| Туре         | Number  | Male    | Age  | Sensitivity | Specificity | Positive<br>Predictive<br>Value | Negative<br>Predictive<br>Value | P value<br>MRSA |
|--------------|---------|---------|------|-------------|-------------|---------------------------------|---------------------------------|-----------------|
| Whole cohor  |         |         |      |             |             |                                 |                                 |                 |
| Whole        | 447,579 | 430,356 | 68.3 | 67.4%       | 83.0%       | 31.4%                           | 95.7%                           | < 0.0001        |
| cohort       |         | (96.2%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 12.4 | (67.0%-     | (82.8%-     | (31.2%-                         | (95.6%-                         |                 |
|              |         |         |      | 67.9%)      | 83.1%)      | 31.6%)                          | 95.7%)                          |                 |
| Blood        |         |         |      |             |             |                                 |                                 |                 |
| Blood        | 64,128  | 62,265  | 68.1 | 69.9%       | 82.5%       | 30.1%                           | 96.2%                           | < 0.0001        |
|              |         | (97.1%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.9 | (68.7%-     | (82.1%-     | (29.6%-                         | (96.1%-                         |                 |
|              |         |         |      | 71.0%)      | 82.8%)      | 30.6%)                          | 96.3%)                          |                 |
| Intra-abdom  |         |         |      |             |             |                                 |                                 |                 |
| Intra-       | 8,071   | 7,754   | 65.0 | 64.0%       | 90.9%       | 27.2%                           | 97.9%                           | < 0.0001        |
| abdominal    |         | (96.1%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.4 | (59.1%-     | (90.2%-     | (25.2%-                         | (97.7%-                         |                 |
|              |         |         |      | 68.6%)      | 91.5%)      | 29.2%)                          | 98.2%)                          |                 |
| Intra-       | 7,426   | 7,135   | 65.2 | 62.5%       | 91.0%       | 24.5%                           | 98.1%                           | < 0.0001        |
| abdominal    |         | (96.1%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
| sterile      |         |         | 11.3 | (57.1%-     | (90.3%-     | (22.5%-                         | (97.8%-                         |                 |
|              |         |         |      | 67.8%)      | 91.7%)      | 26.7%)                          | 98.4%)                          |                 |
| Pulmonary    |         |         |      |             |             |                                 |                                 |                 |
| Respiratory  | 75,242  | 73,575  | 68.8 | 76.2%       | 83.1%       | 43.8%                           | 95.3%                           | < 0.0001        |
| tract        |         | (97.8%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.4 | (75.4%-     | (82.8%-     | (43.3%-                         | (95.1%-                         |                 |
|              |         |         |      | 77.0%)      | 83.4%)      | 44.3%)                          | 95.4%)                          |                 |
| Sterile      | 15,583  | 15,204  | 67.0 | 74.6%       | 84.7%       | 44.7%                           | 95.2%                           | < 0.0001        |
| Respiratory  |         | (97.6%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.0 | (72.7%-     | (84.1%-     | (43.6%-                         | (94.9%-                         |                 |
|              |         |         |      | 76.4%)      | 85.3%)      | 45.9%)                          | 95.6%)                          |                 |
| Renal System |         |         |      | I           | T           | T                               | T                               |                 |
| Renal        | 164,330 | 155,547 | 71.0 | 72.5%       | 81.6%       | 9.8%                            | 99.1%                           | < 0.0001        |
| system       |         | (94.7%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 12.7 | (71.1%-     | (81.4%-     | (9.6%-                          | (99.0%-                         |                 |
|              |         |         |      | 73.8%)      | 81.8%)      | 10.0%)                          | 99.1%)                          |                 |
| Wound        |         |         |      |             |             |                                 | ,                               |                 |
| Wound        | 95,832  | 92,816  | 64.7 | 59.7%       | 85.5%       | 48.1%                           | 90.4%                           | < 0.0001        |
|              |         | (96.7%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.9 | (59.0%-     | (85.2%-     | (47.5%-                         | (90.3%-                         |                 |
|              |         |         |      | 60.5%)      | 85.7%)      | 48.6%)                          | 90.6%)                          |                 |
| Wound        | 51,793  | 50,180  | 64.4 | 58.3%       | 87.6%       | 49.6%                           | 91.0%                           | < 0.0001        |
| Sterile      |         | (96.9%) | +/-  | 95% CI      | 95% CI      | 95% CI                          | 95% CI                          |                 |
|              |         |         | 11.3 | (57.3%-     | (87.3%-     | (48.9%-                         | (90.8%-                         |                 |
|              | 1       |         |      | 59.3%)      | 88.0%)      | 50.4%)                          | 91.2%)                          | 1               |

Disclosures. All authors: No reported disclosures.

