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MERIT: Systematic Analysis and 
Characterization of Mutational Effect on 
RNA Interactome Topology
Yongsheng Li,1,2* Daniel J. McGrail,2* Juan Xu,1* Junyi Li,1* Ning-Ning Liu,4 Ming Sun,3 Richard Lin,2 Rita Pancsa,5 Jiwei Zhang,2  
Ju-Seog Lee,2 Hui Wang,4 Gordon B. Mills,2 Xia Li,1 Song Yi,6,7 and Nidhi Sahni2,3,8,9

The interaction between RNA-binding proteins (RBPs) and RNA plays an important role in regulating cellular 
function. However, decoding genome-wide protein–RNA regulatory networks as well as how cancer-related muta-
tions impair RNA regulatory activities in hepatocellular carcinoma (HCC) remains mostly undetermined. We ex-
plored the genetic alteration patterns of RBPs and found that deleterious mutations are likely to occur on the surface 
of RBPs. We then constructed protein–RNA interactome networks by integration of target binding screens and ex-
pression profiles. Network analysis highlights regulatory principles among interacting RBPs. In addition, somatic 
mutations selectively target functionally important genes (cancer genes, core fitness genes, or conserved genes) and 
perturb the RBP–gene regulatory networks in cancer. These regulatory patterns were further validated using inde-
pendent data. A computational method (Mutational Effect on RNA Interactome Topology) and a web-based, user-
friendly resource were further proposed to analyze the RBP–gene regulatory networks across cancer types. Pan-cancer 
analysis also suggests that cancer cells selectively target “vulnerability” genes to perturb protein–RNA interactome 
that is involved in cancer hallmark–related functions. Specifically, we experimentally validated four pairs of RBP–
gene interactions perturbed by mutations in HCC, which play critical roles in cell proliferation. Based on the ex-
pression of perturbed RBP and target genes, we identified three subtypes of HCC with different survival rates. 
Conclusion: Our results provide a valuable resource for characterizing somatic mutation-perturbed protein–RNA 
regulatory networks in HCC, yielding valuable insights into the genotype–phenotype relationships underlying human 
cancer, and potential biomarkers for precision medicine. (Hepatology 2019;70:532-546).

Hepatocellular carcinoma (HCC) is one of 
the most aggressive human cancer types, 
associated with dismal clinical outcomes. 

Numerous studies have been carried out to elucidate 

molecular mechanisms of HCC, and dysregulation of 
multiple RNAs have been reported to be involved in 
the development of HCC.(1,2) However, RNAs do not 
function in isolation but interact with other biological 
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Interactome Topology; PRI, protein–RNA interaction; RACGAP1, Rac GTPase activating protein 1; RBP, RNA binding protein; SART3, 
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molecules (such as RNA binding proteins) in regu-
latory interactome networks in the cell. RNAs and 
their interacting protein partners can form distinct, 
highly dynamic ribonucleoprotein particles, which 
comprise the basic unit for gene expression regulation. 
Functional defects in RNA molecules can disrupt 
protein–RNA interaction (PRI) networks and cause 
various types of human diseases, such as cancer.(3,4) 
RNA binding proteins (RBPs) have been identified 
as key regulatory components that control the fate 
of nearly every RNA transcript in a cell. Due to the 
critical role of RBPs in regulating gene expression, 
mutations in RBP genes or their targets have been 
implicated as an important factor involved in human 
cancer progression.(5,6)

In the past decade, a large number of somatic vari-
ants have been identified in various positions in the 
cancer genomes, including mutations in RBPs and 
RNAs.(7-9) However, many fundamental questions 
regarding genotype–phenotype relationships engen-
dered by these mutations remain unresolved. Most 
previous studies modeled genotype–phenotype rela-
tionships based on the assumption that driver muta-
tions lead to complete loss of protein function through 
radical changes, such as protein instability or misfold-
ing. However, it has been increasingly appreciated that 

many driver mutations could act to perturb molecu-
lar interactions important for cellular functions.(10-12) 
We previously reported that a considerable fraction of 
driver disease mutations caused protein–protein inter-
action-specific or “edgetic” perturbations.(13) Based 
on the functional significance of protein–RNA reg-
ulatory interactome networks, mutations that disrupt 
either the RBPs or target RNAs might perturb the 
interactions among RBPs and RNAs as well as their 
protein products. These mutations could be delete-
rious to gene expression regulation and contributing 
to initiation or progression of various types of can-
cer. However, it is unclear to what extent protein–
RNA interaction perturbations are involved in HCC 
development. Furthermore, how do patient-specific 
mutations in RBPs or target genes contribute to the 
rewiring of protein–RNA regulatory networks and 
aberrant signal transduction? What are the driver 
mutations that cause protein–RNA interactome per-
turbations? To start addressing these questions, here 
we conducted a comprehensive study to systemati-
cally assess the functional impact of patient-specific 
somatic mutations that resulted in distinct protein–
RNA interactome network perturbations.

