply in regression models of this type, where the right
hand sides of all estimating equations are replaced by the
appropriate degrees of freedom. Another possible extension
is to allow multiple outcomes as well as multiple treatment
groups, in a type of analysis that might be referred to as a
multivariate network meta‐analysis. Work in this area is
ongoing but it is not obvious how well defined Paule and
Mandel estimators might be obtained when there are multiple
outcomes. This is because of the difficulties associated with
ensuring that the point estimates are unique, and this is at best
much more difficult in the context of using unstructured
unknown covariance matrices that are typically used in mul-
tivariate meta‐analysis.

There is currently much interest in dose response models
for network meta‐analysis, in situations where studies report
outcomes for different treatment and dose combinations.
Extending model 2 to this situation is therefore also likely
to be of interest and simple extensions of our model of this
type are obvious. For example, we could take Y to be the vec-
tor that is obtained by staking the estimates for all treatments
and dose comparisons relative to their baseline treatment‐
dose and modify M1 and M2 so that the random‐effects that
are applied to the outcome data depend only on the treatment
and design and not the dose. Next, we modify design matri-
ces to describe the additional estimated treatment effects that
are now stratified by dose, where these treatment effects ini-
tially do not depend on the dose level. Then the dose level
effect may be included in the model by introducing further
covariates, as explained in the previous paragraph. This is
merely a suggestion and other closely related ideas are also
possible. A difficulty with this approach is that by stratifying
the outcome data by dose, the treatment groups may become
too small for the normal approximations used in this paper to
be acceptable.

In the univariate setting, confidence intervals for the
between‐study variance using the Q profile method31,32 natu-
rally accompany Paule and Mandel estimators.33 Since all our
pivots, like the Q profile pivot, are continuous and strictly
decreasing in the variance to be estimated, these pivots can
be used to provide analogous confidence intervals for one
of the unknown variance parameters whilst treating the other
variance as if known. This immediately leads to confidence
intervals for τ2β under the consistency model. However, it is

not so obvious how we might obtain confidence intervals
for τ2β whilst allowing for the uncertainty in τ

2
ω, and vice versa,

when using Q profile type methods. For now some form of
bootstrapping provides a practical way to obtain confidence
intervals for the unknown variance components when using
either the Paule and Mandel or the DerSimonian and Laird
estimation methods. As discussed by Jackson et al,14 our
methods do not immediately result in estimates of the incon-
sistency parameters ωd, rather their variance τ2ω is estimated.
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This is analogous to estimating the between‐study variance in
conventional univariate random‐effects meta‐analyses and
not the individual true study effects. Empirical Bayes esti-
mates of the inconsistency parameters could in principle be
derived to identify where the inconsistencies in the network
arise but we leave this as an avenue for further work. The
use of prediction intervals when using classical models for
network meta‐analysis with random inconsistency effects is
another interesting possibility that also we leave as a possibil-
ity for future work.

Although we include inconsistency effects in our model-
ling, we recognise that there will be many instances where
the consistency assumption provides a good description of
the data. Furthermore, some analysts may wish to make this
assumption, perhaps on the grounds that this is thought to
be a necessary prerequisite for performing a network meta‐
analysis. Where possible attempts should be made to explain
and remove any inconsistences in the evidence base, severe
inconsistencies should strongly discourage the use of net-
work meta‐analysis because these are likely to make the
results invalid unless the model is well identified and
describes the data very well. Strategies for explaining and
removing notable inconsistencies include performing sub-
group and sensitivity analyses, and using adjusted treatment
effects. However, we suggest that it will often be much more
realistic to anticipate a little inconsistency and to include this
in the model, and this is our proposal here.

We have assumed a relatively simple model for network
meta‐analysis where there are just two unknown variances.
More complicated models could be considered in network
meta‐analyses where there is sufficient data to identify them,
but we suggest that our modelling framework is more than
adequate for most applications. However, it should be
recognised that the successful generalisation of the univariate
Paule and Mandel estimation method has relied upon the use
of our simple model. Further methodological work would be
needed to extend the Paule and Mandel estimation method to
fit more complex models.

We have focussed on the estimation of the model here but
other forms of inference are possible. In particular, probabi-
listic ranks and I2 statistics can be calculated in the way
described by Jackson, et al.14 See their extensive discussion
for other ideas for making further inferences when using
semiparametric estimation methods to fit models of the type
considered here.

To summarise, we have proposed a new estimation
method for network meta‐analysis. This new method extends
the univariate Paule and Mandel estimation method and has
been found to perform well in a variety of examples and in
a simulation study. We now have three classical estimation
methods for network meta‐analysis models with random
inconsistency effects. R computing code for the proposed
method is provided in the supplementary materials, and we
hope that this will serve to make our methods attractive to
applied analysts.
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APPENDIX

PROVING THAT ALL 3 Q PIVOTS ARE
STRICTLY DECREASING IN THE UNKNOWN
VARIANCE

To provide a general proof, we introduce notation that can
describe all 3 pivots in a flexible way. We will take τ2 to rep-
resent whichever unknown variance parameter is to be esti-
mated. Hence, τ2 represents τ2β in Equations 10 and 12 and

τ2ω in Equation 14. We will use Y and bY to represent the out-
come data and the fitted values in these equations so that Y

and bY represent Yd and bYd in Equation 12. We use β to rep-
resent the regression parameters so that β represents δ in
Equations 10 and 14 and represents βd in Equation 12. We
prove that the design specific pivot in Equation 12 is strictly
ℓ β1; β2;⋯; βkð Þ ¼ Y−bY β1; β2;⋯; βkð Þ
� �T

τ2Mþ C
� �−1

Y−bY β1; β2;⋯; βkð Þ
� �

;

decreasing in τ2β so that this is also true for their sum, which is

used for estimating τ2β under the full model.