## 572. Relationship Between Chlorhexidine Gluconate (CHG) Skin Concentrations and Microbial Skin Colonization among Medical Intensive Care Unit (MICU) Patients

Yoona Rhee, MD, ScM¹; Mary K. Hayden, MD²; Andrew T. Simms, MD, MSCR¹; Rachel D. Yelin, MPH¹; Karen Lolans, BS¹; Pamela B. Bell, II, BA¹; Michael Schoeny, PhD³; Arthur W. Baker, MD, MPH⁴; Meghan A. Baker, MD, ScD⁵;

Shruti K. Gohil, MD MPH<sup>6</sup>; Chanu Rhee, MD, MPH<sup>7</sup>;

Naasha J. Talati, MD, MSCR8; David K. Warren, MD MPH9;

Sharon F. Welbel, MD<sup>10</sup>; Thelma E. Dangana, MBBS<sup>1</sup>;

Thelma Majalca, MBA/MRes³; Heilen Bravo, MD¹; Candice Cass, Associate in Arts9; Alicia Nelson, MPH¹¹;

Pam C. Tolomeo, MPH, CCRP<sup>12</sup>; Robert Wolf, BTS<sup>13</sup> and Michael Y. Lin, MD, MPH<sup>1</sup>; <sup>1</sup>Rush University Medical Center, Chicago, Illinois; <sup>2</sup>Rush University Medical Center, Chicago, Illinois; <sup>3</sup>Duke University School of Medicine; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina; <sup>5</sup>Brigham and Women's Hospital, Boston, Massachusetts; <sup>6</sup>University of California, Irvine School of Medicine, Irvine, California; <sup>7</sup>Harvard Medical School / Harvard Pilgrim Health Care Institute, Boston, Massachusetts;

<sup>6</sup>University of California, Irvine School of Medicine, Irvine, California; <sup>7</sup>Harvard Medical School / Harvard Pilgrim Health Care Institute, Boston, Massachusetts; <sup>8</sup>Penn Presbyterian Medical Center, Broomall, Pennsylvania; <sup>9</sup>Washington University School of Medicine, St. Louis, Missouri, <sup>10</sup>Rush Presbyterian Hosptial, Skokie, Illinois, <sup>11</sup>Duke University Medical Center, Durham, North Carolina, <sup>12</sup>University of Pennsylvania, Philadelphia, Pennsylvania, <sup>13</sup>Harvard Pilgrim Healthcare and Harvard Medical School, Brigham and Women's Hospital, Brighton, Massachusetts

**Session:** 62. HAI: MRSA Prevention *Thursday, October 3, 2019: 12:15 PM* 

**Background.** CHG bathing is used to suppress patients' microbial skin colonization, in order to prevent infections and transmission of multidrug-resistant organisms. Prior work has suggested that microbial growth is inhibited when CHG skin concentrations exceed threshold levels.

Methods. We conducted 6 single-day surveys from January 2018 to February 2019 in 7 academic hospital MICUs with established CHG patient bathing. Adult patients were eligible to have skin swabbed from adjacent 25 cm2 areas on the neck, axilla, and inguinal region for culture and CHG concentration determination. CHG skin concentrations were measured by a semi-quantitative colorimetric assay. Selective media were used to isolate targeted microorganisms (Table 1). Species were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry; antibiotic susceptibility was determined by MicroScan (Beckman Coulter). We modeled the relationship between CHG skin concentrations (log2-transformed) and microorganism recovery (yes/no as primary outcome) using multilevel models controlling for clustering of body sites within patients and within ICUs, assessing slope and threshold effects.

**Results.** We enrolled 736/759 (97%) patients and sampled 2176 skin sites. Grampositive bacteria were detected most frequently (Table 1). The adjusted odds of identifying gram-positive organisms decreased linearly as CHG skin levels increased (Figure 1a), without evidence of a threshold effect. We also found significant negative linear slopes

without evidence of threshold effects for other pathogens tested (Table 2; Figure 1), with the exception of gram-negative bacteria and vancomycin-resistant enterococci. When modeling quantitative culture results (colony-forming units) for gram-positive organisms as a continuous outcome variable, a similar relationship was found.

