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INTRODUCTION 
 

Older people represent a growing proportion of the 

population [1] and are the most frequent users of 

medications [2–5]. Polypharmacy, defined as the 

concomitant use of five or more drugs [6], is very 

common in old age [7].  
 

Due to the presence of different parallel health 

conditions and impairments (e.g. cognitive deficits, renal 

failure,  orthostatic  hypotension and gastrointestinal di- 

 

sorders), older adults are more likely to suffer from 

adverse drug effects than younger populations [8]. 

Moreover, age-related changes in pharmacodynamics 

and pharmacokinetics contribute to stronger effects of 

many drugs and therefore the risk of negative outcomes 

[9]. In epidemiological studies, polypharmacy has been 

associated with enhanced risks of adverse events in older 

people which comprise falls, hospitalization and higher 

mortality [10–13]. Increased chances of developing 

cognitive disturbances and decline have also been linked 

with inappropriate use of multiple medications in older 
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ABSTRACT 
 

A major challenge in the health care system is the lack of knowledge about the possible harmful effects of 
multiple drug treatments in old age. The present study aims to characterize a mouse model of polypharmacy, in 
order to investigate whether long-term exposure to multiple drugs could lead to adverse outcomes. To this 
purpose we selected five drugs from the ten most commonly used by older adults in Sweden (metoprolol, 
paracetamol, aspirin, simvastatin and citalopram). Five-month-old wild type male mice were fed for eight 
weeks with control or polypharmacy diet. We report for the first time that young adult polypharmacy-treated 
mice showed a significant decrease in exploration and spatial working memory compared to the control group. 
This memory impairment was further supported by a significant reduction of synaptic proteins in the 
hippocampus of treated mice. These novel results suggest that already at young adult age, use of polypharmacy 
affects explorative behavior and synaptic functions. This study underlines the importance of investigating the 
potentially negative outcomes from concomitant administration of different drugs, which have been poorly 
explored until now. The mouse model proposed here has translatable findings and can be applied as a useful 
tool for future studies on polypharmacy. 
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adults [14–16]. Despite evidence from observational 

studies, little is known about the harmful effects of 

multiple-drug therapy in older people in experimental 

studies [17], as most of the studies on animals  

and humans focus on the use of drugs as monotherapy, 

and randomized clinical trials often exclude older 

patients [18].  

 

A typical approach when studying the adverse effects of 

pharmacological compounds at the preclinical level is to 

use animal models [19, 20]. Previous studies have 

successfully translated findings from mice to humans, 

and this is especially evident in the investigation of 

mechanisms behind potential side effects. The obtained 

information can then be validated in human studies such 

as biomarker correlation analysis and clinical trials.  

 

To our knowledge, only two preclinical studies on the 

effects of polypharmacy have been conducted until 

now. In the first study it was shown that short-term 

administration (two to four weeks) of five medications 

reduced physical functions in old but not young wild-

type mice [21], while the second one tested chronic 

administration (12 months) of polypharmacy with 

different drug burden indices in aged mice, reporting 

higher frailty, impaired mobility and functional 

activities, which were reversible [22]. Since chronic 

exposure to polypharmacy is very common in older 

adults [23], the present study aims to deepen the 

experimental knowledge on polypharmacy by further 

investigating whether long-term exposure (four to eight 

weeks) to a multiple-drug treatment could lead to any 

adverse events including cognitive effects in young 

adult mice. Toward this aim, we have fed wild-type 

mice with a chronic polypharmacy diet. The poly-

pharmacy regimen consisted of five pharmaceutical 

compounds that were chosen among the ten most 

commonly used  medications in older people in Sweden 

[24]: metoprolol (a β-blocker used to treat angina and 

hypertension), paracetamol (acetaminophen, a widely 

used analgesic), low-dose aspirin (as a blood thinning 

for the prevention of cardiovascular disease), 

simvastatin (a statin used to lower blood cholesterol and 

triglycerides), and citalopram (an antidepressant 

belonging to the selective serotonin reuptake inhibitor 

class). Food intake, body weight, serum creatinine, 

albumin and alanine aminotransferase (ALT) levels 

were measured as basic variables for health status, 

while functional and psychological outcomes, including 

locomotor activity and function, anxiety-like behavior, 

spatial and non-spatial memory were assessed by 

behavioral tests. Finally, biochemical analyses were 

performed on hippocampus of treated mice to 

investigate possible changes in synaptic proteins that 

could account for the behavioral phenotype observed in 

polypharmacy treated mice. 

