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BACKGROUND: Screening is an unsolved problem for ovarian cancer (OvCA). As late detection is equivalent to poor prognosis,
we analysed whether OvCA patients show diagnostically meaningful microRNA (miRNA) patterns in blood cells.
METHODS: Blood-borne whole miRNome profiles from 24 patients with OvCA and 15 age- and sex-matched healthy controls
were biostatistically evaluated.
RESULTS: Student’s t-test revealed 147 significantly deregulated miRNAs before and 4 after Benjamini–Hochberg adjustment. Although
these included miRNAs already linked to OvCA (e.g., miR-16, miR-155), others had never before been connected to specific
diseases. A bioinformatically calculated miRNA profile allowed for discrimination between blood samples of OvCA patients and
healthy controls with an accuracy of 476%. When only cancers of the serous subtype were considered and compared with
an extended control group (n¼ 39), accuracy, specificity and sensitivity all increased to 485%.
CONCLUSION: Our proof-of-principle study strengthens the hypothesis that neoplastic diseases generate characteristic miRNA
fingerprints in blood cells. Still, the obtained OvCA-associated miRNA pattern is not yet sensitive and specific enough to permit the
monitoring of disease progression or even preventive screening. Microarray-based miRNA profiling from peripheral blood could thus
be combined with other markers to improve the notoriously difficult but important screening for OvCA.
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Patients suffering from ovarian cancer (OvCA) are still burdened
by the most unfavourable prognosis of all gynaecological cancers
(Pectasides and Pectasides, 2006). This is largely due to the
generally late detection of the disease: while 5-year survival is 90%
in those 25% of cases in which diagnosis is achieved at FIGO
I stage (Duffy et al, 2005; Badgwell and Bast, 2007), long-term
survival becomes very limited at advanced stages FIGO III and IV
(combined 5-year survival rate B10%) (Duffy et al, 2005). Accor-
dingly, there is a major interest in the discovery of biomarkers for
the early detection of OvCA (Clarke-Pearson, 2009). However, even
CA125 that was the most promising single marker found in serum
is neither sensitive nor specific enough (Meany et al, 2009) and
therefore not recommended for screening of asymptomatic women
(Duffy et al, 2005). Sensitivity is biologically limited by the lack
of CA125 (over)expression in approximately 50% of OvCAs at
FIGO stage I (Jacobs and Bast, 1989). Specificity is also a problem
because approximately 1% of all healthy women seem to have

elevated levels of this marker (Bast et al, 1983). In addition, several
benign conditions such as endometriosis, pelvic inflammations,
ovarian cysts or even pregnancy (Duffy et al, 2005) also result in
increased CA125 levels.

As a tool for the monitoring of OvCA recurrence, CA125 is also
of very limited use. Until now there is no evidence that an earlier
initiation of suitable therapies on increases in CA125 levels
translates into a prolonged survival (Eisenhauer et al, 1997). Thus,
surveillance of OvCA patients with CA125 is not recommended
at the moment (Duffy et al, 2005).

Considering that all efforts to identify suitable protein bio-
markers were largely futile, we turned our attention to microRNAs
(miRNAs). These small (17–24 nucleotides) non-coding RNAs
(Lee et al, 1993) regulate many physio- and pathological processes
through control of gene expression (Calin and Croce, 2006; Zhang
et al, 2007). As opposed to mRNAs, miRNAs are active moieties by
themselves and should thus reflect physiological alterations more
directly (Gilad et al, 2008). A de-regulation of miRNA expression
has already been described in numerous malignancies including
OvCA in which it was functionally connected to the inhibition
of apoptosis (Yang et al, 2008; Zhang et al, 2008). As tumour-
associated miRNA patterns are highly tissue-specific, they can
allow an identification of the origin of tumour metastases
(Rosenfeld et al, 2008). Moreover, miRNAs are also remarkably

Revised 28 June 2010; accepted 7 July 2010; published online 3 August
2010

*Correspondence: Dr J Wischhusen;
E-mail: Wischhusen_J@klinik.uni-wuerzburg.de
6 The first two authors contributed equally to this work.

