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Abstract The loss of muscle mass and function with

age, termed sarcopenia, is an inevitable process, which

has a significant impact on quality of life. During

ageing we observe a progressive loss of total muscle

fibres and a reduction in cross-sectional area of the

remaining fibres, resulting in a significant reduction in

force output. The mechanisms which underpin sar-

copenia are complex and poorly understood, ranging

from inflammation, dysregulation of protein metabo-

lism and denervation. However, there is significant

evidence to demonstrate that modified ROS genera-

tion, redox dis-homeostasis and mitochondrial dys-

function may have an important role to play. Based on

this, significant interest and research has interrogated

potential ROS-targeted therapies, ranging from nutri-

tional-based interventions such as vitamin E/C,

polyphenols (resveratrol) and targeted pharmacolog-

ical compounds, using molecules such as SS-31 and

MitoQ. In this review we evaluate these approaches to

target aberrant age-related ROS generation and the

impact on muscle mass and function.
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Introduction

The age-related decline in muscle mass, strength and

function, termed sarcopenia, is a significant contrib-

utor to frailty (Lexell 1993). Approximately 600

million people over the age of 60 years old suffering

from sarcopenia in 2000 and by 2050 this population is

estimated to grow to 2 billion people (Dhillon and

Hasni 2017). Sarcopenia contributes considerably to

the frailty seen in the elderly population, with

sarcopenia being associated with generalised weak-

ness, impaired mobility, poor balance and stamina

(Walston 2012). Consequently, this can lead to an

increasing number of falls, disability and mortality

(Cruz-Jentoft et al. 2014).

Loss of muscle mass typically begins from around

50 years of age, occurring at a rate of around 1–2% per

year, with around a 50% reduction by 80 years of age

(Lexell 1993). Ageing muscle displays a reduction

(atrophy) in overall fibre cross-sectional area, with a

predominant loss of type II muscle fibres (Lexell

1993). Consequently, this results in an overall slow

twitch phenotype, characterised by a reduction in force

generation and activation velocity (Nilwik et al. 2013).

The impact of sarcopenia is compounded via
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unloading and disuse of muscle as a consequence of a

progressively sedentary lifestyle (Breen et al. 2013).

The mechanisms that underpin sarcopenia are not

fully understood, however, it is a complex multifac-

torial network of interacting dysfunctional systems.

Specifically, modified protein synthesis (Breen and

Phillips 2013) and anabolic blunting (Cuthbertson

et al. 2005), alongside chronic low-grade inflamma-

tion (Roubenoff 2003), mitochondrial dysfunction

(Sakellariou et al. 2017), aberrant ROS generation

(Vasilaki and Jackson 2013), denervation (Pollock

et al. 2017; Scalabrin et al. 2019) and a reduced

regenerative capacity (Almada andWagers 2016) are

some of the key processes implicated in sarcopenia. In

this review we will evaluate the ROS generation in

skeletal muscle and the role these processes play in

sarcopenia and current avenues for therapeutic

intervention.

Reactive oxygen and nitrogen species (RONS)

generation and regulation in skeletal muscle

Reactive oxygen and nitrogen species are radical and

non-radical bi products of cellular respiration, formed

via the molecular reduction of atmospheric oxygen.

Skeletal muscle as an excitable tissue with a high

energetic demand is widely described as a significant

generator of RONS. In the context of ageing, seminal

studies in the 1950’s developed the field and investi-

gation of RONS, formulating the ‘‘free radical theory

of ageing’’ (Gerschmann 1954; Haraan 1955). An

increased activity of reactive oxygen species (ROS)

has been implicated in the processes underlying

ageing and, in all species, tissues (including skeletal

muscle) of aged organisms contain increased amounts

of oxidative damage to lipids, DNA and proteins

(Vasilaki et al. 2006).

There are a diverse family of RONS in skeletal

muscle, with superoxide (O2.
-) and nitric oxide

(NO-) are the primary species generated at rest and

in response to contractile activity (Sakellariou et al.

2014). Moreover, there is a complex network of

enzymatic and non-enzymatic antioxidant defence

mechanisms which regulate RONS generation (Halli-

well and Guttridge 2015).

