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Abstract

Many enzymes that catalyze protein post-translational modifications can specifically modify multiple target proteins.
However, little is known regarding the molecular basis and evolution of multispecificity in these enzymes. Here, we used a
combined bioinformatics and experimental approaches to investigate the evolution of multispecificity in the sirtuin-1
(SIRT1) deacetylase. Guided by bioinformatics analysis of SIRT1 orthologs and substrates, we identified and examined
important amino acid substitutions that have occurred during the evolution of sirtuins in Metazoa and Fungi. We found
that mutation of human SIRT1 at these positions, based on sirtuin orthologs from Fungi, could alter its substrate
specificity. These substitutions lead to reduced activity toward K382 acetylated p53 protein, which is only present in
Metazoa, without affecting the high activity toward the conserved histone substrates. Results from ancestral sequence
reconstruction are consistent with a model in which ancestral sirtuin proteins exhibited multispecificity, suggesting that

the multispecificity of some metazoan sirtuins, such as hSIRT1, could be a relatively ancient trait.
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Introduction

Protein—protein interaction (PPI) networks in multicellular
organisms, such as humans, often include a larger number
of cellular proteins relative to networks found in monocellular
eukaryotic organisms (Evlampiev and Isambert 2008; Jancura
et al. 2012; Jin et al. 2013; Liang et al. 2014). Conserved hub
proteins, located at the heart of these PPl networks, must
exhibit multispecificity to allow the recognition of the differ-
ent partner proteins. Currently, little is known regarding the
molecular basis and evolution of multispecificity in many PPI
networks (Han et al. 2004). In some PPI networks, hub—part-
ner interactions occur through a defined consensus recogni-
tion sequence found in different partners (Moldovan et al.
2007; Kim et al. 2009; Cino et al. 2013). However, in many PPI
networks, shared recognition sequences/motifs are not ob-
served and the molecular basis for hub—partner interactions
is unknown. In these PPI networks, our understanding of the
molecular basis and evolution of hub—partner interactions is
very limited.

Many enzymes that catalyze the post-translational modi-
fication (PTM) of proteins are located at the heart of complex

PPI networks (Beltrao et al. 2013). These enzymes catalyze the
specific attachment or removal of different functional groups
including phosphate, acetyl, methyl, as well as the protein
ubiquitin. A substantial number of PTM-catalyzing enzymes,
found in human cells, exhibit a remarkable ability to recognize
many protein substrates and catalyze the modification of
specific target residues. Such specificity allows the regulation
of a variety of essential cellular processes including DNA rep-
lication, transcription and signal transduction (Deribe et al.
2010; Beltrao et al. 2013).

One of these enzymes is the human sirtuin SIRT1 (hSIRT1)
that belongs to the large and ubiquitous family of sirtuin
enzymes (Finkel et al. 2009). The sirtuins are NAD " -depen-
dent deacetylases (Blander and Guarente 2004; Haigis and
Guarente 2006). These enzymes are conserved from bacteria
to humans and their overexpression in several eukaryotes was
shown to increase organism’s life span (Howitz et al. 2003;
Cohen et al. 2004; Kanfi et al. 2012). The yeast Sir2 (ySir2),
from Saccharomyces cerevisiae, was the first member of the
sirtuins to be characterized (Imai et al. 2000; Greiss and
Gartner 2009). Subsequently, hSIRT1, which is a mammalian
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ortholog of ySir2, has become the most thoroughly charac-
terized human sirtuin (Lavu et al. 2008). It is apparent that the
number of hSIRT1 substrates is significantly higher than the
number of substrates found for ySir2 (Chen et al. 2012;
Martinez-Redondo and Vaquero 2013; Rauh et al. 2013;
Bheda et al. 2016; Gil et al. 2017) with hundreds of substrates
being characterized, including central regulatory proteins,
such as p53, histones, FOXO, HSF1, and NFkB (Daitoku
et al. 2004; Yeung et al. 2004, Westerheide et al. 2009).
Despite extensive efforts, little is known of the molecular basis
for how hSIRT1 recognizes target acetyl-lysine residues in
such a wide variety of different substrates and no consensus
sequence in hSIRT1 substrates has been identified (Blander
et al. 2005; Garske and Denu 2006; Rauh et al. 2013). Thus, in
addition to its important roles in human physiology and dis-
ease, hSIRT1 is an excellent model system for the study of the
molecular basis and evolution of multispecificity in enzymes
with a diverse set of substrates and cellular functions.