Conclusion. Higher concentrations of CHG were associated with less frequent recovery of gram-positive bacteria and Candida species on the skin of MICU patients who were bathed routinely with CHG. For microbial inhibition, we did not identify a threshold concentration of CHG on the skin; rather, increasing CHG skin concentrations led to additional gains in inhibition. For infection prevention, aiming for high CHG skin levels may be beneficial.

Table 1: Prevalence of Microorganisms Recovered by Culture from Skin of Medical Intensive Care Unit Patients at 7 Hospitals

| Organism                         | Neck         | Axilla       | Inguinal     | Total          |
|----------------------------------|--------------|--------------|--------------|----------------|
| Gram-Positive Bacteria           | 612/729 (84) | 461/728 (63) | 456/709 (64) | 1529/2166 (71) |
| Staphylococcus aureus            | 64/732 (9)   | 24/730 (3)   | 32/714 (5)   | 12/2176 (6)    |
| Methicillin-resistant S. aureus  | 21/730 (3)   | 8/727 (1)    | 12/709 (2)   | 41/2166 (2)    |
| Enterococcus species             | 63/732 (9)   | 38/730 (5)   | 118/714 (17) | 219/2176 (10)  |
| Vancomycin-resistant enterococci | 26/729 (4)   | 16/727 (2)   | 50/708 (7)   | 92/2164 (4)    |
| Gram-Negative Bacteria           | 63/731 (9)   | 47/729 (7)   | 93/713 (13)  | 203/2173 (9)   |
| Candida species                  | 77/721 (11)  | 62/722 (34)  | 118/704 (17) | 257/2147 (12)  |
| Candida auris                    | 0/721 (0)    | 2/722 (0.3)  | 0/704 (0)    | 2/2147 (0.1)   |

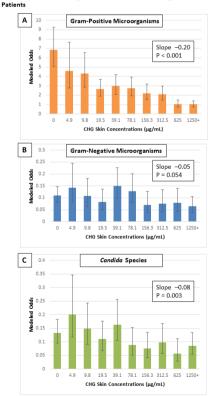

Note. Cells represent n/N (%) = number of positive skin sites / number of skin sites sampled for target microorganism. Total represents all three body sites combined.

Table 2: Linear Effects of Chlorhexidine Gluconate Skin Concentration on Microbial Recovery by Culture from Skin

| Organism                         | Change in odds/log2 CHG unit | P value |
|----------------------------------|------------------------------|---------|
| Gram-Positive Bacteria           | -0.20                        | <0.001  |
| Staphylococcus aureus            | -0.18                        | <0.001  |
| Methicillin-resistant S. aureus  | -0.19                        | 0.003   |
| Enterococcus species             | -0.07                        | 0.003   |
| Vancomycin-resistant enterococci | -0.06                        | 0.12    |
| Gram-Negative Bacteria           | -0.05                        | 0.054   |
| Candida species                  | -0.08                        | 0.003   |

Note. Slope represents change in microorganism recovery by culture from patient skin for every unit increase in log2-CHG skin concentration (i.e., for each doubling of CHG skin concentration).

Figure 1. Relationship Between Chlorhexidine Gluconate (CHG) Skin Concentrations and Modeled Odds of Microorganism Culture Detection Among Medical Intensive Care Unit



Note. Odds of microorganism culture detection on the skin at each CHG skin concentration were estimated using mixed effects models that controlled for body site clustered within patients and within ICUs. Bars represent 95% confidence intervals. Slope represents change in odds of microorganism recovery for every unit increase in CHG skin concentration.

Disclosures. All authors: No reported disclosures.

## 573. Enterococcal Bacteremia in a Tertiary Care Center in Mexico: A Retrospective Analysis Focus on Vancomycin-Resistant *E. faecium* and Ampicillin-Resistant *E. faecalis*

Bruno A. Lopez Luis, MD<sup>1</sup>; Darwin Lambraño-Castillo, MD<sup>2</sup>; Edgar Ortiz-Brizuela, MD<sup>1</sup>; Andrea Ramirez-Fontes, MD<sup>3</sup>;