In this work, we first characterized widespread 
genetic alterations of RBPs in HCC and further 
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constructed genome-wide protein–RNA regulatory 
interactome networks by integration of target bind-
ing screens and expression profiling. Network analysis 
revealed regulatory principles among interacting RBPs 
and somatic mutations selectively targeted central 
genes in RBP–gene regulatory networks. Widespread 
mutation-mediated network rewiring in HCC was 
revealed, with perturbed genes being primarily involved 
in cell adhesion and cell proliferation. We validated the 
RBP regulatory networks in HCC based on predicted 
RBP–gene networks and extended these analyses to 
pan-cancer. Four pairs of RBP–gene interactions per-
turbed by mutations, which play critical roles in cell 
proliferation, were further experimentally validated. 
Moreover, three subtypes of HCC were identified 
based on the profiles of perturbed RBP–RNA regula-
tory networks, which exhibited distinct survival rates. 
Taken together, we provide evidence for widespread 
protein–RNA interactome perturbations in liver can-
cer, and our results suggest that network perturbation 
analysis helps distinguish driver mutations from pas-
senger variants in RNA signaling networks (Fig. 1A).

Materials and Methods
CoNStRUCtioN oF RBp–RNa 
RegUlatoRy NetWoRK iN HCC

To identify RBP–RNA interactions in HCC, we 
integrated enhanced CLIP (eCLIP) sequencing data-
sets with short hairpin RNA (shRNA)-seq datasets in 
HepG2 cell line.(14) In total, 136 eCLIP-seq datasets 
for 68 diverse RBPs and 450 shRNA-seq experiment 
datasets for 225 diverse RBPs in HepG2 cell line were 
integrated. Moreover, 10 normal RNA-seq datasets 
for HepG2 were also downloaded. Gene expression 
was measured by fragments per kilobase of transcript 
per million mapped reads. The RBP–RNA regulatory 
network in HCC was constructed by assembling all 
the RBP–gene pairs that harbored potential binding 
sites and exhibited gene expression correlations (see 
details in Supporting Methods).

pRoliFeRatioN 
QUaNtiFiCatioN

HEK293T cells were labeled with CellTrace Far 
Red (Invitrogen) per manufacturer’s instructions. 

Labeled cells were plated in 24-well plates at 1 × 
105 cells/well and immediately transfected with 
desired plasmids containing green fluorescent pro-
tein (GFP)-tagged wild-type RNA, mutant RNA, 
or empty GFP vector with Lipofectamine 3000 
per manufacturer’s instructions. The following day, 
medium was changed to serum-free Dulbecco’s 
modified Eagle’s medium and cells were cultured 
for 48 hours. For liver cancer cell lines, HepG2 and 
SNU-449 unlabeled cells were plated in serum-con-
taining media, transfected the following day using 
X-tremeGENE HP DNA transfection reagent 
(Sigma) per manufacturer’s instructions, and then 
labeled 24 hours thereafter before transitioning to 
serum-free Roswell Park Memorial Institute 1640 
medium.

RNa iMMUNopReCipitatioN
FLAG-tagged RNA binding proteins or empty 

FLAG control were cotransfected with either wild-
type or mutant putative target RNAs into HEK293T 
cells with Lipofectamine 3000 or liver cancer cell lines 
with X-tremeGENE HP. RNA immunoprecipita-
tion was then performed as previously described with 
minor modifications.(15,16)

StatiStiCal aNalySiS aND 
NetWoRK ViSUaliZatioN

All statistical analyses were performed by R lan-
guage 3.3.1. The violin plots were plotted by “vio-
plot” package in R. Survival analyses were based on 
the “NMF” package in R. Circos plot was performed 
by circos-0.69-3.(17) Networks were visualized by 
Cytoscape 3.4. Other details for the methods are pro-
vided in the Supporting Methods.

Results
WiDeSpReaD geNetiC 
alteRatioNS oF RBpS iN HCC

To compare and understand the differences in 
gene expression dynamics between RBPs and other 
genes in liver tissues, we first obtained a set of 1,350 
genes coding for RNA binding proteins across the 
human genome (Supporting Table S3). Based on the 
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Fig. 1. Genomic mutation landscape of RBP genes in HCC. (A) Protein–RNA interactome network perturbations may underlie 
genotype–phenotype relationships in cancer. (B) The RNA-seq expression levels and the expression variances of RBP genes in HCC. 
Green color, RBP genes; gray color, other genes. (C) The number of samples with distinct number of RBP mutations. The barplot 
shows the number of samples with RBP mutations. The pie chart shows the distribution of samples with/without RBP mutations. (D) 
Distribution of functional impact scores of mutations in RBPs and other genes, predicted by CADD, and distribution of evolutionary 
conservation indices of the mutated residue positions in RBPs versus other genes. (E) Number of mutations located on the surface of 
RBP protein structures. The barplot shows the frequency of randomly selected mutations that are located on the protein surface. The 
red dot marks the number of mutations on the RBP surface. P value is computed by comparing against 10,000 random samplings 
from the proteome space by chance. P values in B and D are computed by Wilcox rank sum test. Abbreviation: CADD, Combined 
Annotation Dependent Depletion. ***P < 0.001.
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genome-wide expression profiles of 374 liver cancer 
and 50 normal samples, we found that RBPs were  
significantly more highly expressed (Fig. 1B) than 
other protein-coding genes in liver cancer. Closer 
inspection of the variation also revealed that RBPs 
exhibited significantly lower variation in expression 
levels (Fig. 1B) than other coding genes. In addition, 
we investigated the expression of RBPs across normal 
tissues from the Genotype-Tissue Expression and 
The Human Protein Atlas projects(18,19) and found 
that RBPs also showed stable and high expression lev-
els (Supporting Fig. S1). These observations suggest 
that RBPs are with stabilized high expression across 
tissues, consistent with a central role in regulating 
gene expression.