In this work, we have developed and applied a
bioinformatics-experimental workflow to identify key resi-
dues in hSIRT1 that are important for its multispecificity.
Our bioinformatics approach exploits natural variation in
hSIRT1 homologs and ancestral sequence reconstruction
(ASR) to identify variability in these key residues. Guided by
the bioinformatics analysis, we generated different hSIRT1
mutants at residues in the immediate vicinity of the active
site. Examination of these mutants revealed that, for many of
these mutants, the deacetylation activity with conserved his-
tones was maintained, but the activity with p53 K382Ac,
which is present in Metazoa but not Fungi, was greatly re-
duced. Our study reveals that several residues surrounding
the active site are essential for hSIRT1 multispecificity. Our
results are consistent with a model in which multispecificity
was present in ancestral sirtuins and maintained in metazo-
ans but was lost during the evolution of fungal sirtuins. Thus,
these results indicate that fungal sirtuins have become more
specialized, relative to the common ancestor.

Results

A Bioinformatics Workflow for Identifying Candidate
Amino Acid Positions Important for SIRT1
Multispecificity

To identify a limited number of candidate positions that may
be important for hSIRT1 multispecificity, we combined se-
quence similarity networks (SSN) (Atkinson et al. 2009; Akiva
et al. 2017), multiple sequence alignments (MSA), and phy-
logenetic trees focusing on the deacetylase (DAC) domain of
SIRT1. The construction of reliable MSAs of SIRT1 homologs
requires homogenous sampling of SIRT1 sequence space.
Thus, we first delineated the sequence-similarity boundary
that differentiates SIRT1 family members from the larger sir-
tuin superfamily. We constructed an SSN of the entire sirtuin
superfamily including 9,521 sequences and then mapped spe-
cific sirtuins, documented in the literature, to identify the
different sirtuin classes (SIRT1-7). This representation en-
abled the delineation of SIRT1 subgroup containing 1,107
sequences that can be clearly separated from other sirtuin
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groups for full-length sirtuins (supplementary fig. S1,
Supplementary Material online) and for the DAC domain
(supplementary fig. S2, Supplementary Material online). To
generate a SIRT1 MSA, we used the Enzyme Function
Initiative Enzyme Similarity Tool (EFI-EST) to collect sequen-
ces related to hSIRT1 (Gerlt et al. 2015). Using incremental
percent identity edge cutoffs in Cytoscape (Shannon et al.
2003), clusters delineated by sirtuin subfamily were obtained.
The final set of 151 SIRT1 sequences was aligned using
PROMALS3D (Pei et al. 2008) to generate the MSA (see
details in Materials and Methods).

The MSA was used to generate a phylogeny of these pro-
teins, which was compared with the established species-level
phylogeny for the taxa from which we obtained protein
sequences. This revealed that the unconstrained tree topol-
ogy (supplementary fig. S3, Supplementary Material online),
although fully consistent with the corresponding species tree
in terms of the split of fungi and metazoa, as well as the
topology of the fungi clades, was not concordant with the
species-level tree within the Metazoan clades (Philippe et al.
2005; dos Reis et al. 2015) (supplementary fig. S4,
Supplementary Material online). In the absence of evidence
for hemiplasy (Maddison 1997; Avise and Robinson 2008) or
horizontal gene transfer (Maddison 1997), this discordance is
most likely an artefact of the sequence data (an in-depth
discussion of possible causes for this discordance is provided
in the legend of supplementary fig. S4, Supplementary
Material online). Accordingly, we constrained the tree search
space to enforce a species-concordant topology to ensure
that any analysis or reconstructions of ancestral sequences
would be better approximations of the ancestral proteins. A
phylogeny with a species-concordant topology (supplemen-
tary fig. S5, Supplementary Material online) was produced by
supplying a constraint tree (supplementary fig. S4,
Supplementary Material online) to the inference algorithm
in IQ-TREE. Using statistical tests, we validated that the con-
strained topology was not significantly different from the
original unconstrained maximum likelihood (ML) phylogeny
(supplementary table S1, Supplementary Material online).
Thus, by constraining the tree search space, we have gener-
ated a superior phylogeny that is both concordant with the
well-established species-level tree and is equally well-
supported by the MSA data as the discordant unconstrained
ML phylogeny.