Superoxide is generated from complex I, II and III

of the electron transport chain and the nicotinamide

adenine dinucleotide phosphate NAD(P)H oxidases,

xanthine oxidase and lipoxygenase enzymes (Hellsten

et al. 1997; Zuo et al. 2004; Muller et al. 2004;

Goncalves et al. 2015). Superoxide has a relatively

long biological half-life of * 10-6 s, is membrane

impermeable, bar movement via specific membrane

channels (TOM40/VDAC/BAX). Superoxide has a

low oxidising capacity towards cellular macro-

molecules; however, it may react with other species

such as NO-, forming the highly reactive peroxyni-

trite (ONOO-) (Halliwell and Guttridge 2015). Typ-

ically, superoxide is dismutated to hydrogen peroxide

(H2O2) by the superoxide dismutase (SOD) family of

enzymes (Fukai and Ushio-Fukai 2011). The SOD

family of enzymes are characterised by their ability to

convert O2.
- to H2O2 are localised to different cellular

compartments and differentiated by the transition

metal bound to the active site. SOD1 termed

CuZnSOD is localised to both the cytosol and

mitochondrial intermembrane space; SOD2 termed

MnSOD is enriched within the mitochondrial matrix

and SOD3 (extracellular SOD) has a CuZn cofactor

and is found in the interstitial spaces (Halliwell and

Guttridge 2015). Approximately 35% of all cellular

SOD activity is localised to the mitochondria to

skeletal muscle (Ji et al. 1998). Modification of SOD

activity and function has been shown to induce

dysfunction in skeletal muscle. Specifically, SOD1

gene knockout mice display elevated markers of

oxidative damage and an overall accelerated sar-

copenic phenotype and is a model for amyotrophic

lateral sclerosis (Deepa et al. 2019). In response to

contractile activity, skeletal muscle upregulates the

expression of both SOD1 and 2, with a higher activity

in type I slow oxidative muscle fibres (Kojda and

Hambrecht 2005).

Nitric oxide (NO-) is generated by the nitric oxide

synthase (NOS) enzymes, catalysing the conversion of

L-arginine to citrulline (Korhonen et al. 2005). NO-

has a biological half-life of* 1–10-1 s and functions

via s-nitrosylation of cysteine residues (Stamler and

Meissner 2001). There are three key members of the

NOS enzyme family: inducible (iNOS), neuronal

(nNOS) and endothelial (eNOS). NO- has a well-

established function in vasodilation and the immune

response and has an important role in muscle physi-

ology. A recent study using the nNOS-/- mouse,

demonstrated NO- helps to regulate muscle fibre type,

fatiguability and post-exercise recovery (Moon et al.

2017). NO- levels are elevated in the muscle fibres of

old mice following contractile activity, associated in
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with elevated marked of nitrosylation (3-nitrotry-

rosine) and eNOS activity (Pearson et al. 2015).

Hydrogen peroxide is a non-radical species, gener-

ated from dismutation of superoxide by the SODs, and

as a bi product of protein folding in the endoplasmic

reticulum via the thiol-disulphide exchange mecha-

nism (Hudson et al. 2015). Comparative to other

radical RONS species, H2O2 has a relatively long half-

life 10-5 s and is membrane permeable. H2O2 levels

are regulated by the enzymes catalase, glutathione

peroxidase (Gpx) and the peroxiredoxin (PRXs)

family, converting it to water and oxygen. Elevated

H2O2 generation has been observed in the muscle of

old mice and is reported to be derived from increased

mitochondria superoxide generation (Mansouri et al.

2006). Moreover, H2O2 has been heavily implicated as

an important mediator of muscle ageing, based on

several studies of the transgenic mCAT model, which

overexpress the human form of catalase in the

mitochondria (Basisty et al. 2016). mCAT mice have

been shown to have increased longevity (Schriner

et al. 2005) and improved muscle function—the latter

due to decreased ca2? leakage from the sarcoplasmic

reticulum (Umanskaya et al. 2014).

Peroxynitrite (ONOO-) is a highly reactive radical

species, formed via the reaction between superoxide

and nitric oxide, with a half-life of 10-2 s. Thiol (-SH)

groups are highly sensitive to peroxynitrite (resulting

in disulphide formation), which can rapidly deplete the

overall thiol pools within the cell. Peroxynitrite

induces the nitration of tyrosine and S-nitrosylation

of cysteine residues and can induce significant damage

to DNA and in some instances, affect enzyme activity

and supress signalling cascades. Studies in isolated

muscle fibres have demonstrated that peroxynitrite

directly suppresses ca2? stimulated force generation

(Dutka et al. 2011). Studies of old mice (26–28 month)

and in the SOD1-/- model have shown a three-fold

increase in 3-nitrotyrosine (3-NT) residues compared

with young/WT controls (Sakellariou et al. 2011;

Pearson et al. 2015).