To further define the extent to which RBPs are 
dysregulated in HCC, we analyzed the functional 
impact of RBP mutations in HCC. We found that 
97% of HCC samples harbored at least one RBP 
mutation (Fig. 1C). Most tumors had only a few 
RBP mutations per sample, whereas other tumors 
had more than 10 RBP mutations each. To survey 
if somatic mutations located in RBPs had functional 
impact, we calculated the Combined Annotation 
Dependent Depletion scores and the conservation 
index of the amino acid position for each muta-
tion.(13) We found that somatic mutations in RBPs 
were likely to be deleterious and to occur in more 
evolutionarily conserved residue positions (Fig. 1D) 
as compared with randomly selected mutations. 
These results indicate that RBP genes exhibit fre-
quent genetic alterations with possible functional 
impact in HCC.

In principle, somatic mutations may disrupt the 
overall structure of the corresponding protein, or 
alternatively exert specific effects on particular molec-
ular interactions.(12,20,21) To evaluate whether and how 
cancer mutations affect the binding of RBPs to their 
targets, we systematically explored the localization 
of somatic mutations on the three-dimensional pro-
tein structures of RBPs. As a result, we found that 
498 (63.4%; Fig. 1E) of the mutations were likely 
to locate on the surface of RBPs, a fraction that was 
significantly higher than that of randomly selected 
mutations (P < 0.001, random test). Moreover, we 
extended these analyses to 32 other cancer types and 
obtained similar results in mutations and gene expres-
sion as HCC (Supporting Fig. 2A,B). These results 
thereby highlight the fundamental roles of RBPs and 

potential relevance of somatic mutations in shaping 
the function of RBPs in cancer.

HigH-ReSolUtioN 
DeCoNVolUtioN oF pRoteiN–
RNa RegUlatoRy NetWoRKS iN 
HCC

To further understand how RBPs are associated 
with their target genes, we constructed comprehensive 
PRI networks in HCC by integrating 136 e-CLIP(14) 
and 450 shRNA high throughput sequencing data-
sets (Fig. 2A). All of the RBP binding peaks were 
mapped to 58,037 genes (coding and noncoding) with 
approximately 580,000 interactions among 68 RBPs 
and 26,391 genes identified. Lines of evidence have 
indicated that RBP binding to RNAs might result in 
expression alterations.(22,23) We next integrated the RBP 
knockdown datasets to identify the context-specific  
RBP–gene regulatory events. More than 754,000 
interactions among 220 RBPs and 12,272 genes were 
identified. Integrating the eCLIP-seq and shRNA 
datasets, we identified 103,967 interactions among 65 
RBPs and 8,691 genes in the HepG2 cell line (Fig. 
2A; Supporting Table S4). The majority (87%) of tar-
get genes represented protein coding genes, whereas 
approximately 3% were long intergenic noncoding 
RNAs (lincRNAs), suggesting that RBPs might play 
a role in regulating lincRNA expression (Fig. 2B).

RBPs were thought to control a large set of tar-
get genes through coregulation,(24-26) in which mul-
tiple RBPs work together to control individual target 
genes. We observed that about 82.1% genes were 
targeted by multiple RBPs (Supporting Fig. S3), sug-
gesting widespread coregulation of RBPs. Next, we 
computed the number of coregulated target genes for 
each pair of RBPs and found that the RBPs coregu-
lated significantly more target genes than randomly 
selected genes (Fig. 2C; P < 0.001). We then sought 
to hypothesize the biological constraints behind the 
synergetic regulation of RBPs might largely be due to 
interacting RBPs of the same complex. To test this 
hypothesis, we overlapped the RBP–gene interac-
tions in our networks with the experimentally derived 
binary protein–protein interaction networks.(27) We 
found that interacting RBPs significantly coregulated 
more target genes (Fig. 2D; P = 0.003). These results 
demonstrate that coregulation of RBPs might largely 
be due to interacting RBPs of the same complex.
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SoMatiC MUtatioNS 
SeleCtiVely taRget 
VUlNeRaBility poiNtS iN pRi 
NetWoRKS iN HCC

It is increasingly appreciated that perturbations of 
complex cellular networks are likely to underlie most 
genotype–phenotype relationships, including those 
mutations related to the pathogenesis of cancer. Our 
above analysis revealed that mutations in RBPs were 
likely to locate on the surface of RBPs (Fig. 1E). Next, 
we investigated whether these mutations might per-
turb the interactions between RBPs and target genes. 
We first compared the gene expression fold changes 
of samples with RBP mutations versus without muta-
tions. We found that the targets of RBPs were more 
likely to be differentially expressed in RBP mutated 
samples (Supporting Fig. S4), suggesting that RBP 
mutations might influence target gene expression 
through altering RBP-target binding. Cancer cells 

could selectively perturb functionally important RBPs, 
which might further change interactions among RBPs 
and target genes. Next, we investigated the extent to 
which mutations in target genes might perturb the 
RBP regulation. We identified 2,164 mutations that 
were located in the RBP binding sites (Fig. 3A). In 
addition, we randomly selected the same number of 
genomic regions as pseudo-binding sites. We found 
that target gene mutations were significantly enriched 
in RBP binding sites (P < 0.01).