To identify semiconserved residues in SIRT1 that may be
important for its multispecificity, we used structural informa-
tion, SIRT1 tree and MSA. We filtered all DAC positions,
containing 268 residues, based on surface accessibility,
Shannon entropy analysis (Stewart et al. 1997) and physico-
chemical amino acid properties and remained with 37 possi-
ble positions (see detailed description in supplementary
materials and methods, Supplementary Material online).
These positions were further reduced to 8 based on visual
inspection of hSIRT1 structure, (Davenport et al. 2014) iden-
tifying proximal pairs or quadruple positions in the
Rossmann-like domain (positions 481 and 484), the active-
site region (positions 417, 424, 446, and 450) and the zinc-
binding domain (positions 372 and 380, figs. 1 and 2).
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Fic. 1. SIRT1 evolution is correlated with substrate repertoire expansion. SIRT1 orthologs are shown on the left, representing major branches of
eukaryotic taxa: vertebrates (red), invertebrates | (green, mainly mullusca, and nematodes), invertebrates Il (cyan, mainly Ecdysozoa [insects]), and
fungi (blue). The eight positions in hSIRT1 selected for substitutions (see text and figs. 2 and 3) demonstrate conservation that is associated with
the major evolutionary transitions. Right (red), a matrix depicting the conservation of 25 hSIRT1 substrates in eukaryotes. The substrates tested in
this study are shown in black headings. The conservation level of the orthologs, measured by Bit score divided by alignment length is color-coded
from white (low conservation) to red (high conservation). The appearance of orthologs in the different organisms is cross-validated by the
inParanoid (Sonnhammer and Ostlund 2015) and EggNOG (Huerta-Cepas et al. 2016) databases, as well as literature review and manual exam-
ination. In cases where the acetyl lysine position is known for the hSIRT1 human substrate, a “K” appears in the relevant matrix cell. Underlined “K”

represents the substrate column tested in this study.

The Evolutionary Dynamics of SIRT1 Substrate
Expansion

Characterization of the evolutionary dynamics of SIRT1 sub-
strate expansion can be used to identify correlations between
amino acid substitutions in SIRT1 and substrate expansion
(fig. 1). To this end, we first collected 25 experimentally validated
substrates of hSIRT1 for which their acetylated lysine is at least
partially known (Chen et al. 2012; Rauh et al. 2013) (supplemen-
tary table S2, Supplementary Material online). Next, we per-
formed phylogenetic profiling for these substrates, that is,
assessing the presence or absence of orthologs within species
used to construct the SIRTT MSA and phylogenetic tree (see
Materials and Methods for details). In addition, we generated
MSAs of these orthologs, to evaluate the conservation level of
the target acetyl-lysine in these SIRT1 substrates (for example,
see supplementary fig. S6, Supplementary Material online). As

expected, we found that histones are completely conserved
SIRT1 substrates in all organisms, whereas acetylated p53 and
RelA are examples of substrates that appeared in complex
eukaryotes (fig. 1). In almost all cases, we identified the appear-
ance of the substrate, followed by fixation of a lysine residue that
was shown to be acetylated in the human substrate (fig. 1 and
supplementary table S2, Supplementary Material online). This
classification allowed us to select specific substrates for our ex-
perimental analysis (see below) and to identify correlations be-
tween the substitutions identified in hSIRT1 and the expansion
of the substrate repertoire (fig. 1).

Experimental Analysis of hSIRT1 Mutants Indicates
Functional Compensation between Mutations

Based on the bioinformatics and structural analysis described
above, we generated, expressed and purified 13 hSIRT1
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Fic. 2. Mapping semiconserved positions on the DAC of hSIRT1.
Three major structural regions in hSIRT1 are shown (PDB 4KXQ)
(Davenport et al. 2014), along with the specific positions that were
substituted (red), Rossmann-like domain (yellow, positions 481 and
484), the active-site region (green, positions 417, 424, 446, and 450,
also tilted and enlarged on the left) and the zinc-binding domain
(cyan, positions 372 and 380, the zinc ion is in blue). The peptide
with the acetyl lysine is shown in purple, its approximate position is
based on Sir2-p53 complex (PDB 2H4F) (Hoff et al. 2006). This posi-
tion highlights the proximity between positions located at the active-
site region and the peptide.