RESULTS 
 

Body weight and food intake 

 

The polypharmacy treatment was well-tolerated and no 

signs of illness or mortality among the mice were 

observed over the study period. During the eight weeks 

of treatment, all the mice gradually increased in body 

weight (Figure 1C), as normal for young adult animals. 

There was no significant difference in body weight 

between control and polypharmacy group. Food intake 

(FI) average was also checked weekly without any 

significant difference between groups. FI was measured 

as weekly average (Figure 1D) and as total average over 

the study period (Figure 1E); moreover, we performed 

the same analysis normalized to the mouse body weight 

(Figure 1F, 1G). Mice consumed about 20% less than 

the anticipated FI and the final doses of administered 

drugs were: 80 mg/Kg/day metoprolol, 80 mg/Kg/day 

acetaminophen, 16 mg/Kg/day acetylsalicylic acid, 8 

mg/Kg/day simvastatin and 8 mg/Kg/day citalopram. 

These final drug concentrations result to be within the 

therapeutic dose range in humans, as reported in the 

table in Figure 1B. The table shows human therapeutic 

dose range intervals per each compound and the 

corresponding interval translated into mice, followed by 

the final doses consumed by the animals (calculation of 

human-to-mouse dose translations is explained in the 

methods). 

 

Serum creatinine and albumin were measured at the end 

of the treatment period to monitor renal and hepatic 

functions. Creatinine levels did not change significantly 

in polypharmacy mice compared to controls (control: 

20.6±10.5 µmol/l, n=4; polypharmacy: 38.7±8.8 µmol/l, 

n=4; Figure 1H) while albumin levels were found to be 

significantly higher in polypharmacy fed mice (control: 

66±7.1 g/l, n=5; polypharmacy: 130.3±20.8 g/l, n=5; 

*p<0.05, Mann-Whitney test; Figure 1I). Serum ALT 

was measured at the time point corresponding to half of 

the treatment (4 weeks), as a further indicator of hepatic 

injury or fatigue. There were no significant changes in 

ALT levels of polypharmacy mice compared to controls 

(control: 9.2±0.7 U/L, n=5; polypharmacy: 8.0±0.6 U/L, 

n=5; Figure 1J). 

 

Locomotor activity and anxiety-like behavior: 

polypharmacy diet affects exploratory pattern 

 

To assess general locomotor activity mice were tested in 

Open Field (OF) cages. Horizontal and vertical activity 

were first analyzed over the total 30-minutes trial 

duration and then in time intervals of 10 minutes, in 

order to evaluate the habituation and the next phases of 

explorative behavior [25–27]. From the analysis of 

rearing behavior, no significant difference was observed 
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between the two groups both for the total activity (123.7 

± 8.1 units in control vs 116.7 ± 13.0 units in 

polypharmacy mice, data not shown) and for the 10-

minutes interval analysis (Figure 2A, right histograms). 

Nevertheless, 10-minutes interval analysis of horizontal 

activity showed a significantly decreased exploratory 

behavior in polypharmacy mice when compared to 

controls (Figure 2A left plot; two-way ANOVA 

repeated measurements test, *p≤0.05, **p<0.01), while 

they did not exhibit significant changes in the total 

horizontal activity (1262.6 ± 76.2 units in control vs 

1099.9 ± 57.0 units in polypharmacy mice, data not 

shown). Motor coordination and balance were evaluated 

through Rotarod test and both control and treated 

animals showed similar performances (Figure 2B). 

 

Polypharmacy treatment did not affect anxiety-like 

behavior investigated through Dark/Light Box (DLB) 

and Elevated Plus Maze (EPM) experiments: in the 

EPM test control and polypharmacy mice performed a 

comparable number of entries and both showed to 

prefer the enclosed arms (see histograms and heatmaps 

 

 
 

Figure 1. Effects of polypharmacy treatment on body weight and food intake, and serum protein levels. (A) The diagram above 
outlines the timeline of the polypharmacy study. (B) The table indicates the composition of the polypharmacy diet and drug dosages, 
specifying the human therapeutic range per person and per Kg/body weight (BW) and translated into mice. (C) The curves show mouse body 
weight average monitored over the eight weeks of treatment. (D–G) The curve and histogram plots express the FI as weekly and total 
average over the study period, measured as real values (D, E) or normalized to body weight (F, G). Animals per group: n= 9 control group, n= 
10 polypharmacy group. (H–J) Histograms indicate serum creatinine, albumin and ALT levels; creatinine: n= 4, 4; albumin: n= 5, 5: ALT: n= 5, 
5, for control and polypharmacy groups respectively; *p<0.05, Mann-Whitney test. All data are presented as mean ± SEM. Ctrl= control, Poly= 
polypharmacy. 
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in Figure 2C and 2D). Likewise, LDB test showed that 

mice administered polypharmacy diet exhibited similar 

latency to enter the LB and time spent in that 

compartment than control diet fed ones as illustrated in 

Figure 2E. 