British Journal of Cancer (2010) 103, 693 – 700

& 2010 Cancer Research UK All rights reserved 0007 – 0920/10

www.bjcancer.com

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s

http://dx.doi.org/10.1038/sj.bjc.6605833
http://www.bjcancer.com
mailto:Wischhusen_J@klinik.uni-wuerzburg.de
http://www.bjcancer.com


stable which allows their easy isolation and analysis from tissues
and from blood in which they can be found both as free circulating
nucleic acids and in mononuclear cells (Chen et al, 2008). The
possibility to analyse multiple miRNAs in parallel through
nucleotide arrays further offers the possibility to increase
sensitivity and specificity by using complex miRNA expression
patterns as opposed to single biomarkers. Thus, miRNAs might
constitute very useful and accessible diagnostic tools (Chen et al,
2008; Gilad et al, 2008). Accordingly, we used the latest and most
complete collection of miRNA sequences analysed to date to
identify potential differences between the blood-derived miRNA
profiles of OvCA patients and healthy volunteers. On the basis of
the findings of our proof-of-principle study, we suggest that this
new approach holds considerable promise for the development of
improved screening and surveillance strategies for OvCA.

MATERIALS AND METHODS

Samples

Blood sampling from OvCA patients and healthy controls has
been approved by the local ethics committee. All donors
gave written informed consent. The required cohort size
was estimated by power analysis. All 24 patients (median age:
64 years, range 29–81 years) had been diagnosed with relapsed
OvCA. The time elapsed since the last application of chemotherapy
was sufficient to allow for a complete clearance of the drugs.
Control samples were obtained from 15 age- and sex-matched
volunteers without known disease (median age: 58 years, range
36–83 years). More detailed information on patients is given
in Table 1.

miRNA extraction and microarray screening

Blood samples (5 ml per patient) were collected in PAXgene Blood
RNA tubes (BD Biosciences, Heidelberg, Germany) and frozen at
�86 1C. After thawing, cellular fractions were obtained by
centrifugation (5000 g, 10 min), resuspended in 10 ml RNAse-free
water and subjected to total RNA isolation using the miRNeasy kit
(Qiagen GmbH, Hilden, Germany). RNA was eluted in water and
shipped on dry ice to be analysed on febit́s Geniom real-time
analyser (GRTA, febit gmbh, Heidelberg, Germany) using the
Geniom Biochip miRNA homo sapiens. Each array contains 7
replicates of 904 miRNAs and miRNA star sequences as annotated
in the Sanger miRBase 14.0 (Griffiths-Jones et al, 2005, 2008).
Samples were biotinylated using either the miRVANA miRNA
Labeling Kit (Applied Biosystems Inc., Foster City, CA USA) or by
microfluidic-based enzymatic on-chip labeling of miRNAs (MPEA)
(Vorwerk et al, 2008).

After hybridisation for 16 h at 42 1C, the biochip was washed
automatically and a program for signal enhancement was
processed with the GRTA. Results were analysed using the Geniom
Wizard Software. For each array, the median signal intensity was
extracted from the raw data file such that for each miRNA seven
intensity values have been calculated corresponding to each
replicate copy of miRBase on the array.

After background correction, median values were calculated
from the seven replicate intensity values of each miRNA. To
normalise arrays, variance stabilising normalisation (VSN) (Huber
et al, 2002) as implemented in the R package VSN has been applied
and all further analyses were carried out using the normalised
and background-subtracted intensity values. All microarray data
were stored in the freely accessible miRDBXP database
(http://64.119.137.93/fmi/iwp), which is designed to store any type

Table 1 Patient characteristics

Number
Year of

birth Histology Current therapy Pre-therapies
Tumour

load

1 1980 Serous Pegylated liposomal
doxorubicin

Paclitaxel/carboplatin ++

2 1938 Serous Topotecan Paclitaxel/carboplatin; carboplatin mono ++
3 1951 Serous Gemcitabine Paclitaxel/carboplatin; pegylated liposomal doxorubicin; topotecan,

treosulfan
++

4 1931 Serous Topotecan Carboplatin mono +
5 1937 Serous OvCA or

uterine carcinoma
Treosulfan Paclitaxel/carboplatin; epirubicin; carboplatin mono +