mutants (V1-V13) containing 1-4 substitutions in different
regions of the DAC domain (figs. 2 and 3). The deacetylation
activity of the purified mutants was measured with fluoro-
genic N-acetyl-lysine using the Fluor-de-Lys (FDL) assay
(Wegener et al. 2003) and compared with the activity of
WT hSIRT1. This is the most simple substrate for SIRT1 ortho-
logs; consisting of an acetylated lysine conjugated to a fluo-
rescent group. Thus, it is useful to detect whether the mutant
enzymes are catalytically active, or not, but cannot be used to
make inferences regarding substrate specificity. The FDL anal-
ysis allowed us to examine the activity of each variant with
the N-acetyl-lysine relative to the WT and reveal functional
compensation between mutations. We found that the L450E
mutation (V2) shows low deacetylation activity relative to the
WT. However, the double L450E R446A mutant (V3) exhibits
deacetylation activity that is similar to WT; indicating func-
tional compensation between these two mutations (fig. 3).
Interestingly, the quadruple mutant containing N417A/
R424E and R446A/L450E (V5) exhibits a significantly increased
deacetylase activity of ~3-fold relative to the WT (fig. 3 and
supplementary fig. S7, Supplementary Material online). Thus,
V5, which contains four active-site vicinity mutations that are
mainly observed in Fungi SIRT1 orthologs (fig. 1), exhibits
significantly enhanced activity toward N-acetyl-lysine.

We found additional functional compensation between
mutations in the zinc-binding domain and the Rossmann-
like domain (fig. 2). In the zinc-binding domain, we found that
the single L372T mutants (V9) are inactive. However, the
L372T/C380G double mutant (V11) exhibits deacetylase ac-
tivity that is similar to the WT (fig. 3). Similarly, although the
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single V484D mutant (V12) is inactive, the V484D/D481N
double mutant (V13) in the Rossmann-like domain exhibits
deacetylase activity that is similar to the WT (fig. 3). Structural
analysis of positions D481 and V484 suggests that the nega-
tive charge introduced by the V484D mutation is probably
compensated for by the loss of the negative charge due to the
D481N mutation (supplementary fig. S8, Supplementary
Material online).

Next, we examined co-evolutionary coupling between
these residues using Generative REgularised Models of
ProteiNs (GREMLIN) analysis of DAC domain sequences
(Balakrishnan et al. 2011). We found strong co-evolutionary
coupling between R446/L450, located in the vicinity of the
hSIRT1 active site, and D481/V484, located in the Rossmann-
like domain, suggesting that co-evolution between these res-
idue pairs is functionally important for hSIRT1 deacetylase
activity (fig. 3). The GREMLIN scaled score for 446/450 and
481/484 pairs was 2.28 and 2.22, respectively, that is much
above the 1 threshold for the average score (Balakrishnan
et al. 2011). However, this analysis did not detect co-
evolution between L372/C380 within the zinc-binding do-
main and N417/R424 in the vicinity of SIRT1 active site.

hSIRT1 Variants Containing Active-Site Substitutions
Maintain Activity toward Conserved Histone
Substrates

As described above, the hSIRT1 V3/V4/V5 mutants, in which
amino acids have been substituted by residues found in Fungi
or fly SIRT1 orthologs, exhibit activity that is comparable to
(or higher) than WT hSIRT1 with the N-acetyl-lysine substrate
(fig. 3). To examine V3/V4/V5 activity with an acetyl lysine in
universally conserved histone proteins, we first purified the
chromatin fraction from HEK293T mammalian cells. Next, to
examine the kinetics of histone deacetylation, we incubated
V3/V4/V5 with the purified chromatin fraction for specific
time durations. We then utilized western blot analysis to
monitor hSIRT1 activity by following the time dependent
decrease in H4K16Ac signal. We found that V3/V4/V5 activity
toward H4K16Ac in the chromatin fraction is similar to WT
hSIRT1 (fig. 4 and supplementary fig. S9, Supplementary
Material online). These results show that V3/V4/V5 maintain
full activity with the conserved H4K16Ac. We further vali-
dated these results by examining the activity of the different
hSIRT1 variants toward peptides containing H3K9Ac,
H3K56Ac and H4K16Ac derived from human histones H3
or H4. SIRT1 activity with these peptides was measured using
an ammonia-coupled assay as previously described (Smith
et al. 2009; Meledin et al. 2013). This continuous spectro-
scopic assay allows determination of the Michaelis Menten
kinetic parameters for the reaction. Analysis of these variants
with the different peptides (table 1 and supplementary table
S3, Supplementary Material online) revealed similar or in
some cases even lower Ky, values for the V3/V4/V5 variants,
relative to the WT (table 1, supplementary table S3 and figs.
S10 and S11, Supplementary Material online). Overall, this
analysis indicates that the mutations in V3/V4/V5 do not
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Fic. 3. The analysis of 13 hSIRT1 variants revealing functional compensation between mutations in hSIRT1. (A) A list of the 13 hSIRT1 mutants
generated (V1-V13) classified according to three structural regions in hSIRT1: The active-site vicinity (green), zinc-binding domain (blue) and
Rossmann-like domain (orange) (see also fig. 2). (B) Activity analysis of V1-V13 using the FDL assay using fluorogenic N-acetyl lysine. The slopes
derived from the FDL experiments were normalized relative to the WT hSIRT1 and results are presented as fold change over the WT (for
representative kinetic curves see supplementary fig. S7, Supplementary Material online), HY is the inactive hSIRT1 mutant containing the H363Y
mutation. Values shown are the mean of three independent repeats whereas the error bars represent the standard deviation from the mean (C). An
SSN of 151 SIRT1 sequences showing the correlated substitutions between positions 446 and 450 in hSIRT1 orthologs. The coloring of each node
(sequence) is by the identity of positions 446 and 450. The first letter is position 446 and the second is 450, for example, red node color represents a
sequence containing R at position 446 and L at position 450. The majority of SIRT1 sequences from vertebrates, insects, and worm species contain
R at position 446 and L at position 450 (red) whereas most fungi species contain A at position 446 and E at position 450 (blue). The proximity
between these positions in hSIRT1 is shown in figure 2.