Hydroxyl radical (OH-) is a highly reactive

species, with a very short half-life * 10-9 s. The

hydroxyl radical is formed via the fenton reaction:

Fe2þ þ H2O2 ! Fe3þ þ OH � þOH�

Transition metals such as iron (Fe?) or copper

(Cu2?) can reduce H2O2 to the hydroxyl radical.

Contracting skeletal muscle has been shown to

generate the hydroxyl radical (O’Neill et al. 1996)

and it has been reported to modify calcium sensitivity

and force generation in rodent muscle fibres (Murphy

et al. 2008). However, there are some elements of

controversy in terms of the fenton reaction, given the

relatively low concentrations of transition metals

detected in vivo (Halliwell and Guttridge 2015).

Mitochondrial dysfunction in skeletal muscle

ageing

Skeletal muscle is richly abundant in mitochondria,

due to the high energetic demand of contractile

activity. Thus, given the role of mitochondria in

ROS generation, there has been significant interest in

understanding what if any part mitochondria may play

in muscle wasting and dysfunction. Aberrant ROS

generation and oxidative damage have been associated

with many aspects of mitochondrial dysfunction in

skeletal muscle ageing. Firstly, accumulation of

mitochondrial DNA mutations (mtDNA) in human

aged skeletal muscle is evident (Bua et al. 2006;

Herbst et al. 2007; Melov et al. 1995). Various in vitro

studies have shown association with mtDNA muta-

tions and with reduced content of the etc. complexes,

oxidative phosphorylation, and membrane potential

(Hiona et al. 2010; Sahu et al. 2018), as well as

increased expression of mitochondrial markers of

oxidative damage, decreased antioxidant defense

system and mitochondrial biogenesis, indicative to a

defective adaptive response to mitochondrial dysfunc-

tion in mtDNA mutator mice (Kolesar et al. 2014).

These studies are consistent with results in aged rats

that showed reduced levels of mitochondrial biogen-

esis and function markers, accompanying with swol-

len mitochondria (Zhu et al. 2019; Sahu et al. 2018).

Furthermore, there is an age-related decline in mito-

fusin 2 (Mfn2) a key regulator of mitochondrial fusion

(Sebastian et al. 2016), which an important process

which helps regulate and accommodate the energetic

demands of the cell. Moreover, ablation of Mfn2 in

mice induced an ageing phenotype, associated with

impaired mitophagy (Sebastian et al. 2016). The latter

observation may be related the accumulation of

damaged mitochondria during ageing. Changes have

been observed in both intermyofibrillar (IMF) and

subsarcolemmal (SS) mitochondria in aged mice. IMF

mitochondria appeared longitudinal and branched in

shape, whereas SS mitochondria had a larger and less

123

Biogerontology (2020) 21:475–484 477



circular appearance—in, contrast they did not observe

changes in absolute Mfn2 levels. However, there was

alteration in the ratio of genes which regulate mito-

chondrial fusion, fission and biogenesis—suggesting

dysregulation of the overall system (Leduc-Gaudet

et al. 2015). Further rodent studies have also demon-

strated ageing and the loss of muscle mass and

function to be associated with a downregulation of

genes encoding key mitochondrial function (Ibebunjo

et al. 2013).

Targeting RONS to combat sarcopenia

Given the ever-ageing population and the socioeco-

nomic impact of sarcopenia, there is an urgent need to

develop effective targeted therapies. Moreover, the

significant evidence of aberrant RONS generation and

mitochondrial dysfunction in muscle ageing suggest

that therapies to target these processes are worthy of

investigation.

Vitamins

Nutritional antioxidants are considered as a potential

approach in an effort to combat the age-related loss of

muscle mass and function, due to their antioxidant and

anti-inflammatory activity. A study showed that both

Vitamin E and C supplementation could improve

muscle function by increasing antioxidant activity and

preventing oxidative stress in aged rats (Ryan et al.

2010). A further insight into the effects of the two

subgroups of vitamin E, tocopherol and tocotrienols,

suggested that both a-tocopherol and tocotrienol-rich

fraction (TRF) can encourage myogenic differentia-

tion during replicative senescence, with TRF having

superior effects (Khor et al. 2016). Data demonstrated

that TRF can promote muscle regeneration during

oxidative stress-induced premature senescence, by

both increasing the proliferation capacity of myoblasts

and maintaining the renewal of satellite cells (Lim

et al. 2019). A further study using a vitamin E analog,

TROLOX, showed that it could prevent oxidative

stress and maintain skeletal muscle mass in an animal

ageing model with muscle specific Opa1 deletion

(Tezze et al. 2017). A clinical trial on female athletes

has shown that supplementation of Vitamin E and C

together or Vitamin C alone could reduce muscle

damage, alongside with decreased levels of oxidative

stress markers, induced by aerobic exercise (Taghiyar

et al. 2013). Further enhancing previous evidence of

beneficial effects of vitamins supplementation in

muscle ageing, a recent study showed a positive

association between high dietary intake of vitamin E,

C, and carotenoids with improved sarcopenic indices

(muscle mass and power); however, this association

was only noticeable in women younger than 65 years

(Welch et al. 2019).