Highly connected proteins in protein interaction net-
works were previously found to be, on average, more 
essential.(28) First, we calculated the number of tar-
get genes interacting with mutated RBPs or wild-type 
RBPs. We found that the number of target genes for 
mutated and wild-type RBPs was similar. Next, we com-
pared the number of RBPs that bound to target genes 
with binding site mutations versus other target genes. 
We found that genes with binding site mutations were 
likely to be bound by more RBPs (Fig. 3B), suggesting 

Fig. 2. Global RBP–gene regulatory networks in HCC. (A) The f lowchart for identifying RBP–gene regulatory networks by 
integration of eCLIP-seq and shRNA datasets. First, eCLIP-seq peaks were mapped to genome and genes with binding sites were 
identified. Second, RBP knockdown gene expression data sets were analyzed and genes with 2-fold expression alterations were 
identified as RBP candidate targets. Global RBP–gene regulatory networks were constructed by intersection of genes with binding 
sites and expression alterations. (B) The left pie shows the proportion of different types of genes targeted by RBPs, and the right pie 
shows the proportion of different types of RBP–gene interactions in HCC. (C) The density of RBP–RBP pairs as a function of the 
number of their coregulated target genes. The gray bars show the distribution for randomly perturbed RBP–gene regulation, whereas 
the blue bars show the distribution for the real condition. (D) The number of coregulated target genes for interacting RBP pairs versus 
noninteracting pairs. P value is computed by Wilcox rank sum test.
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that HCC mutations were likely to selectively target 
vulnerability points in PRI networks. Moreover, we 
observed that the mutations located in RBP binding 
sites were predicted to exhibit higher functional impact 
scores (Fig. 3B; Supporting Fig. S5; P = 0.014) and 
higher conservation index (Fig. 3B; Supporting Fig. S5) 
than randomly selected mutations. These results sug-
gested the critical roles of somatic mutations in RBP 
binding sites. To investigate the function of the mutated 

target genes, we then performed functional enrichment 
analysis and found that mutated target genes were sig-
nificantly enriched in cancer-related pathways, including 
p53 signaling pathway, cell cycle, and FoxO signaling 
pathway (Supporting Fig. S6). Taken together, these 
results highlight the critical roles of mutations located in 
the binding sites of RBPs, and it would be necessary to 
determine the consequence of mutation-mediated per-
turbations in the context of PRI interactome networks.

Fig. 3. Somatic mutation-mediated RBP–gene regulatory network rewiring in HCC. (A) Number of mutations located in RBP 
binding sites versus random genomic regions. The barplot shows the distribution of the number of mutations located in randomly 
selected genomic regions. The red star indicates the real number of mutations located in the binding sites of RBPs. (B) Number of 
RBP regulators for target genes with/without mutations in binding sites. Distribution of functional impact scores of mutations by 
CADD and evolutionary conservation indices of the mutated residue positions, respectively. (C) Circos plot shows the perturbed 
RBP–gene regulatory networks by somatic mutations. The inner circle shows the perturbed RBP–gene regulatory events. Purple, 
perturbed activation; green, perturbed inhibition. The blue dots mark the genomic locations of somatic mutations; the orange circle 
shows the locations of target genes; and the green circle shows the location of RBPs. (D) The fold-change in expression levels of the 
target gene CDKN1A in RBP knockdown cells and cells that harbor RBP binding site mutations. The eCLIP-seq read distribution 
around CDKN1A genomic loci and two binding sites of PRPF8 are marked by rectangles. Abbreviations: K, the RBP gene PRPF8 
knockdown; M, somatic mutations in the target gene CDKN1A; W, wild-type condition.
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SoMatiC MUtatioN-MeDiateD 
pRi iNteRaCtoMe NetWoRK 
ReWiRiNg iN HCC

To identify which protein–RNA interactions were 
perturbed in cancer, we integrated our genome-wide 
PRI interactome networks with somatic mutation and 
gene expression profiles. Our hypothesis was that the 
expression of target genes might be altered in mutated 
samples compared with normal controls if the somatic 
mutations perturbed the binding of RBPs. In total, 
204 somatic mutations were identified, which per-
turbed 209 interactions among 47 RBPs and 176 
target genes (Fig. 3C). There were 63.6% (133/209) 
positively regulatory interactions and 36.4% (76/209) 
negatively regulatory interactions perturbed in HCC.