compromise hSIRT1 ability to recognize and catalyze the
deacetylation of the conserved acetylated histones.

Multiple Active-Site Substitutions Lead to Reduced
Activity toward Acetylated p53

Our bioinformatics analysis of SIRT1 substrates indicates that
although histones are fully conserved, p53 is less conserved
and the fixation of K382 appears only in multicellular organ-
isms (Joerger et al. 2014) (fig. 1). We hypothesized that resi-
dues N417, R424, R446, or L450 (figs. 1 and 2) may be
important for efficient recognition of acetylated p53 protein

by hSIRT1. Accordingly, the V3/V4/V5 mutants, containing
two or four active-site vicinity mutations observed mainly in
the Fungi SIRT1 orthologs (figs. 1-3), may exhibit decreased
deacetylation activity toward p53.

To examine this hypothesis, we measured V3/V4/V5 ac-
tivity toward acetylated p53 protein. We first expressed and
purified recombinant human p53 protein in Escherichia coli,
in which we used genetic code expansion (unnatural amino
acid mutagenesis) to site specifically incorporate N-(¢)-acetyl-
L-lysine (AcK) into position K382 during protein translation
(Neumann et al. 2009; Avrahami et al. 2018). We then used
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FiG. 4. The activity of V5 toward acetylated histones is maintained. Western blot kinetic analysis of WT (A) and V5 (B) activity toward H4K16Ac in
the context of native histones shows that V5 is fully active toward this substrate. SIRT1 deacetylation activity is detected by the time dependent
decrease in H4K16Ac signal. H4K16Ac, H4, and hSIRT1 levels were detected using anti-H4K16Ac antibody, anti-H4 antibody, and anti-6xHis

antibody, respectively.

Table 1. Kinetic Parameters of WT and V5 with Different Acetylated Peptides.”

SIRT1 WT V5

Parameters Peptide Keae (s7) Km (UM) Keae/ Ky (MM ''s-1) Keae () Km (uM) Keae/ Ky (MM s
H4K16 0.2 = 0.04 52.6 = 18.5 5*+23 0.2 = 0.01 88 3.7 26.8 £ 5.2
H3K9 0.3 = 0.07 101.6 = 31.4 3.7*X22 0.1 £ 0.03 47 =245 26*0
H3K56 0.1 £ 0.01 205*7.6 75*23 0.1 = 0.01 19.4 = 8.3 6.5+ 1.9
p53 0.4 = 0.02 17.4 = 3.8 258 £ 7.1 0.3 = 0.02 422 6.2 82 *35
p65 0.1 £ 0.01 3.6 26 445 * 4.6 0.3 = 0.04 30.1 £12.8 99 *3.7

?Parameters were derived from fitting the kinetic measurements of the different hSIRT1 variants to the MM equation. For complete parameters of V3 and V4 see supplementary
table S3, Supplementary Material online and for peptide sequences see supplementary table S4, Supplementary Material online.

western blot analysis to monitor the time dependent deace-
tylation activity of the hSIRT1 variants with the K382Ac p53
protein. Using this assay, we observed a significant decrease in
V3 and V5 activity toward acetylated p53 protein, relative to
the WT, whereas the activity of V4 was maintained (fig. 5 and
supplementary fig. S12, Supplementary Material online). This
analysis revealed that the R446A and L450E mutations in V3
lead to a significant decrease in p53 activity whereas the
N417A and R424E mutations in V4 do not affect this activity.
These results show that although V3 and V5 maintain full
activity toward histones (fig. 4), their activity toward p53
protein substrate is significantly reduced (fig. 5), presumably
due to the effect of the R446A and L450E mutations.