6 1937 Solid Topotecan Cyclophosphamid/carboplatin; carboplatin mono Paclitaxel/carboplatin +
7 1947 Serous Topotecan Paclitaxel/carboplatin ++
8 1939 Serous Topotecan Paclitaxel/carboplatin +++
9 1955 Serous Pegylated liposomal

doxorubicin
Paclitaxel/carboplatin; topotecan +

10 1931 Serous Paclitaxel Carboplatin mono; topotecan; pegylated liposomal doxorubicin; treosulfan +
11 1954 Serous Treosulfan Paclitaxel/carboplatin; topotecan; carboplatin mono; pegylated liposomal

doxorubicin
+++

12 1954 Serous Topotecan Paclitaxel/carboplatin; pegylated liposomal doxorubicin; HIPEC with mitomycin ++
13 1943 Serous Gemcitabine Paclitaxel/carboplatin; peg.-lip. doxorubicin; topotecan; vinorelbin; treosulfan;

carboplatin mono; paclitaxel
++

14 1960 Serous Carboplatin mono Paclitaxel/carboplatin; topotecan +
15 1929 Endmetrioid Carboplatin mono Carboplatin mono; topotecan; pegylated liposomal doxorubicin; treosulfan +
16 1963 Endometrioid Paclitaxel/carboplatin Carboplatin mono; pegylated liposomal doxorubicin; treosulfan +
17 1929 Serous Treosulfan Carboplatin mono +
18 1940 Serous Topotecan Carboplatin mono; paclitaxel/carboplatin; pegylated liposomal doxorubicin +++
19 1955 Serous Pegylated liposomal

doxorubicin
Paclitaxel/carboplatin; topotecan; carboplatin mono +++

20 1950 Serous Paclitaxel Paclitaxel/carboplatin ++
21 1946 Serous Topotecan Carboplatin mono; pegylated liposomal carboplatin; +
22 1965 Serous Paclitaxel/carboplatin None +
23 1963 Serous Paclitaxel/carboplatin Paclitaxel/carboplatin ++
24 1933 Serous Pegylated liposomal

doxorobicin
Paclitaxel/carboplatin +

Abbreviations: HIPEC¼ hyperthermic intraoperative peritoneal chemotherapy; OVCA¼ ovarian cancer. Tumour load: ‘+’: modest/ ‘++’: high/ ‘+++’: huge.
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of miRNA expression pattern (paper in preparation). In addition,
the data have also been deposited in GEO. Additional 24 miRNA
profiles from healthy controls – on the basis of a previous
version of the Sanger database containing 864 miRNAs – were
generously provided by Eckart Meese (University of Homburg,
Germany).

Statistical analysis

The approximate normal distribution of the measured data was
verified by Shapiro–Wilk test. Next, miRNAs showing a different
behaviour in the two groups were identified by unpaired two-tailed
parametric t-test. P-values obtained for each individual miRNA
were adjusted for multiple testing by Benjamini–Hochberg
(Hochberg, 1988; Benjamini et al, 2001) adjustment. In addition
to the single biomarker analysis, samples were also classified
according to miRNA patterns as calculated using support vector
machines (SVMs, (Vapnik, 1999)) implemented in the R (Team,
2008) e1071 package. In detail, different kernel (linear, polynomial,
sigmoid, radial basis function) SVMs were evaluated with the cost
parameter being sampled from 0.01 to 10 in decimal powers. The
measured miRNA profiles were classified using 100 repetitions of
standard 10-fold cross-validation and subsets were selected
according to a t-test-based filter approach. This means that in
each repeat of the cross-validation the s miRNAs with lowest
P-values were computed on the training set Keller et al, 2006, with
s being sampled according to the included number of miRNAs. The
respective subset was then used to train the SVM for the prediction
of the test samples, which enabled a calculation of the mean
accuracy, specificity and sensitivity for each subset size. Permuta-
tion tests were applied to check for overtraining. In this study, the
class labels were sampled at random and classifications were
carried out using the permuted class labels (Keller et al, 2006). All
statistical analyses were performed using R (Wilcoxon, 1945;
R development Core Team, 2008).