However, it is important to note that there is

compelling evidence demonstrating the use of broad-

spectrum antioxidants such as vitamin C and E, can in

fact suppress the beneficial adaptations in response to

exercise training (Ristow et al. 2009). In contrast,

mitoQ supplementation during endurance training,

displayed no tangible beneficial or negative effects in

terms of adaptations (Shill et al. 2016). Moreover n-

acetylecysteine supplementation has been reported to

suppress fatigue following repeated bouts of intermit-

tent exercise (Cobley et al. 2011). However, RONS are

no longer considered to be purely toxic/damaging

molecules and instead are important mediators and

regulators of an array of signalling cascades and

pathways (Cobley et al. 2015).

Resveratrol

Resveratol has been widely studying in muscle ageing

due to its antioxidant activity, as well as its effects on

peroxisome proliferator-activated receptor gamma

coactivator-1a, an important regulator of mitochon-

drial biogenesis (Gülçin 2010). The anti-ageing effects

of resveratrol supplementation for 4 weeks, have been

recently reported, highlighting its capability of inhibit-

ing lipid peroxidation and increasing catalase and

superoxide dismutase activity, by targeting mitochon-

drial mass and function, associated with improved

physical endurance in aged mice (Muhammad and

Allam 2018). In an in vitro study, resveratrol has

shown dose-dependent effects on muscle cell plastic-

ity, with low doses preventing ROS generation and

inducing muscle regeneration, effects not observed in

high doses (Bosutti and Degens 2015). However,

various studies have obtained controversial results on

the effect of resveratrol on ageing-associated muscle

dysfunction. A 6–7-week low-to-moderate daily

resveratrol intake has produced no effects in muscular

strength and function in aged mice (Baumann et al.

2014; Zhou et al. 2019). Similarly, long-term (10

months) low-to-moderate daily resveratrol intake,

123

478 Biogerontology (2020) 21:475–484



even though it could mitigate ageing-induced oxida-

tive stress, no beneficial effects were observed on

muscle mass and function in aged mice, while

mitochondrial biogenesis was also unaffected by

resveratrol (Park et al. 2018). Overall, it seems that

resveratrol has protective effects against ageing-

induced abnormalities, even the incongruent findings,

as they can likely be explained by variations in the age

of experimental species, as well as the dosage and

duration of supplementation; those variations high-

light the need for further investigation for acute and

chronic resveratrol intake both in vitro and in vivo

with consistent experimental approach.

Targeted antioxidant therapies

When evaluating studies of antioxidants, there is a

large degree of heterogeneity in terms of efficacy and

outcomes. This is likely due in part to a poor

distribution and uptake of such compounds into cells

and tissues, resulting in the need to administer such

antioxidants in high concentrations. In the case of the

latter, this may be a reason for the observed pro-

oxidant effect of some purported antioxidants (Pear-

son et al. 2006). Thus, development of targeted

antioxidant therapies has provided a novel and

promising avenue of research, in an effort to combat

the pitfalls of broad-spectrum approaches.

Given the aforementioned potential role of mito-

chondrial dysfunction in sarcopenia, the use of novel

antioxidant compounds to this organelle have been

investigated in sarcopenia and a range of myopathies

and neuromuscular disease (Sakellariou et al. 2017).

The Szeto-Schiller (SS-) peptide family are small

molecules, with potent antioxidant capacity towards a

range of radical species (Lightfoot et al. 2015). The

Dmt-D-Arg-Phe-atnDAP-NH2 structure of the SS-

peptides results in their accumulation at the inner

mitochondrial membrane (IMM). The accumulation

of SS- peptides at the IMM does not rely on the

mitochondrial membrane potential, which offers a

unique opportunity to target mitochondria which may

have underlying damage (Zhao et al. 2004).