Next, we examined the deacetylation activity of V3/V4/V5
with a K382Ac peptide derived from human p53. We found
that, in contrast to the assays with full length protein, all
proteins retained activity (ke,o/Km within ~3-fold of WT)
with the peptide, although the K, of V5 toward this peptide
is increased by ~2.5-fold, relative to the WT, indicating some
decrease in affinity of V5 to the p53 peptide (table 1 and
supplementary fig. S11, Supplementary Material online).
Finally, to examine whether the V3/V4/V5 variants exhibit
altered activity with an additional substrate that appeared
later in evolution, we examined their activity with an acety-
lated peptide derived from human RelA/p65 K310Ac (Yeung
et al. 2004) (fig. 1). We found that V5 exhibited up to 10-fold
higher Ky, values with the RelA/p65 K310Ac peptide than WT
hSIRT1 indicating lower affinity toward this peptide (table 1
and supplementary fig. S11, Supplementary Material online).
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Ancestral Sequence Reconstruction (ASR) of hSIRT1
The loss of activity observed in the V3 and V5 variants toward
p53 suggests two possibilities regarding the evolutionary dy-
namics of SIRT1 activity toward this substrate: 1) ancestral
SIRT1 proteins may exhibit activity toward p53 indicating
that this activity was maintained in Metazoan but was lost
in Fungi sirtuins, that is, the fungi sirtuins have evolved higher
specificity; or 2) ancestral SIRT1 proteins may exhibit no ac-
tivity toward p53 and the multispecificity of hSIRT1 is an
evolved trait that was gained during the evolution of
Metazoan sirtuins. To examine these possibilities, we per-
formed ASR analysis of the SIRT1 DAC domain, focusing on
positions within the vicinity of the active site: specifically 417,
424, 446, and 450 (already examined in V5), as well as position
449 (fig. 6). We used ASR to reconstruct SIRT1 ancestral
sequences to the extant Fungal and Metazoan orthologs,
with a particular focus on the five different positions listed
above (see details in Materials and Methods and fig. 6).

Experimental Analysis of ASR-Based hSIRT1 Mutants
Based on the ASR analysis, we generated, expressed and pu-
rified additional set of hSIRT1 variants containing active-site
substitutions at positions 446, 450, 417, 424, and 449 accord-
ing to their putative identities in the ancestral node sequen-
ces (fig. 6). These variants incorporate ambiguity in the
reconstructions, that is, in some positions, the probability of
a particular amino acid is <1, in which case the two most
probable amino acid substitutions were tested. These variants
include substitutions from representative ancestors on the
Metazoan branch (M1 and M3; representing Anc164), the
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Fic. 5. The activity of WT and V3-V5 with acetylated p53. Western
blot analysis of WT (A) and V5 (B) activity toward p53-K382Ac in the
context of native p53 containing AcK at position 382. Analysis of p53-
K382Ac, p53, and hSIRT1 levels was performed using anti-K382Ac
antibody, anti-p53 antibody, and anti-6xHis antibody, respectively.
(C) Quantification of the western blot kinetic analysis of WT and V3-
V5 variants shows that V3 and V5 exhibit significantly reduced activ-
ity, relative to the WT. The time dependent decrease in K382Ac signal
was normalized to time 0 and shown as the percentage of p53-
K382Ac/p53 band signals. Each experiment was performed in tripli-
cates. Representative blots for V3 and V4 activity are shown in figure
S$12. Band intensities were quantified by Image ).

Fungi branch (F1 and F3; representing Anc235 and Anc214),
and the Metazoa—Fungi common ancestor (A1-3; represent-
ing Anc279) (fig. 6). Previous studies indicated that a shorter
version of hSIRT1 containing residues 236-684 (Knyphausen
et al. 2016) leads to reduced aggregation with complete main-
tenance of SIRT1 enzymatic activity. To examine the shorter
version of hSIRT1 in our system, we analyzed the activity of
truncated WT and V5 with acetylated p53 protein. We found
that these variants exhibit similar activity profiles with p53 as
the full-length respective proteins (supplementary fig. S13,
Supplementary Material online). Thus, we constructed the
ASR variants in the background of the truncated hSIRT1 var-
iant for functional analysis (fig. 6).