 

Effect of polypharmacy regimen on memory and 

learning 
 

Spatial working memory was assessed through Y maze 

test and the outcomes are shown in Figure 3A. No 

significant difference was detected among the two 

groups in the number of entries per arm (Figure 3A, left 

plot), whereas the analysis of spontaneous alternations 

showed that polypharmacy mice performed a 

significantly lower percentage of alternations compared 

to controls (right dot plot in Figure 3A, *p<0.05, t-

Student test). Furthermore, we ran a one-sample t test to 

compare the alternation percentage of each group to the 

theoretical value of 50% chance level [28]: while 

control diet fed mice significantly alternated above the 

50% chance level (p<0.05), polypharmacy fed mice did 

not, as only 30% of them alternated at levels above 

chance. These results suggest that polypharmacy 

treatment induced impairment in spatial working 

memory. The Novel Object Recognition (NOR) test was 

 

 
 

Figure 2. Locomotor activity and anxiety-like behavior in control and polypharmacy treated mice. (A) Locomotor activity and 
explorative behavior: histograms show horizontal and vertical (rearing) activity measured in OF cages and analyzed per time intervals of 10 
minutes over a total duration of 30 minutes. Interaction between time and treatment groups were analyzed with two-way ANOVA repeated 
measurements test; *p≤0.05, **p<0.01. (B) Rotarod test: average of latency to fall measured during the 3-trial session. (C, D) EPM test: dot 
plots show the number of entries and percentage of time spent in closed arms. Heatmaps represent color-coded areas of the maze, where 
red zones indicate the area which the mice explored the most (maps are showed as control and polypharmacy group average). (E) DLB test: 
dot plots display first latency to enter the LB and time spent by the mice exploring that compartment. All data are presented as mean ± SEM. 
Animals per group: n= 9 control, 10 polypharmacy. Ctrl= control, Poly= polypharmacy. 
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performed to evaluate non-spatial working memory. On 

day 3, both controls and treated animals were able to 

discriminate between the familiar and the novel object 

with a significant preference for the novel one, as  

shown by histograms of exploratory time and heatmaps 

in Figure 3B (red color zones indicates the area which 

they explored the most). The dot plot of discrimination 

index (Figure 3B) also indicates as most of the animals 

got a positive score, meaning more time spent on the 

novel object and thus the ability to recognize the 

novelty [29]. Figure 3C shows the outcomes of 

contextual Fear Conditioning (FC) test. During day 2, 

both control and polypharmacy mice exhibited a 

significantly increased percentage of freezing compared 

to day 1, indicating that they were able to learn and 

remember the association between the context and the 

negative stimulus (the foot shock). No differences were 

observed between the two groups suggesting that the 

polypharmacy diet did not affect contextual memory 

and learning. 
 

Decreased levels of synaptic proteins were found in 

the hippocampus of polypharmacy fed mice  
 

To investigate any biochemical changes in 

polypharmacy mice, we ran western blotting experi-

ments and measured the levels of synaptic proteins in 

the hippocampus. We analyzed postsynaptic proteins 

such as NMDA receptors (subunits NMDAR1 and 

phospho-NMDAR2A), which are known to be 

fundamental in activity-dependent synaptic plasticity 

and in learning and memory [30].  Figure 3D, 3E shows 

that levels of NMDAR1 and phospho-NMDAR2A were 

significantly lower in the hippocampus of poly-

pharmacy mice compared to controls (NMDAR1: 

**p<0.01; phospho-NMDAR2A: *p<0.05; t-Student 

test; n= 9 control, 10 polypharmacy).  We next analyzed 

the levels of PSD95, a scaffolding protein which is 

found in excitatory synapses of postsynaptic density 

complex and is involved in regulation of synaptic 

strength and transmission [31]. Immunoblot analysis 

showed in Figure 3F revealed that PSD95 levels were 

also significantly decreased in treated animals compared 

to controls (**p<0.01, t-Student test; n= 9 control, 10 

polypharmacy). 