Identifying somatic mutation-altered RBP–gene 
interactions also revealed some critical cancer-re-
lated genes. For instance, as an inhibitor of cellular 
proliferation in response to DNA damage, CDKN1A 
had been demonstrated to play key roles in cancer.(29) 
Here, we identified two mutations in the CDKN1A 
gene (M1R/I and D149H) that were likely to reduce 
the inhibition of the corresponding RBP PRPF8 (Fig. 
3D). CDKN1A showed more than 8-fold increase in 
expression levels upon knockdown of its RBP gene 
PRPF8, suggesting that PRPF8 binding might inhibit 
the expression of CDKN1A. Among the four muta-
tions in CDKN1A, we found that two mutations were 
located in the PRPF8 binding region, suggesting that 
these mutations might disrupt the binding of this 
RBP. Comparing the CDKN1A expression levels in 
mutated samples with those in wild-type samples, 
we found that the mutated samples showed increased 
expression (Fig. 3D; larger than 2-fold changes in 
expression). These results suggest that the disruption 
of RBP binding by somatic mutations could play a 
role in regulating the expression of cancer target 
genes. Taken together, all these results validate the 
mutation-mediated network rewiring in cancer and 
highlight the role of somatic mutations in rewiring 
PRI networks.

ValiDatioN oF MUtatioN-
MeDiateD pRi peRtURBatioNS 
aND eXteNSioN to paN-CaNCeR

To validate the above results for mutation-me-
diated RBP regulatory network perturbations, we 

analyzed other independent RBP-regulatory net-
works in HCC. The integration of high-throughput 
eCLIP-seq and shRNA-seq data had demonstrated 
great power for investigating the PRI alterations in 
cancer. However, such analysis might be blocked by 
the limited number of available data sets across cancer 
types. Thus, we proposed a three-step computational 
method (Mutational Effect on RNA Interactome 
Topology [MERIT]), which was based on the reg-
ulatory principles summarized from the eCLIP-seq 
and shRNA-seq data analysis, to systematically iden-
tify candidate driver mutations in cancer (Supporting 
Fig. S7; Supporting Methods). First, we retrieved 
1,198 motifs of 160 RBPs and used Find Individual 
Motif Occurrences to screen 15,429 gene sequences 
to discover potential binding sites.(30) At the P value < 
1.0e-4, we obtained 751,539 correlations among 125 
RBPs and 15,429 protein coding genes. We hypoth-
esized that the expression of RBPs were correlated 
with their target genes if the regulation was active in a  
specific context.(31) Thus, we integrated genome-
wide gene expression profiles across cancer samples 
and calculated the expression correlation coefficients 
between RBPs and potential target genes. We deter-
mined the false discovery rate (FDR) by identifying 
55,223 interactions among 124 RBPs and 12,515 
genes (FDR < 0.001), and we observed a significant 
overlap with those identified by eCLIP-seq data 
(Supporting Fig. S8). In addition, about 66.3% of the 
RBP–gene interactions inferred from gene expres-
sion profiles showed regulatory patterns consistent 
with those from shRNA datasets, which was signifi-
cantly more than the proportion of inconsistent ones  
(P < 0.001, Fisher’s exact test). Moreover, if two  
 RBPs interact with each other in protein–protein 
interaction networks, their target regulatory similar-
ity was higher (Supporting Fig. S9). These results 
not only validated the observations obtained from 
eCLIP-seq data but also demonstrated the proposed 
computational method could capture functional PRIs 
in liver cancer.

Next, we extended the analysis to Pan-cancer and 
observed that the RBP regulatory networks showed 
great variations across cancer types (Supporting 
Fig. S10). Despite their inherent diversity, we found 
that cancer types with similar tissue origins showed 
higher similarity in PRI regulatory network profiles 
(Supporting Fig. S10). Through analysis of these 
PRIs across cancer types, we found that synergistic 
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regulation of RBPs might largely be due to interact-
ing RBPs of the same complex (Supporting Fig. S10). 
Most of the RBP pairs belonged to the families of 
splicing factors and hnRNPs (Fig. 4A).

To investigate whether these target genes with 
binding site mutations were likely to play a role in 
cancer, we found that mutated target genes were 
likely to be significantly highly expressed and with 
lower expression variations, and that the mutation 
positions in RBP binding sites exhibited significantly  
higher evolutionary conservation (Supporting Fig. 
S11). To investigate the function of the mutated  
target genes, we performed functional enrichment 
analysis and found that mutated target genes were 
significantly enriched in cancer hallmark–related 
functions, including “cell adhesion” in tissue invasion 
and metastasis, and “DNA repair” in genome insta-
bility and mutations (Fig. 4B). Taken together, these 
results suggest the functional role of somatic muta-
tions in RBP binding sites, and that cancer cells selec-
tively target “vulnerability” genes to perturb the RBP 
regulation.

peRtURBeD RBp-geNe 
RegUlatioN iDeNtiFieS HCC 
SUBtypeS WitH DiStiNCt 
SURViVal RateS

HCC has been demonstrated to be one of the 
most heterogeneous cancers, as reflected by its mul-
tiple grades and difficulty to subtype. Next, we 
explored whether the expression profiles of perturbed 
RBP–gene targets could inform different subtypes 
of HCC. We applied the nonnegative matrix fac-
torization (NMF) to the gene expression profiles of 
219 genes in perturbed PRI networks of patients 
with cancer. With rank k from 2 to 7, NMF consis-
tently predicted the existence of robust classes for k= 
3 (Fig. 5A). Specifically, we found that the subtype 
C2 had a lower number of RBP/target mutations  
(Fig. 5B; P < 0.005) and a higher body mass index 
(Fig. 5C; P = 0.015). Next, we analyzed ethnic and 
etiological contributions in these subtypes. We found 
that there were more Asian patients in subtype C2, 
whereas the proportion of white patients was high in 