RESULTS

In total, 24 blood samples from patients suffering from relapsed
OvCA were analysed. Patient characteristics are provided in
Table 1. All patients had already been treated with 1 –7 different
chemotherapeutic schemes and were about to receive the next
chemotherapeutic treatment, none was in palliative-supportive
care. However, the time elapsed since the last treatment was 45
half-lives and should thus have been sufficient to allow for
a complete metabolic clearance of the administered drugs before
the blood draw. Control persons (n¼ 15) showed a similar age
distribution with a median of 58 years (range from 36 to 83 years)
and had no known diseases. Although all OvCA patients have to be
considered as post-menopausal after initial debulking surgery,
menopausal status was not assessed in the control collective.

Quantitative analysis of miRNAs and miRNA star sequences
confirmed a correlation of 0.85 for biological replicates and a
variance of 0.005 between these replicates. A comparison between
OvCA patients and healthy controls then revealed 147 significantly
(Po0.05) deregulated miRNAs according to Student’s unadjusted
t-test. After adjustment for multiple comparisons by the Benjami-
ni–Hochberg approach, expression levels of four miRNAs were
still significantly different with miR-30c1* being upregulated in
OvCA and miR-342-3p, miR-181a* and miR-450b-5p being down-
regulated. To exemplify these differences, the expression levels
of miR-30c1* and miR-181a* are shown in Figure 1A while the
receiver operator characteristics (diagram) for miR-342-3p is
shown in Figure 1B. Although individual deregulated miRNAs are
unlikely to serve as suitable biomarkers for OvCA (as indicated
by the highest AUC value of 0.86 for miR-342-3p), they may
nevertheless contain some interesting biological information

relating to the disease. Thus, the 30 miRNAs that showed the
strongest and most consistent deregulations between OvCA
patients and healthy controls are provided in Table 2 (in order
of increasing P-values). Of these, miR-30c-1*, miR-191, miR-155,
miR-16, miR-106b, miR-146a, miR-29a and miR-383 had already
been connected to OvCA as indicated in databases linking miRNAs
to specific diseases (www.mir2disease.org and http://cmbi.bjmu.
edu.cn/hmdd) (Lu et al, 2008; Jiang et al, 2009). Moreover, the
direction of the observed regulations (up or down) was in perfect
agreement with the previously described alterations in OvCA. In
total, 15 other miRNAs had, in contrast, never been linked to a
specific disease at all. This observation is most likely because of the
fact that our study is among the first to rely on miRBase version
14.0 (Griffiths-Jones et al, 2008) while most other studies focus on
few miRNAs or on significantly smaller sets of older versions.
Thus, our screening has revealed some interesting candidate
miRNAs that need to be further analysed on a functional level.

To identify characteristic miRNA fingerprints that could be
used for classification of the samples as OvCA or controls we used
statistical learning techniques, especially SVMs with different
kernels, as described above. Classification was performed as
recently published (Keller et al, 2006, 2009a). 100 iterative repeats
of standard 10-fold cross-validation were applied to improve
statistical significance. To validate the findings, 100 repetitions
were performed with permutated samples that had thus been
randomly assigned to either the cancer or the control group in
advance.

A radial basis function SVM achieved the best result with a
subset of the 60 most significantly deregulated miRNAs (see
Supplementary Table S1). The classification of the blood samples
as ‘OvCA’ respective ‘control group’ was carried out with an
accuracy of 76.3 %, a specificity of 83.0% and a sensitivity of 69.7%
(Figure 2A). The permutation tests with randomly given class
labels showed clearly lower accuracy (40.1%), sensitivity (36.8%)
and specificity (41.8%) (Figure 2A), which confirms that the
above-mentioned values are not achieved by random guessing.
Moreover, when the data from all serous OvCAs (n¼ 20) were
compared with an extended standard control cohort consisting of
individuals without known affection (n¼ 39), 40 miRNAs and 100
repetitions sufficed to obtain an accuracy, a specificity and a
sensitivity of X85% (Figure 2B), indicating the potential of our
approach. As the OvCA group additionally showed miRNA
patterns that differ from published profiles for lung cancer (Keller
et al, 2009a), melanoma (Leidinger et al, 2010) or multiple sclerosis
(Keller et al, 2009b) and from yet unpublished ones for pancreatic
cancer, prostate cancer, Wilms’ tumours, pancreatitis, chronic
obstructive pulmonary disease, peridontitis, sarkoidosis, heart
attacks and unclassified pancreatic diseases (data not shown), our
study shows for the first time that OvCA patients show
characteristic miRNA signatures in peripheral blood.