 

DISCUSSION 
 

In the present study we characterized a mouse model of 

polypharmacy to explore potential harmful effects of 

long-term multiple drug treatment. We used young adult 

C57BL/6J male mice to establish whether concomitant 

administration of multiple medicines could affect 

locomotor activity, anxiety-like behavior, spatial and 

non-spatial or contextual memory already at young 

adult age. C57BL/6J is one of the most widely used 

mouse strains in preclinic pharmacology and toxicology 

studies [32, 33]. The choice of the animal strain is of 

particular importance when performing drug 

investigations and previous studies have indeed reported 

as different strains respond more or less effectively to 

the same compound [34, 35], depending on several 

variables like different pharmacodynamics and drug 

metabolism. For instance Jin ZL et al [34] found that 

some murine strains do not respond to citalopram to the 

same extent and in a dose-dependent way. We used 

citalopram at 10 mg/kg/day that is equivalent to a daily 

dose of 50 mg in humans, therefore close to its highest 

dosage in the range for treating depression (10–

60 mg/day) [36, 37].  

 

Polypharmacy diet was well-tolerated by the mice over 

the eight weeks of treatment and no differences in body 

weight or FI were observed. The analysis of serum 

ALT, creatinine and albumin resulted in increased 

levels of the latter in treated mice compared to controls. 

Increase of albumin in blood can be observed after a 

chronic treatment with multiple drugs, in particular, 

statins have been reported to prevent cardiovascular 

disease through the increment of human serum albumin 

levels [38]. Furthermore, paracetamol ability to bind 

serum proteins can lead to enhanced albumin 

concentration in the blood [39].  

 

When the groups of mice were assessed for behavior, 

we observed for the first time that the concomitant use 

of different medications is able to affect critical 

functions at young adult age. We found that chronic 

administration of polypharmacy induced impairments in 

explorative behavior measured as reduced horizontal 

movements during OF test. When exposed to a new 

environment (such as the OF arena), rodents are willing 

to explore the novel area by innate behavior. A decrease 

in exploration reveals lack of curiosity and investigatory 

behavior which in healthy animals should be 

spontaneously present [40]. That can correlate to several 

variables as increased fear/anxiety or emotional factors 

[41] but can also be independent from anxiety-related 

components [42]. Moreover, we are the first to show 

that chronic exposure to five different medications 

affects spatial working memory, as emerged from the Y 

maze test, already in young adult mice. The significant 

deficit observed in the spatial memory test was further 

supported by the analysis of postsynaptic proteins in the 

hippocampus, which were found to be significantly 

decreased in treated mice. NMDA receptors and PSD95 

complex are key contributors in synaptic plasticity and 

important mediators of many forms of memory and 

learning [30, 43]. Such experimental findings are novel 

and highly support epidemiological studies reporting 

that polypharmacy increases the probability of 

developing cognitive decline and disturbances in older
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Figure 3. Memory tests and immunoblotting analysis: postsynaptic protein levels were decreased in hippocampus of 
polypharmacy fed mice. (A) Y maze test: graphs indicate the number of entries and percentage of spontaneous alternations performed by 
control and polypharmacy mice. Note that while 90% of control animals alternated above the 50% chance level, only 30% of polypharmacy 
mice did so, thus indicating a possible impairment in spatial working memory. *p<0.05, t-Student test. (B) NOR test (day 3, test day): 
histograms on the left show average of exploration time spent on the two objects, for control and polypharmacy group, *p<0.05; the 
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statistical comparison between time spent on novel object vs familiar in control or polypharmacy group was analyzed with paired t-Student 
test. The respective heatmaps at the bottom visually represent the area explored around the objects, highlighting a clear preference for the 
novel object in both the groups (in red color the most visited zones). Dot graph shows the calculated discrimination index, where a score 
above 0 indicates that animals spent more time exploring the novel object than the familiar one. (C) Contextual FC test: percentage of 
freezing time measured on day 1 (habituation phase) and day 2 (context testing). ***p<0.001, two-way ANOVA repeated measurements test. 
(D–F) Hippocampal tissue samples from control and polypharmacy mice were analyzed by western blotting experiments. Dot plots show 
quantification of NMDAR1, phospho-NMDAR2A and PSD95 protein levels, which were significantly decreased in polypharmacy mice 
compared to control animals; *p<0.05, **p<0.01; t-Student test. Total protein levels were normalized with respect to α tubulin. On the right, 
representative examples of immunoblots for NMDAR1, phospho-NMDAR2A and PSD95 proteins. All data are presented as mean ± SEM. 
Animals per group: n= 9 control, 10 polypharmacy. Ctrl= control, Poly= polypharmacy.      

 

adults [14, 16]. This suggests that our mouse model of 

polypharmacy has translatable findings and more in-

depth studies are needed to investigate the possible 

mechanisms behind the reduction of synaptic proteins 

induced by polypharmacy. 