We now emphasise the dependence of the estimated

regression parameters bβ on τ2 by writing bβ ¼
bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk τ2
� �� �T

where k is the length of β, dif-

ferent variance structures result in different estimates of the
regression parameters. The fitted vectors depend on τ2

through these estimated regression vectors and so we write

now bY bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk τ2
� �� �

to emphasise the correct

dependence structure.
When using the 3 pivots for estimation, the total precision

matrices are of the form (τ2M+C)−1, where C is a constant
matrix that is held fixed in the estimation and M denotes
the matrix associated with τ2. In the estimating equation
resulting from Equation 10, C=S and M=M1; in the esti-
mating equation from Equation 12, C=Sd and M=Md;
and in the estimating equation from Equation 14, C ¼
Sþbτ2βM1 and M=M2. Although Equation 14 is a function

of both variances, when estimating τ2ω, we use this pivot with

fixed τ2β ¼ bτ2β as explained above.

Using this flexible notation, we can represent all 3 pivots
as used for estimation as
Q τ2;bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk τ2
� �� �

¼ Y−bY bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk���
The chain rule for multivariate calculus gives

∂Q
∂τ2

¼ RT ∂
∂τ2

τ2Mþ C
� �−1h i� 	

Rþ ∑
k

i¼1

∂Q
∂bβi

( )
∂bβi
∂τ2

( )
(A2)

where R ¼ Y−bY bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk τ2
� �� �

denotes the

residuals.
Next, following Jackson et al.33, consider the esti-

mates bβ ¼ bβ1;bβ2;⋯;bβk� �T
for a fixed value of τ2

using maximum likelihood estimation (or equivalently
weighted least squares) under the normal model for Y
with covariance matrix τ2M+C. The log‐likelihood is
proportional to
where τ2 is held fixed. This likelihood is of the same

form as Equation A1, and we solve ∂ℓ= ∂bβi ¼
∂Q= ∂bβi ¼ 0 to estimate the regression parameters and
so calculate the fitted values in the quadratic form
A1. The summation in Equation A2 is therefore 0

(because ∂Q= ∂bβi ¼ 0 for all i=1 , 2 , ⋯ k) and the
derivative drastically simplifies.

Next, we require a standard result relating to matrix dif-
ferentiation. If F is a matrix whose entries are functions of
x= (x1,⋯xm)

T, then the matrix that contains the partially dif-
ferentiated entries of F with respect to xj is denoted as ∂F/∂xj
(Harville p.296, 39). Then the required result is expression
(8.15) of Harville (page 311) which, assuming F is square
and nonsingular, is

∂F−1

∂xj
¼ −F−1 ∂F

∂xj

� 	
F−1 (A3)

Taking F to be τ2M+C and xj to be τ2 in Equation A3,
where ∂/∂τ2[τ2M+C] =M, we can evaluate Equation A2 as

∂Q=∂τ2 ¼ − Σ−1R
� �T

M Σ−1R
� �

(A4)

where Σ= τ2M+C. It was noted above that M1, M2, and
Md are symmetrical; hence, M is regardless of which of
τ2
���T

τ2Mþ C
� �−1

Y−bY bβ1 τ2
� �

;bβ2 τ2
� �

;⋯;bβk τ2
� �� �� �

(A1)
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the 3 matrices M is taken to represent. C is also symmet-
rical in all 3 representations, because of this observation
and also because the within‐study covariance matrix S is
symmetrical. Hence, Σ= τ2M+C and its inverse are sym-
metrical, as required to present Equation A4 in the form
shown.

Finally, we have that M is positive semidefinite, because
it is proportional to the covariance matrix for the unknown
random‐effects. One definition of a positive definite matrix
A is that yTAy>0 for all vectors y. Then taking A=M and
x=Σ−1R in this definition of positive definiteness immedi-
ately results in the conclusion that

∂Q=∂τ2 ¼ − Σ−1R
� �T

M Σ−1R
� �

< 0 (A5)
so that all 3 pivots used for estimation are strictly decreasing
in the variance parameters that they estimate. The proposed
Paule and Mandel estimators are therefore unique. Equa-
tion A5 is more general than the result given by Jackson
et al33 for univariate meta‐regression, and this previous result
is recovered by takingM to be the identity matrix and Σ to be
a diagonal matrix containing the total variances of each
study; in a univariate meta‐regression, all estimates are inde-
pendent. This derivative has been checked numerically and
could be used in Newton‐Raphson numerical methods to
solve estimating equations (Equations 11, 13, and 15) in the
way explained by Jackson et al,33 but in practice, it is more
straightforward to use simple root finding methods such as
bisection.