DISCUSSION

In this study, we show that the expression of multiple miRNAs is
significantly altered in the blood of OvCA patients as compared
with healthy controls. Many of these have never been connected
to specific diseases before while eight (miR-30c-1*, miR-191,
miR-155, miR-16, miR-106b, miR-146a, miR-29a and miR-383)
have already been described in the context of OvCA. This may
partly be due to the fact that our chip contained many miRNAs
that had not been analysed before. Clearly, further studies will be
required to elucidate functional consequences of altered miRNA
levels in the blood of OvCA patients.

Our study did not follow the current trend to investigate
circulating miRNAs in serum from cancer patients (Lodes et al,
2009) but rather included the cellular fraction as well. Thus,
tumour-specific miRNA profiles contained in exosomes may partly
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be masked (or, at least, ‘diluted’) by the greater amount of cellular
miRNAs. However, experiments performed on lung cancer
patients before this study revealed that this is over-compensated

by the information contained in the cellular fraction. As the
frequency of circulating tumour cells is low in OvCA (median:
15 cells ml– 1 blood) (He et al, 2008), we believe that stromal and
myeloid progenitors (Marigo et al, 2008; Tu et al, 2008) or regulatory
T cells, which are recruited to the tumour site (Curiel et al, 2004)
may significantly contribute to these profiles. Similarly, immuno-
suppressive and pro-angiogenic signals sent out by the tumour may
leave their marks in blood cells. Considering that the formation of a
pre-metastatic niche by hematopoietic cells is an early event in
tumourigenesis and metastasis (Kaplan et al, 2005), it even seems
plausible that ‘imprinted’ profiles from blood cells may already be
detectable at very early stages of tumour development – whereas
miRNAs that are released from cancer cells will only become
detectable once a significant neoplastic mass has accumulated.

On the basis of the present data, blood samples from OvCA
patients are likely to contain information that can be diagnostically
exploited through the combination of microarray-based analysis
of complex miRNA fingerprints and statistical learning
approaches. Importantly, the profiles obtained for our OvCA
collective are clearly distinct from profiles obtained by other
centres from patients with lung cancer, prostate cancer, melanoma,
pancreatic cancer, Wilms‘ tumours, pancreatitis, chronic obstruc-
tive pulmonary disease, peridontitis, sarkoidosis, heart attacks,
multiple sclerosis and unclassified pancreatic diseases (data not
shown), which strongly suggests that the observed patterns are
indeed disease-specific and not because of nonspecific systemic
inflammatory processes or therapy-related toxicity. Thus, a further
development of the present approach clearly holds some promise.

At the current stage, however, the predictive power achieved by
our proof-of-principle study is too low for a population-wide
clinical screening and the values computed for accuracy, specificity
and sensitivity could not match those obtained with slightly bigger
patient cohorts for lung cancer (Keller et al, 2009a) or multiple
sclerosis (Keller et al, 2009b). Thus, the positive predictive value
(PPV), which was 80.4% for our collective would drop to 0.3% if
the test was applied to the general population (assuming an annual
incidence of 40 OvCA cases in 105 women over 50 years). However,
while this is clearly insufficient, preselection of a clinically relevant
risk population such as BRCA1 or BRCA2 mutation carriers
(Antoniou et al, 2003, 2008) could raise the PPV to X10% without
further optimisation, simply because of the higher prevalence
in this collective. Moreover, the negative predictive value would
still be 99.8% for such a collective, which compares fairly well
with other markers described for OvCA.

From an economic perspective, miRNA profiling from serum
seems rather attractive for clinical diagnostics. Although a wealth
of information may be gained for many different conditions, the
cost for a single experiment amounts is below US $ 200 (with
in-house data generation and analysis). Considering that this
allows the measurement of over 900 miRNas in seven replicates,
a single data point costs approximately US $ 0.03.