 

The multiple-medication regimen did not significantly 

affect locomotor functions and coordination assessed 

with total OF analysis and Rotarod test, respectively. 

Likewise, anxiety-like behavior experiments (EPM and 

DLB tests) did not point out differences between 

polypharmacy and control groups and similar 

performances were also observed when testing the mice 

for non-spatial and contextual memory.  

 

Huizer-Pajkos et al. [21] previously found that short-term 

exposure to multiple drugs led to locomotor impairments 

in old C57BL/6 male mice but not in young animals, 

suggesting that the 2-4 weeks intervention could be too 

short to fully observe the functional outcomes of 

polypharmacy in both young and old age. Mach et al. 

observed impairments in physical function after 12 weeks 

of treatment in middle age, as well as after 12 months of 

treatment in old age. Moreover, it is relevant to study the 

effects of chronic polypharmacy since older adults tend to 

have long-term exposure to multiple medications [23]. 

Our results suggest that chronic multiple compound 

treatment can impair exploratory pattern and cognitive 

function already at young adult age. These observations in 

young adult mice imply the importance for further 

investigating the adverse effects of multiple-drug 

regimens in old animals. 

 

Most of the knowledge about drug-related adverse effects 

comes from studies on single-medication use. In the 

literature, monotherapy of the drugs composing our 

polypharmacy treatment has not been reported to be toxic 

[21, 44–48] or cause functional impairment in rodent 

models, when investigated- [22, 49, 50]. Regarding the 

effects of the individual drugs in the CNS, chronic 

citalopram monotherapy have been reported to decrease 

locomotor activity and grip strength in old mice [22]. Two 

studies performed in mouse models of Alzheimer´s 

disease have reported that citalopram and low-dose 

aspirin improves deficits in memory and learning [36, 51]. 

Paradoxical effects of paracetamol have been observed in 

rodent brain, showing that low doses of acetaminophen 

could have protective effects by reducing the oxidative 

stress status, while higher doses could lead to toxic effects 

on neurons and astroglia [52, 53]. The possible action of 

simvastatin, and statins in general, in the brain is still 

unclear: different clinical trials on patients reported 

conflicting results as some suggested impairing effects on 

cognition while other proposed beneficial ones [54]. Two 

preclinical research studies on murine models reported a 

beneficial effect of simvastatin against depression-like 

behavior and on memory and learning [49, 55], while 

another study observed that chronic simvastatin inhibited 

oligodendrocyte remyelination in mouse CNS thus 

affecting brain tissue repairing processes [56]. Metoprolol 

might cause minor dose-dependent side effects on CNS 

like slight depressed mind or disturbed sleep, although at 

therapeutic doses it should not affect the qualitative 

functions of the brain [57, 58]. A more recent 

investigation on the role of β-adrenoreceptors in the 

hippocampus has pointed out the importance of β-

receptors 1 and 2 in memory consolidation, reporting that 

the blockade of β1-receptor by metoprolol impaired 

contextual and spatial memory in rats in FC and Morris 

water maze tests [59]. Taken together these aspects 

underline the importance of investigating the potentially 

harmful effects from concomitant administration of 

different drugs, which so far have been poorly explored. 

The approach and outcomes of our study can be applied in 

old mice to mimic the real-world setting where older 

adults frequently use multiple drugs [60]. The results from 

the present study can be valuable to interpret future results 

on aged mice, although the experimental design used here 

would need optimization due to possible age-related 

limitations (e.g. immobility of old mice, less reactivity to 

new stimuli).   

 

In conclusion, this preclinical polypharmacy mouse 

model of five of the most commonly used drugs in the 

aged population in Sweden provides a proof of concept 

on harmful effects caused by multiple-drug 

administration. The use of rodent models to investigate 

drug development and adverse effects and to perform 

preclinical trials is a powerful tool which has been 

successfully applied to translate information to humans 
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[61–63]. Therefore, the model we present here can be 

applied for future studies in aged mouse models to 

explore whether old age increases susceptibility to any 

adverse outcomes of polypharmacy. Species differences 

have been pointed out by some reports, highlighting 

differences in drug metabolism between mice and 

humans [64]. To overcome possible limitations related 

to this, future studies involving mouse strains 

humanized for certain drug-metabolizing enzymes [65] 

may be necessary. Sex differences in pharmacokinetics, 

pharmacodynamics and ageing should be addressed in 

future studies.  Further experiments should address the 

exact mechanisms by which these adverse events 

occurred, as well the possibility of avoiding them by 

adjustments in doses or substitution of one or more 

drugs of the polypharmacy regimen. Some of the 

observed outcomes may be specifically related to the 

selected medicine combination. Therefore, it is 

important to evaluate and compare the results from 

different polypharmacy therapies with the final aim to 

design safer multiple-drug treatments in old age.  In 

sum, the mouse model proposed here can be a useful 

tool to further investigate the potential negative 

outcomes of multiple medications. 