To examine the activity of the different ASR variants, we
first used the FDL assay, as described above, to verify that all

variants are active (supplementary fig. S14, Supplementary
Material online). Next, we used western blot analysis to ex-
amine the deacetylation activity of the different variants with
H4K16Ac in native histones and K382Ac in p53 protein.
Interestingly, we found that the A1-A3 variants, correspond-
ing to the possible residue configuration of the protein in the
Metazoa-Fungi common ancestor (Anc279), exhibited simi-
lar activity with both of these substrates as WT hSIRT1 (figs. 6
and 7 and supplementary fig. S15, Supplementary Material
online). In contrast, we found that the F1 and F3 variants,
corresponding to possible residue configurations of the com-
mon ancestor of all Fungi-Dikarya (Anc235/214), maintained
activity with the conserved H4K16Ac but exhibit significant
loss of activity with the p53 K382Ac (figs. 6 and 7 and sup-
plementary fig. S15, Supplementary Material online). These
results indicate that while the residue configurations derived
from the Metazoa—Fungi common ancestor (A1-A3) were
able to catalyse p53 deacetylation, this ability was lost during
the Fungal SIRT1 evolution (F1 and F3). Finally, the analysis of
M1 and M3 variants, generated based on the ancestral
sequences of the Metazoan sirtuins (Anc164), indicates, as
expected, similar activity with p53 as WT hSIRT1 (figs. 6
and 7). Overall, these results suggest that the active-site con-
figuration of the Metazoa—Fungi common ancestor exhibited
multispecificity towards both histone and p53-like substrates.
We suggest that this multispecificity trait was maintained
during Metazoan SIRT1 evolution but was lost during Fungi
SIRT1 evolution as these enzymes became more specialized.

Discussion

Many enzymes that catalyze the addition or removal of di-
verse types of PTMs on different protein targets are multi-
specific. This phenomenon is extremely hard to decipher at
the molecular level and remains enigmatic for many such
enzymes (Beltrao et al. 2013). This study on hSIRT1, being
one of the most prominent examples of multispecific hub
proteins, addresses fundamental questions regarding the mo-
lecular basis and evolution of multispecificity in these
enzymes. Using a combined bioinformatics-experimental ap-
proach, we identified and tested substitutions in SIRT1 that
arose during the evolution of these enzymes in Eukaryota.
The examination of different hSIRT1 variants with substrates
that are either ubiquitous (e.g, histones) or only found in
certain evolutionary branches of Eukaryota (e.g, p53) enabled
the identification of a set of residues in hSIRT1, located near
the entrance to the active site, that are essential for multi-
specificity, thereby shedding new light on the molecular
determinants of this phenomenon.

hSIRT1 is an excellent model system to study multispeci-
ficity in PTM catalyzing enzymes due to its deacetylation
activity toward a large number of proteins (Lavu et al.
2008). A recent study that examined the deacetylation profile
of all human SIRT1-7 enzyme with 6,802 different acetylated
peptides, representing the human acetylome, revealed that
thousands of acetyl-lysine sites are targeted by these enzymes
(Rauh et al. 2013). However, despite extensive studies, little is
known regarding the residues in hSIRT1 that enable the high
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Fic. 6. Ancestral sequence reconstruction (ASR) of SIRT1. (A) The constrained maximum-likelihood phylogeny of the SIRT1 DAC domain inferred
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subtree. (B) The posterior probability distribution at the putative active-site vicinity residues (446, 450, 449, 417, and 424) shown as sequence logos
for key ancestral nodes. Sequence logos constructed using WebLogo 3 (Crooks et al. 2004). (C) Variants of hSIRT1 containing possible combi-
natorial mutations based on ASR analysis. These variants were generated in the lab and experimentally tested (see text and fig. 7).