Fig. 4. Validation of somatic mutation-mediated RBP–gene regulatory network rewiring. (A) RBP–RBP coregulation networks 
in cancer. The splicing factor family is marked with the orange circle, and the hnRNP family is marked with the green circle. (B) 
Functional enrichment of the RBP target genes with binding site mutations. Each row indicates a cancer hallmark–related GO term, 
and each column indicates a type of cancer. The top barplot shows the number of GO terms enriched in each cancer, and the right 
barplot shows the number of cancer types each GO term is enriched in. Bigger dots indicate smaller P values (hypergeometric test). 
Abbreviation: GO, gene ontology.
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C1 and C3 (Supporting Fig. S12). Moreover, there 
was a higher proportion of patients with hepatitis C 
virus infection and alcohol consumption (Supporting 

Fig. S12). Previous studies had shown that muta-
tion burden was correlated with immune cell infil-
tration in cancer. Next, we inferred the immune cell 

Fig. 5. RBP–gene network perturbation profiles identify HCC subtypes. (A) Similarity of HCC samples. (B) The boxplots show the 
number of mutated RBP/target genes in the patients of different subtypes. (C) The boxplots show the distribution of BMI for different 
subtypes of HCC. (D) The proportion of samples with different tumor stages in each subtype. (E) Comparative analysis of different 
HCC subtypes. (F) The survival curve for different subtypes of HCC patients. (G) The pathways enriched by differentially expressed 
genes in different subtypes of HCC. Abbreviations: BMI, body mass index; CC-like, cholangiocarcinoma-like subtype; HB16, 16-
gene HCC subtype; HIPPO, Hippo pathway subtype; Hoshida, HCC RNA expression profiling subtype; NCIPHS, noncirrhotic 
intrahepatic portal hypertension subtype; NCIP, National Cancer Institute proliferation subtype; PRI cluster, current study; RS65, 
65-gene risk score subtype; SNUR, Seoul National University recurrence subtype.
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infiltration of each sample based on gene expres-
sion.(32) Consistently, we found that patients in sub-
type C2 showed a lower macrophage infiltration but 
higher stromal score (Supporting Fig. S12). In addi-
tion, the patients in subtype C2 had a higher fraction 
of advanced-stage tumors than other subtypes (Fig. 
5D; P < 0.001). These results suggest that the per-
turbed PRI profiles could help identify potential bio-
markers to classify HCC subtypes.

To better interpret these observations, we com-
pared our derived HCC subtypes with those in previ-
ous studies (Fig. 5E; Supporting Methods). We found 
that the patients in subtype C2 exhibited similarity 
to nondifferentiated RNA clustering phenotypes 
(Hoshida C2),(33) cholangiocarcinoma-like HCC, 
and silencing of the Hippo pathway and had high 
risk scores based on a gene expression signature of 
65 genes.(34) This subtype was similar to the iClust1 
identified by a recent study,(35) which showed poor 
prognosis. Indeed, we found that patients in these 
three subtypes exhibited different survival rates (Fig. 
5F; log-rank P = 0.009). Moreover, we identified dif-
ferentially expressed genes among different subtypes 
and performed pathway enrichment analysis to find 
whether distinct pathways were perturbed in these 
patients of different subtypes. It revealed that these 
subtypes exhibited distinct pathway perturbations 
(Fig. 5G); subtype C1 exhibited several cancer-related 
pathway perturbations, such as FoxO signaling path-
way, cell cycle, and metabolic pathways. In subtype C2 
and C3, the most significant pathway is spliceosome, 
indicating that RBP–RNA regulation in these sub-
types might be perturbed in alternative splicing sig-
naling in these patients. Moreover, we found that viral 
infection, alcoholism, or metabolism-related pathways 
were specifically enriched in subtype C1 and C3 (Fig. 
5G), suggesting that the subtypes are linked with 
HCC etiology. Taken together, these results suggest 
that distinct perturbations of RBP–RNA networks 
generate different HCC subtypes by dysregulation of 
distinct pathways.

MUtatioNS peRtURBiNg 
RBp–geNe RegUlatioN play 
a FUNCtioNal Role iN Cell 
pRoliFeRatioN

There are two possible modes of action for RBP–
gene regulation: RBP may inhibit or activate the 

expression of target genes through RBP–target bind-
ing, which we term as “inhibitory” or “activating,” 
respectively. Next, we experimentally evaluated the 
functional effects of HCC-associated mutations on 
RBP–gene regulation in HEK-293T cells, as well 
as HepG2 and SNU-499 liver cancer cell lines. We 
focused on somatic HCC mutations in target genes 
that we predicted to perturb PRIs, and randomly 
selected one such mutation in each RBP–gene regu-
lation category (“inhibitory” or “activating”) to experi-
mentally assess their role in cell proliferation.