One limitation of this study is certainly the very restricted size of
the study collective that makes the results sensitive to individual
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Figure 1 Deregulation of miR-30c-1* and miR-181a* in OvCA samples
compared with healthy controls. (A) Shown are the intensities of
expression for miR-30c-1* (upper panel) and miR-181a* (middle panel)
in blood samples from healthy donors (dark grey, n¼ 15) or OvCA
patients (light grey, n¼ 24). P values (OvCA vs control) were 0.01 for miR-
30c-1* and 0.04 for miR-181a*, as calculated by Student’s unpaired two-
tailed parametric t-test followed by the Benjamini –Hochberg adjustment
for multiple comparisons. (B) Receiver operating characteristics (ROC)
were generated to show how the sensitivity of OvCA detection and the
rate of false positives vary with the discrimination threshold for single
miRNAs. Shown is the ROC curve for miR-342-3p. AUC denotes the area
under the curve, which is equal to the probability that a classification based
on miRNA-342-3p will rank a randomly chosen positive sample higher than
a randomly chosen negative one.
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outliers. In fact, when the miRNA profiles obtained from OvCA
patients are compared with the summarised healthy controls
from the lung cancer (Keller et al, 2009a), the multiple sclerosis
(Keller et al, 2009b) and our study, accuracy, sensitivity and speci-
ficity were significantly increased (data not shown). Biological

limitations may further originate from the fact that ovarian
carcinomas are very heterogeneous with regard to their histo-
pathological and molecular characteristics (Tinelli et al, 2009).
Therefore, it might be desirable to establish specific miRNA
fingerprints for the individual subtypes of OvCA rather than

Table 2 miRNAs showing differential expression between OvCA samples and negative controls

Ovarian
cancer Control

Relative
expression P-value

Adjusted
P-value

Related diseases according www.mir2disease.org
(Jiang et al, 2009) and HMDD (Lu et al, 2008)

miR-30c-1* 109.59 44.38 2.50 0.00001 0.01 Breast cancer, colon cancer, glomeruosclerosis, heart failure, hepatocellular cancer,
OvCA, pancreatic cancer, prostate cancer

miR-342-3p 2408.83 5039.84 0.48 0.0001 0.04 Kidney cancer, neurodegeneration, prion disease
miR-181a* 139.90 187.08 0.75 0.0002 0.04 Oral squamous cell carcinoma
miR-450-5p 79.95 137.78 0.58 0.0002 0.04 None
miR-616* 91.24 153.97 0.59 0.0004 0.06 None
miR-181a-2* 128.95 204.51 0.63 0.0006 0.06 None
miR-138-2* 96.94 134.10 0.72 0.0006 0.06 None
miR-574-5p 2378.73 731.16 3.23 0.0006 0.06 None
miR-1228* 2390.13 1389.96 1.72 0.0007 0.06 Malignant mesothelioma
miR-191 16 201.90 10 391.60 1.56 0.0007 0.06 Colon cancer, gastric cancer, lung cancer, melanoma, ovarian cancer, pancreatic cancer,

prostate cancer
miR-1915 1078.22 755.35 1.43 0.0007 0.06 None
miR-1908 1833.26 1144.19 1.61 0.0009 0.06 None
miR-1181 327.24 238.29 1.37 0.0009 0.06 Hepatitis C
miR-28-3p 196.16 311.94 0.63 0.0009 0.06 None
miR-187* 338.41 195.68 1.72 0.0010 0.06 None
miR-155 97.89 164.44 0.60 0.0010 0.06 Adrenocortical carcinoma, ALL, AML, breast cancer, Burkitt’s lymphoma, cardiac

hypertrophy, cerebral haemorrhage, CLL, colorectal cancer, dermatomyositis, diffuse
large B-cell lymphoma, Down’s syndrome, Duchenne muscular dystrophy, epithelial
ovarian cancer, fascioscapulohumeral muscular dystrophia, follicular lymphoma,
glioblastoma multiforme, head and neck squamous cell carcinoma, hepatocellular
carcinoma, Hodgkin0s lymphoma, hypertension, inclusion body myositis, limb-girdle
muscular dystrophies type 2a, lung cancer, Myoshi myopathy, myeloproliferative
disorder, nemaline myopathy, oral cancer, ovarian cancer, pancreatic cancer, papillary
thyroid carcinoma, Polycythaemia vera, polymyositis, renal cell carcinoma, renal
insufficiency, Waldenstrom macroglobulinaemia