 

MATERIALS AND METHODS 
 

Animals  
 

Wild-type C57BL/6J male mice were used for this 

study. Animals were purchased from Janvier Labs 

(France) at the age of 2 months and then housed in the 

animal facility in group of four-five mice per cage. 

(Karolinska Institutet, Huddinge, Sweden) in standard 

local conditions, with 12-h light/dark cycle, ad libitum 

access to food and water and cardboard tunnels and 

tissue paper as enrichment. At the age of 5 months they 

were randomly assigned to 2 different groups: control 

(n= 9) and polypharmacy (n= 10). Control mice were 

fed with a standard rodent diet (control diet) containing: 

18.5% proteins, 5.5% oils and fats, 4.5% fiber (Teklad 

2918 diet, Research Diet Inc., NJ, USA); the same diet 

base was used for the polypharmacy group, with the 

addition of drugs (polypharmacy diet).  

 

Before starting the treatment, all mice were 

administered the control diet for a habituation period of 

10 days, and thereafter they were randomly divided in 

two groups and fed with the control or the 

polypharmacy diet. After four weeks of treatment, at 6 

months of age, the animals were tested for behavioral 

studies, while continuing the polypharmacy diet for 

other four weeks (see scheme in Figure 1A); the total 

duration of the treatment was eight weeks. Mice were 

weighed before starting the polypharmacy regimen and 

both body weight and FI (g food/mouse/day) were 

measured on weekly basis. Food was replaced every 

week with new food. After completing the behavioral 

testing, mice were sacrificed by cervical dislocation and 

trunk blood was collected. Brains were dissected and 

hippocampus and cortex were isolated and collected. 

Brain tissues were snap frozen in dry ice and 

immediately stored at -80 C until further use. 

 

Polypharmacy treatment 

 

The polypharmacy treatment was selected based on the 

most commonly used medicines in older people in 

Sweden [24] and consisted of the following pharma-

ceutical compounds: metoprolol (100 mg/Kg/day; 

Sigma-Aldrich, USA) [66], paracetamol (100 

mg/Kg/day; Sigma-Aldrich, USA) [67], acetylsalicylic 

acid (20 mg/Kg/day; Sigma-Aldrich, USA) [48], 

simvastatin (10 mg/Kg/day; Selleck Chemicals, USA) 

[68] and citalopram (10 mg/Kg/day; Selleck Chemicals, 

USA) [36]. Drug dosages per Kg/body weight in mice 

are considered to be 8- to 12.3- fold higher than in 

humans due to pharmacokinetic and pharmacodynamic 

differences [69, 70]. Based on this principle, and in 

accordance with previous studies on these drugs (cited 

above) as monotherapy in mice, polypharmacy 

compound doses were translated proportionally from 

humans to mice.  

 

Estimated drug doses for the multiple-medication diet 

were calculated so to stay within the human therapeutic 

dose range and according to previous studies in rodents, 

where they were not found to be toxic when used alone 

[21, 44–48]. The table in Figure 1B indicates the daily 

therapeutic dose range in humans per person (second 

column) and per Kg/body weight (third column) 

considering an average of weight of 60-Kg in adults. 

Also, compound concentrations were chosen towards 

the higher dosage in the therapeutic dose interval, 

taking into account possible variations in the real FI 

compared to the estimated one. In the case of 

paracetamol we selected the lower dosage within the 

therapeutic dose range, due to its potential hepato-

toxicity at high doses as reported in rodent studies [71, 

72]. Final doses consumed by the animals were 

calculated afterwards depending on the actual FI 

observed. The concentration of compounds in the diet 

was calculated based on a FI of 0.17 ± 0.02 g food/g 

mouse/day according to previously observed FI for 

C57BL/6J mouse strain in our animal facility and 

literature [73]. 

 

Ethical statement 
 

All experimental procedures were performed in 

accordance with the local national animal care and use 

guidelines and approved by the local committee of 
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Karolinska Institutet and the Swedish Board of 

Agriculture (ethical permit ID 827). All possible efforts 

were made to minimize any suffering or distress to the 

animals. 