Rac GTPase activating protein 1 (RACGAP1) 
plays a key role in controlling various cellular phe-
nomena including cytokinesis, transformation, inva-
sive migration, and metastasis.(36) We found that 
RACGAP1 was significantly overexpressed in HCC, 
whereas the RBP regulator (heterogeneous nuclear 
ribonucleoprotein F [HNRNPF]) was underex-
pressed (Fig. 6A). The expression of HNRNPF and 
RACGAP1 was significantly anticorrelated (Fig. 6A), 
and HNRNPF knockdown resulted in increased 
expression of RACGAP1 (Fig. 6B). These results sug-
gest that RACGAP1 is likely to be a target gene of the 
RBP HNRNPF, which possibly plays an inhibitory 
role in regulating RACGAP1 expression. We then 
cloned an HCC patient–derived RACGAP1 mutation 
c.1228A>T located in the RBP binding site and found 
this mutation significantly perturbed the interaction 
between HNRNPF and its RNA target RACGAP1 
(Fig. 6B). In patients with HCC, high expression of 
RACGAP1 was correlated with poor survival (Fig. 6C; 
P = 0.003). Consistently, in our functional assay, we 
found that mutated RACGAP1 led to a significant 
increase in cell proliferation (Fig. 6B).

Another example is the interaction between the 
RBP squamous cell carcinoma antigen recognized 
by T cells 3 (SART3) and its target gene centroso-
mal protein 55 (CEP55). Several studies have illu-
minated the role of CEP55 in cancer, and CEP55 
overexpression has been found in various types of 
cancer.(37) However, we are lacking knowledge about 
the determinants of the expression dysregulation 
in cancer. Based on the prediction by MERIT, we 
found that CEP55 expression was possibly regulated 
by the RBP SART3, which was also significantly 
overexpressed in HCC (Fig. 6D). This positive cor-
relation in gene expression suggested that SART3 
likely activates the expression of CEP55. To further 
support this, we found that knockdown of SART3 
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in cell lines significantly reduced the expression of 
CEP55 (Fig. 6E). In addition, MERIT predicted that 
CEP55 mutation in the RBP binding site would per-
turb the interaction between SART3 and CEP55. We 
thus cloned one such HCC-derived CEP55 muta-
tion, c.81A>T, and found that this mutation signifi-
cantly reduced the interaction between SART3 and 
CEP55, consistent with MERIT prediction (Fig. 6E). 
Moreover, high expression of CEP55 was correlated 

with poor survival in patients with HCC (Fig. 6F; P 
= 0.01). In support of this, we found that the mutated 
CEP55 reduced cell proliferation significantly com-
pared with wild-type controls (Fig. 6E). These results 
suggest that target gene mutations in the RBP bind-
ing site significantly alter cell proliferation, possibly 
through PRI perturbations in HCC.

To further support the high quality of our com-
putational predictions, we also validated another two 

Fig. 6. Effect of mutations perturbing RBP–gene interactions in cell proliferation. (A) Boxplots show the expression of the RBP gene 
(HNRNPF) and target gene (RACGAP1) in paired cancer and normal samples. The bottom plot shows the correlation in expression 
between the RBP and target gene. (B) Validation of the mutation perturbed RBP–gene interaction in three cell lines. Left panels show 
the expression of RACGAP1 upon HNRNPF knockdown relative to control. Middle panels show the fold enrichment of mutated and 
wild-type RACGAP1 RNAs that are bound by the RBP HNRNPF. Right panels show the relative proliferation in wild-type and 
RACGAP1 mutant cells. (C) The Kaplan-Meier plot for patients with HCC with high (red) and low expression (blue) of RACGAP1. 
(D-F) Similar as A-C for SART3 and CEP55. (G) The proposed model: Mutations in RBP binding sites perturb the inhibition or 
activation of target gene expression by RBPs and result in cell proliferation dysregulation in cancer.
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mutations (in “inhibitory” and “activating” RBP–gene 
regulatory class, respectively) predicted by MERIT to 
perturb RBP–gene interactions in HCC (Supporting 
Fig. S13). The experimental results in three cell lines 
were consistent with MERIT predictions, suggesting 
that mutations that perturb the inhibition or activa-
tion of target gene expression by RBPs play a role in 
cell proliferation (Fig. 6G). Taken together, all these 
results suggest that characterizing somatic muta-
tion-perturbed protein–RNA regulatory networks 
in HCC yields valuable insights into genotype–phe-
notype relationships underlying human cancer and 
could help identify potential biomarkers for precision 
medicine.

a USeR-FRieNDly WeB poRtal 
to iNVeStigate pRoteiN–RNa 
RegUlatoRy NetWoRKS iN 
CaNCeR

To facilitate researchers to apply the principles 
described in this work on any mutation or protein–
RNA regulation of interest, we developed a com-
prehensive and interactive web resource (https://
bio-bigdata.hrbmu.edu.cn/MERIT; Supporting Fig. 
S14). The features provided in the resource, which 
will be routinely updated, should serve as a guide for 
biologists interested in identifying protein–RNA reg-
ulation specificity for various applications (for exam-
ple, alternative splicing and pleiotropic studies) and 
understanding the consequences of mutations (for 
example, driver mutations and neutral variants) in 
patients with cancer and healthy individuals.