miR-16 21 782.51 18 702.10 1.16 0.0011 0.06 CLL, CML, heart failure, gastric cancer, glioma, hepatocellular carcinoma, Hodgkińs
lymphoma, mantle-cell lymphoma, myeloma, non-small cell lung cancer, oral squamous
cell cancer, ovarian cancer, papillary thyroid carcinoma, pituitary neoplasms,
Polycythemia vera, prostate cancer, renal cell carcinoma, ulcerative colitis, uterine
cervical neoplasms

miR-106b 6468.68 10 391.60 0.62 0.0012 0.06 Adrenocortical carcinoma, Alzheimer’s disease, autism spectrum disorders, breast
cancer, CLL, colorectal cancer, gastric cancer, glioma, heart failure, hepatocellular
carcinoma, kidney cancer, multiple myeloma, melanoma, ovarian cancer, pervasive child
development disorders, prostate cancer, schizophrenia, squamous cell carcinoma

let-7f-1* 52.32 84.83 0.62 0.0015 0.07 None
miR-192 5039.84 6375.80 0.79 0.0015 0.07 Adrenocortical carcinoma, heart failure, lung cancer, nephrosclerosis, ulcerative colitis
miR-1289 216.54 170.41 1.27 0.0017 0.07 None
miR-423-3p 1507.73 1095.86 1.37 0.0019 0.07 None
miR-499-3p 191.00 97.78 1.96 0.0020 0.07 None
miR-146a 155.97 290.86 0.54 0.0020 0.07 Adrenocortical carcinoma, Alzheimer’s disease, AML, atrophic muscular disorders,

autistic disorders, breast cancer, Burkitt’s lymphoma, cardiac hypertrophy, CLL, diabetes
mellitus type 2, eczema, Hepatitis B, hepatocellular carcinoma, inflammation, lung
cancer, lupus vulgaris, melanoma, oral squamous cell carcinoma, osteoarthritis, ovarian
cancer, papillary thyroid carcinoma, pancreatic cancer, precursor cell lymphoblastic
leukemia, prostate cancer, psoriasis, rheumatoid arthritis, sepsis, thyroid neoplasms,
uterine cervical neoplasms

miR-1254 238.33 179.68 1.33 0.0023 0.08 None
miR-628-5p 148.21 212.38 0.70 0.0024 0.08 Head and neck squamous cell carcinoma
miR-1287 93.37 123.87 0.75 0.0024 0.08 None
miR-29a 837.00 1175.70 0.71 0.0029 0.09 Alzheimer’s disease, acquired immunodeficiency syndrome, breast cancer, cardiac

hypertrophy, cerebellar neurodegeneration, CLL, colorectal cancer, Duchenne muscular
dystrophy, FSHD, heart failure, homozygous sickle-cell disease, Huntingtońs disease,
lung cancer, kidney cancer, neuroblastoma, oral squamous cell carcinoma, ovarian
cancer, precursor cell lymphoblastic leukaemia, prostate cancer, schizophrenia

miR-383 165.57 115.30 1.43 0.0032 0.10 Azoospermia, breast cancer, chronic pancreatitis, melanoma, ovarian cancer
miR-1253 183.16 137.78 1.33 0.0037 0.11 None

Abbreviations: ALL¼ acute lymphocytic leukaemia; AML¼ acute myelogenous leukaemia; APL¼ acute promyelocytic leukaemia; CML¼ chronic myelogenous leukaemia;
CLL¼ chronic lymphocytic leukaemia; FSHD¼ facio-scapulohumeral muscular dystrophy; HMDD¼ human microRNA disease database; miRNA¼microRNA;
OVCA¼ ovarian cancer. Annotation: columns ‘ovarian cancer’ and ‘control’ show median values and the relative expression OvCA vs control is obtained by taking their
ratio. Upregulated miRNAs are highlighted in grey, whereas downregulated ones are plain. P-values were calculated using Student’s t-test, adjusted P-values were determined
according to the method by Benjamini and Hochberg.
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aiming at a general approach (Köbel et al, 2008). This was
corroborated by a high variance that we observed within the
OvCA group. Consequently, accuracy (87.4%), specificity (88.1)
and sensitivity (86.7%) were greatly increased when only serous
OvCAs were compared with an extended control group. Still,
the investigation of miRNA profiles in a large number of samples
from all subtypes of OvCA was clearly beyond the scope of our
pilot study.