 

Behavioral tests 

 

At 6 months of age, the mice were tested for the 

following behavioral tasks: Open Field (OF), Elevated 

Plus Maze (EPM), Y Maze, Dark/Light Box (DLB), 

Rotarod, Novel Object Recognition (NOR) and Fear 

Conditioning (FC). The order of the different tests was 

chosen based on the level of stress caused by the 

procedure, starting from the less stressful [74]. A 

recovery time from one to six days was allowed after 

those tests considered more stressful or where sustained 

physical effort was required. All the tests were run 

between 9:00 and 14:00, by a female researcher. All the 

experiments were performed in white light. Prior to start 

each test, mice were brought to the experimental room 

for 45 minutes to acclimatize with the new 

environment. 

 

OF locomotor cages 
The locomotor cages consisted of 35 x 35 cm square 

arenas. At the beginning of each trial the mouse was 

placed in the center of the arena and left free to explore 

for 30 minutes. The horizontal (i.e. walking) and 

vertical (i.e. jumping, rearing and grooming) activity 

was measured by infrared beams and photoreceptor 

cells, and recorded through MAD software (Nixus AB, 

Tumba, Stockholm). Before starting and between every 

trial the OF cages were cleaned with 70% ethanol 

solution.  

 

EPM test 
The EPM apparatus consisted of two closed arms (30 x 

5 cm, with 15 cm walls) and two open arms of the same 

size which crossed in a central-open area of 5 x 5 cm; 

the maze was located 40 cm above the floor. At the 

beginning of each trial the mouse was placed in the 

center of the maze facing one of the open arms. Number 

of entries and percentage of time spent in the open and 

closed arms were analyzed for 5 minutes [75]. An entry 

into an arm occurred when all the four paws of the 

animal had entered the arm [76]. Before starting and 

between animals the maze was cleaned with 70% 

ethanol solution. Data were acquired with a camera 

installed above the maze, connected to the video-

tracking software Ethovision XT 14 (Noldus 

Information Technology, The Netherlands). 

 

Y Maze test 
The Y maze apparatus consisted of 3 arms of 30 x 5 cm 

each that were connected to a center zone; height of 

walls was 15 cm. At the beginning of each trial the 

mouse was placed in the center of the maze and 

exploratory activity was measured for 5 minutes. Data 

were acquired with a camera installed above the maze 

and the number of entries and spontaneous alternations 

were manually analyzed offline. An alternation was 

defined as three consecutive entries into each of the 

three arms (for example as in any of the following 

sequences: ABC, CBA, BCA and so on, where each 

arm was labelled as A, B, or C). An entry into an arm 

occurred when all the four paws of the animal had 

entered the arm [76]. The percentage of spontaneous 

alternations with respect to the maximum possible 

alternations was calculated as follows: % Alternation= 

(number of alternations/total number of arm entries - 2) 

x 100 [77, 78]. Before starting and between animals the 

maze was cleaned with 70% ethanol solution.  

 

DLB test 

The DLB equipment was made of two chambers of 

equal size (35 x 30 x 35 cm) connected by a door. One 

chamber (the light box, LB) was illuminated by a lamp 

placed above it and had transparent opaque walls, while 

the other one was with opaque black walls to protect 

from light and keep that compartment (the dark box, 

DB) in the darkness. At the beginning of each trial the 

mouse was placed in the DB and allowed to freely 

explore the chambers for 5 minutes. The first latency to 

enter the LB as well as the time spent in that 

compartment were quantified manually (all the four 

paws had to be into the LB to consider it as an entry 

[76]). Before starting and between animals the 

apparatus was cleaned with 70% ethanol solution. 

 

Rotarod test 
To perform this test we used the mouse Rotarod from 

Ugo Basile (Varese, Italy). In each trial the mice were 

placed on the rotating drums and the latency to fall was 

recorded. Each session consisted of three trials with a 

30-min rest interval between each. In the first and 

second trials the mouse was given a 60- and 20-sec 

habituation phase, respectively, with the drums rotating 

at a fixed speed of 4 rpm. In the test phase the Rotarod 

was set to accelerating mode (from 4 to 40 rpm over 

300 sec) and the latency to fall was measured over a 

period of 5 minutes per each mouse. In the third trial no 

habituation phase was done. Latency to fall average was 

calculated for the three trials [21]. Before starting and 

between each trial the apparatus was cleaned with 70% 

ethanol solution. 