Discussion
Great efforts have been made to identify regula-

tory RNAs (genes or lincRNAs) with expression 
alterations in HCC. However, the precise molecular 
mechanisms for RNA deregulation remain largely 
unknown. Here, we systematically characterized the 
PRI interactome networks as well as somatic muta-
tion-mediated network rewiring in HCC. We found 
that RBP genes were more highly expressed than 
other classes of genes and were likely to be mutated 
in cancer. These somatic mutations tended to locate 
on the surface of RBPs, suggesting that they might 
influence the binding of RBPs to their target genes. 

As mutation frequency is important for identifying 
critical mutations, we anticipate that the mutations 
in RBPs with higher mutation frequency might play 
functional roles in cancer. Mapping somatic mutations 
to RBP binding sites, we identified 0.29%-49.95% of 
mutated target genes with mutations located in RBP 
binding sites across cancer types. Although the muta-
tions were likely to be located in the middle or down-
stream region of the RBP binding sites, the distance 
between the mutations and the start sites of RBP 
binding sites showed a marginal trend of negative cor-
relation with the functional impact of these mutations 
(R = -0.02; P = 2.50e-14). This result suggests that 
the certain subregions of the binding sites might be 
more important for RBP binding, and disruption of 
these sequences is likely to result in perturbed RBP 
regulation in cancer.

To understand the roles of RNAs and RBPs in 
cancer, we constructed global PRI regulatory interac-
tome networks by integrating multiple omics datasets 
in HCC. This work has not only revealed widespread 
protein-coding RNAs that are regulated by RBPs, but 
also identified interesting noncoding RNA targets. 
We further found that somatic mutations in cancer 
are enriched in RBP binding sites, suggesting that 
somatic mutations might disturb RBP–target regula-
tion. Based on the global protein–RNA interactome 
network analysis, we not only identified the RBPs and 
target genes perturbed by somatic mutations but also 
identified candidate RBP–gene edgetic perturbations 
in cancer. In addition, based on the regulatory princi-
ples learned from cell lines, we proposed a three-step 
method (MERIT) to identify candidate driver muta-
tions perturbing PRIs in cancer. Pan-cancer analysis 
further provides insights into mutation-mediated spe-
cific PRI perturbations. Expression analysis of these 
perturbed interactions also identifies three subtypes of 
HCC with different survival rates.

Our genome-wide analysis has revealed 539 inter-
actions among 65 RBPs and 59 differentially expressed 
lincRNAs (Supporting Fig. S15A). Moreover, we 
found that these differentially expressed lincRNAs 
were able to distinguish HCC samples from nor-
mal samples in this data set and another indepen-
dent Chinese HCC data set (Supporting Fig. S15B). 
ENSG00000225680 is the most highly expressed lin-
cRNA in HCC (Supporting Fig. S15C), suggesting 
that it might be a target for HCC therapy. Another 
representative example is the lincRNA LINC01089 

https://bio-bigdata.hrbmu.edu.cn/MERIT
https://bio-bigdata.hrbmu.edu.cn/MERIT
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(also known as lncRNA-inhibiting metastasis 
[LIMT]), recently demonstrated as a novel metastasis 
inhibiting lncRNA in aggressive breast cancer.(38) We 
observed that high expression of this lincRNA was 
associated with good prognosis of patients. We also 
found a mutation (G/C) located in the RBP binding 
sites of LIMT, which might disrupt the interactions 
between LIMT and putative RBPs. To investigate 
the targets of LIMT, we integrated gene expression 
profiling data and found that LIMT was coexpressed 
with genes involved in DNA replication, homologous 
recombination (Supporting Fig. S15D; FDR < 0.001), 
and immune-related functions (Supporting Fig. S15E; 
FDR < 0.001). Taken together, our integrative analysis 
reveals potential functions of lincRNAs in PRI signal-
ing networks.

Our results further provide a genome-wide view 
on how somatic mutations mediate network rewir-
ing in cancer, but this view is possibly incomplete. 
In particular, the number of available RBP motifs, 
eCLIP-seq, and genetic perturbations data sets for 
RBPs is small compared with thousands of RBPs 
identified in humans. Thus, the proposed computa-
tional method (MERIT) is a useful tool to identify 
previously unknown functional PRIs in cancer. This 
computational framework has not only validated 
the experimental results observed in HCC but also 
provided insights into the RBP–gene regulatory 
networks across cancer types. In addition, alterna-
tive splicing (AS) is a process highly regulated by 
RBPs.(39,40) Integration of AS data sets will provide 
novel insights into our understanding of RBP reg-
ulation in cancer. The most commonly used meth-
ods for distinguishing drivers from passengers are 
frequency-based methods, which quantify the sig-
nificance of the mutation frequency of each gene 
compared with a background mutation rate.(41) We 
also compared the mutation frequency of RBP genes 
and mutations in RNA binding sites with other 
mutations across cancer types. There are 35.7% of 
cancer types with higher mutation frequency in 
RBPs than mutations in other genes. For the muta-
tions in binding sites of target genes, there are about 
32.1% cancer types with higher mutation frequency. 
These results suggest that the mutations with lower 
frequency might also play critical roles in cancer by 
perturbing the RBP–gene interactions. Integration 
of mutation frequency and network analyses will 
identify the key mutations in cancer.

In conclusion, these results should guide prioriti-
zations of cancer-causing mutations emerging from 
genome-wide association analysis and next-generation 
sequencing projects and provide insights into geno-
type–phenotype relationships in cancer.
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