SS-31 has been explored as a potential therapy

against the age-related loss of muscle mass and

function (sarcopenia). Modified ROS generation and

oxidative damage has been widely characterised as an

important mediator of muscle wasting and dysfunction

(Lightfoot et al. 2014). In this study, mice were

administered sub-cutaneous SS-31 peptide (1.5 mg/

kg), over a four-month period from 24 to 28 months of

age. Data showed significant reductions in markers of

oxidative damage in the muscles of old mice, however,

this did prevent the age-related loss of muscle mass

and function (Sakellariou et al. 2016a). This clearly

supports the potent ability of SS peptides as antiox-

idants, however, the lack of change in underlying

pathology in this instance may be due to the complex

and multi-factorial nature of sarcopenia. In contrast,

8-weeks of SS-31 (3 mg/kg) treatment in 26-month old

mice, showed improvements in mitochondrial struc-

ture, function and homeostasisalongside an increased

in exercise tolerance (Campbell et al. 2019). More-

over, short-term (1-h) SS-31 treatment (3 mg/kg) of

27-month-old mice, improved mitochondrial function

and muscle performance (Siegel et al. 2013). Thus,

differences in dose and duration of treatment with SS-

31 in these models may be significant factors in the

observed differences in outcome.

More recently, SS-31 has been explored in the

context of a murine model of doxorubicin-induced

toxicity (Montalvo et al. 2019). Doxorubicin is a

highly potent chemotherapy agent, which has signif-

icant side-effects on muscle. In this study, SS-31 (3

mg/kg) attenuated mitochondrial ROS generation and

proteolytic pathway activity in the muscles of dox-

orubicin treated mice (Montalvo et al. 2019). Further-

more, studies of leukocytes taken from patients with

type 2 diabetes, demonstrated a reduction in inflam-

mation, via down regulation of TNF-alpha and NF-kB

and upregulation of SIRT1, in response to treatment

with SS-31 peptide (Escribano-Lopez et al. 2018).

Thus, there are clear and compelling evidence demon-

strating the potent antioxidant ability of SS family of

peptides in a range of disorders, which can have direct

functional effects.

Mitoquinone is a compound derived from ubiqui-

none, which has a lipophilic cation (triphenylphos-

phonium) conjugated to it, which drives accumulation

of the molecule within mitochondria (Murphy and

Smith 2007). Ubiquione is a crucial component of the

electron transport chain as a two-electron carrier, as

well as having antioxidant capacity (Nicholls and

Ferguson 2002). MitoQ readily accumulates within

the cytosol of the cell driven by the plasma membrane

potential, however, is found in [ 100-fold greater

concentration within the mitochondria at the matrix

face of the inner membrane, driven by the
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mitochondrial membrane potential (Murphy and

Smith 2007). Upon accumulation in the mitochondria,

MitoQ is converted to its active antioxidant form

(ubiquinol) via reduction at complex II (Murphy and

Smith 2007). When acting as an antioxidant, MitoQ is

oxidised to ubiquinone and then rapidly reduced back

to ubiquinol, rejuvenating its antioxidant capacity and

thus, is a marker of the efficacy of MitoQ. MitoQ has

an affinity for an targets the hydroxyl (.OH) radical,

thus preventing lipid peroxidation (Tauskela 2007),

alongside quenching superoxide generation (James

et al. 2005). In the context of ageing-induced

mitochondrial dysfunction, a recent study has clearly

found that MitoQ was able to alleviate ageing-induced

changes in respiratory chain, ATP production, and

membrane potential, highlighting the role of perox-

ynitrite in ageing deficits (Maiti et al. 2018). However,

its effects on ageing-induced muscle atrophy seem to

be less clear. A study of ageing mice (24–26 months)

reported failure of long-term MitoQ supplementation

to protect against age-related loss of muscle mass

function and oxidative damage (Sakellariou et al.

2016b). A further novel mitochondria-targeted antiox-

idant is XJB-5-131, which is TEMPO derivative that

has a gramicidin S moiety conjugated to it, which

encourages accumulation in the mitochondria (Robin-

son et al. 2018). XJB-5-131 has been found to decrease

mitochondrial ROS and membrane depolarization

(Escobales et al. 2014), increase the activity of the

electron transport chain complexes, and improve the

single fibre contractile properties in aged rats (Javadov

et al. 2015).

Conclusions

Aberrant ROS generation and redox dis-homeostasis

have clear and important role to play in the age-related

loss of muscle mass and function (Fig. 1). However,

there is no clear consensus on intervention to target

ROS. There remains significant discordance in find-

ings, likely due to differences in model systems

(species) in tandem with dosing regimens. Moreover,

this raises questions on the ability to translate these

mechanistic findings to humans—where there is a

need to pursue this line of research further.
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Fig. 1 A schematic summary of the role of ROS and putative interventions in the age-related loss of muscle mass and function
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