 

NOR test 

The arena used for the NOR test consisted of a 35 x 35 x 

40 cm box with white floor. On Day 1, the mice were 

placed in the middle of the OF arena for a 5-min 

habituation trial to freely explore the area. On day 2, two 

identical objects (oval shape, 6 cm wide x 5 cm high, 
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light red color) were placed in opposite quadrants of the 

arena and the mice were allowed to freely explore for 10 

minutes. On day 3 (test day), one of the familiar objects 

was replaced with a novel one (conic shape, 4 cm wide x 

8 cm high, blue color) and mice were allowed again to 

freely explore the arena for 10 minutes. Before starting 

each session and between animals the arena was cleaned 

with 70% ethanol solution. During the test day, the time 

spent in exploring the objects was analyzed and 

discrimination index (DI) was calculated as: 

DI = (TN − TF)/ (TN + TF), where TN is exploration time 

on novel object and TF is exploration time on familiar 

object. Exploration time was defined as the time when 

the mouse's nose was pointed towards the object within 2 

cm of distance from it. Any time spent sitting on the 

object without indication of active exploration was not 

counted as exploration time. Data were acquired with a 

camera installed above the box, connected to the video-

tracking software Ethovision XT 14. 

 

Contextual FC test 
This task was performed in a rectangular shape chamber 

with transparent walls and a stainless-steel grid floor 

which was enclosed in a soundproof apparatus 

(Campden Instruments LTD, England). The 

conditioning chamber was cleaned with 70% ethanol 

solution before starting each session and between 

animals. On day 1, the mice were allowed to explore the 

context for 2 minutes (habituation phase) and 

subsequently exposed to three successive mild foot 

shocks (2 sec duration, 0.3 mA) with 50-sec interval 

between each. To assess contextual fear memory mice 

were returned to the same context on day 2 (after 24 h) 

for a period of 3 minutes. No shock was delivered in 

this session. Freezing behavior, defined as complete 

absence of mobility (apart from breathing) within the 

same area for a time > 2 seconds, was measured through 

Motor Monitor software (Kinder Scientific).  

 

Immunoblotting analysis  

 

Western blot experiments were performed on 

hippocampal tissues which were lysed, and protein 

levels quantified as previously described [79]. Equal 

amount of proteins (15 µg) was separated by gel 

electrophoresis on acrylamide gels (gradient 10-7.5%) 

and then transferred to a nitrocellulose membrane 

(Amersham™ Protran®, GE Healtcare). Membranes 

were milk- or BSA-blocked and then incubated 

overnight at 4 °C with the following primary antibodies: 

rabbit anti-phospho N-Methyl-D- aspartate (NMDA) 

receptor 2A (1:250, Abcam, UK), mouse anti- NMDA 

receptor 1 (1:2000, BD Bioscience, UK), mouse anti-

postsynaptic density protein 95 (PSD95) (1:1000, 

Abcam, UK) and mouse anti-alpha-tubulin (1:30000; 

Sigma-Aldrich, USA). Secondary antibody incubations 

were done for 2 hours at room temperature with anti-

rabbit or anti-mouse immunoglobulin G (IgG) at 

1:10000 dilutions (LI-COR Biosciences GmbH, 

Germany). Immunoreactivity was detected by infrared 

fluorescence with LI-COR® Odyssey® system (LI-

COR Biosciences, USA) and quantified using ImageJ 

1.48v software (NIH, MA, USA) by densitometry 

analysis of the immunoreactive bands. 
 

Blood analysis 
 

Trunk blood was collected postmortem and allowed to 

clot for 30 min, followed by 3000 g centrifugation for 

10 minutes at 4 °C to collect the serum fraction [80]. 

Serum levels of creatinine, albumin and ALT were 

analyzed using the following assay kits, respectively: 

ab65340 (Abcam), ab207620 (Abcam) and MAK052 

(Sigma-Aldrich). Assays were run according to 

manufacturer instructions. Some of the serum material 

was necessary for the optimization of the assays; 

because of that it wasn’t possible to perform the final 

tests on the entire number of samples, but we used 

instead 4-5 samples per group. 
 

Statistical analysis 
 

The researcher conducting the experiments was blind to 

control or polypharmacy treatment groups. Data are 

expressed as mean ± standard error of the mean (SEM), 

with n indicating the number of animals. Statistical 

analyses were performed with GraphPad Prism 7 

software (San Diego, CA, USA). When comparing two 

groups, t-Student or Mann-Whitney tests were used for 

parametric and non-parametric data respectively. Data 

distribution was assessed with Shapiro-Wilk test. Two-

way ANOVA repeated measurements followed by 

Tukey´s multiple comparison test was used to analyze 

data when two independent variables were present. A P 

value ≤ 0.05 was considered as index of significance.  
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