A second factor that might have added to the variance in both
groups was age. Own unpublished observations show that elderly
people show significantly altered including miRNA profiles.
Consequently, stratification by age groups and menopausal status
might improve the distinction between healthy and diseased
individuals. Again, this would require a larger study cohort.

For practical reasons, we had chosen patients suffering from a
securely diagnosed OvCA as a starting point. However, while the
high tumour load in these patients might help the detection of
cancer-associated miRNA fingerprints, we could only select
treatment-free intervals after platinum-containing therapies for the
blood draws. No corrections could be made for the individually
adapted treatments the patients had received before their inclusion
in our study (compare Table 1), which might introduce a further
confounding factor. Considering that all patients had shown
progression under previous treatments, the finding by Rui et al
(2009) that the development of chemoresistance goes along with
changes in the miRNA profile of cancer cells might be relevant.
Thus, the different therapeutic histories could also contribute to the
considerable variance observed in this study. Consequently,
stratification according to past treatments might greatly improve
sensitivity and specificity for the monitoring of OvCA recurrence
through blood-derived miRNA profiles. Alternatively, the link
between miRNA fingerprints and chemotherapeutic resistance could
also help to find individual and optimal therapeutic regimens for
each patient. These issues clearly warrant further investigation, in
particular a comparison with treatment-naı̈ve patients (which will
be performed in the course of an ongoing study). However, while
Rui et al described six miRNAs that showed 4two-fold alterations
on chemotherapy and development of resistance, none of these were
among the 30 most significantly deregulated miRNAs in our data
set, which strongly suggests that we detected an OvCA-specific
rather than a treatment-induced miRNA fingerprint.

Obviously, numerous questions are not answered by our proof-
of-principle study and remain to be addressed in follow-on studies.
However, our first data already suggest that OvCA samples are
associated with characteristic miRNA patterns in peripheral blood.
Compared with investigated markers such as CA125, which
is neither sensitive nor specific enough for OvCA screening
(Duffy et al, 2005) or monitoring (Eisenhauer et al, 1997), miRNA
profiling from peripheral blood seems promising, especially
because many possibilities for optimisation remain. Moreover,
this new non-invasive strategy could easily be combined with the
best current options like the combination of the serum biomarker
CA125 with transvaginal ultrasound (Menon et al, 2009) or serial
determinations of CA125-levels in peripheral blood (Skates et al,
2003), which on their own are still not good enough to be
recommended for use in clinical routine (Mutch, 2009; Partridge
et al, 2009). Thus, we believe that the detection of OvCA-associated
miRNAs from peripheral blood can become a valuable addition to
the current insufficient panel of biomarkers.
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Figure 2 Classification of samples from OvCA patients or healthy
controls. (A) This classification plot that is based on 60 miRNAs was
computed using a radial basis function SVM as described in (Keller et al,
2006, 2009a). The black boxes showing the accuracy (‘acc’), specificity
(‘spec’) and sensitivity (‘sens’) for classification of all OvCA and control
samples (n¼ 24 for OvCA, n¼ 15 for controls) and were calculated
through 100 repetitions of 10-fold cross-validation. The grey boxes show
the results obtained when the same mathematical operation is performed
in permutation tests (‘random’) in which the class labels (OvCA vs control)
have been assigned randomly before the values are computed. This is used
to validate the classification procedure. The ordinate shows the proportion
of samples that were classified correctly to their group. (B) Serous OvCA
(n¼ 20) were compared with an extended group of healthy controls
(n¼ 39) as in (A), using 100 repetitions and 40 miRNAs.
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SFM Häusler et al

700

British Journal of Cancer (2010) 103(5), 693 – 700 & 2010 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s


	Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening
	Materials and methods
	Samples
	miRNA extraction and microarray screening

	Table 1 Patient characteristics
	Statistical analysis

	Results
	Discussion
	Figure 1 Deregulation of miR-30c-1ast and miR-181aast in OvCA samples compared with healthy controls.
	Table 2 miRNAs showing differential expression between OvCA samples and negative controls
	CONFLICT OF INTEREST
	Figure 2 Classification of samples from OvCA patients or healthy controls.
	REFERENCES