degree of multispecificity. Several studies on the specificity of
hSIRT1, using different types of peptide arrays (Blander et al.
2005; Garske and Denu 2006), revealed no clear consensus
sequence for acetyl-lysine recognition. In contrast to the mul-
tispecificity of hSIRT1, the substrate repertoire analysis of the
ySir2 ortholog revealed specificity toward conserved histone
acetyl-lysine residues (Bheda et al. 2012). This observation
suggests that multispecificity in SIRT1 can be acquired or
lost through natural evolution from a common ancestor.
The identification of semiconserved residues in the vicinity of
the hSIRT1 active site allowed us to generate and focus on a
subset of variants (V3/V4/V5), containing 2 or 4 substitutions at
the vicinity of hSIRT1’s active site (figs. 1 and 2). Our findings
that V3 and V5 exhibit high activity toward conserved histone
substrates but a significant loss of activity toward acetylated p53
(figs. 4 and 5) suggest that the amino acids R446 and L450 in
hSIRT1 are essential for p53 deacetylation activity (fig. 1). ASR
followed by experimental examination of hSIRT1 mutants con-
taining ASR based substitutions (fig. 6) revealed the dynamics of
SIRT1-p53 recognition through evolution. Our findings that
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variants containing mutations derived from Fungal-Metazoa
SIRT1 common ancestor exhibit activity with p53, suggest
that this common ancestor most likely exhibited multispecific-
ity. It suggests that evolution of multispecificity requires contin-
ual selective pressure via the presence of certain substrates.
Thus, the absence of p53 in Fungi may alleviate selective pres-
sure to maintain SIRT1 activity with p53 and this function was
lost during mutational drift leading to higher specificity of fungal
sirtuins. In contrast, in Metazoa there had been a selective pres-
sure to maintain activity with p53. Interestingly, a recent evo-
lutionary analysis of p53 indicated the existence of p53
homologs in Holozoa (Bartas et al. 2020). The Holozoa clade
includes unicellular organisms and Metazoa but is distinct from
Fungi. This analysis is consistent with our results and suggests
the possibility that an ancestral p53-like protein was indeed
present in the metazoan-fungi common ancestor and inter-
acted with the SIRT1 ancestor. Since the fixation of K382 in
p53 appeared only in vertebrates (Joerger et al. 2014) (fig. 1) it is
possible that SIRT1 multispecificity preceded the appearance of
p53 K382Ac site.
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Fic. 7. Quantification of western-blot activity assay for the different
hSIRT1 ASR based variants with native p53 K382Ac and native
H4K16Ac. In this graph, because the acetylated substrate was quan-
tified, high band intensity corresponds to low substrate turnover, that
is, low activity. (A) Data for p53 K382Ac were quantified by the band
intensity following membrane exposure to anti-p53Ac antibody at
120 min time point as a percentage of the intensity of the same time
point probed with anti-p53, normalized to the percentage of p53
K382Ac/p53 band intensities at t = 0. (B) Data for H4K16Ac are quan-
tified by the band intensity following membrane exposure to anti-
H4K16Ac antibody at 180 s time point as a percentage of the intensity
of the same time point probed with anti-H4, normalized to the per-
centage of H4K16Ac/H4 band intensities at t =0. The hSIRT1 HY
mutant, containing the catalytic H363Y mutations, served as the
negative control. Error bars show the standard error from the mean
(SEM) for a minimum of 2 experimental repeats. Representative west-
ern blots for all variants are shown in supplementary figure S15,
Supplementary Material online.

Function and evolution of promiscuous enzymes that cata-
lyze the chemical transformation of native and nonnative sub-
strates has been extensively studied (Babtie et al. 2010;
Khersonsky and Tawfik 2010). Directed evolution of these
enzymes revealed the robustness of the native enzyme activity
to mutations that dramatically affect the promiscuous, non-
native activities (Aharoni et al. 2005). By analogy to these studies,
it is tempting to speculate that the activity of multispecific
enzymes, such as SIRT1, toward the most ancient, conserved,
and ubiquitous substrates (e.g, histones) is robust to amino acid
substitutions that more easily lead to reduced activity with
more recently evolved substrates (e.g, p53). However, additional
studies with other multispecific enzymes are required to thor-
oughly examine this hypothesis.

Overall, our study has allowed the identification of residues
that are critical for SIRT1 multispecificity. For a more com-
prehensive analysis of SIRT1 multispecificity, analysis of addi-
tional SIRT1 substrates is required. In addition, future work
should investigate the molecular basis for SIRT1 multispeci-
ficity via structural analysis of WT and mutant SIRT1 in com-
plex with different protein substrates. Although structures of
hSIRT1 in complex with peptides derived from p53 (Cao et al.
2015) have been solved, the future structural elucidation of
SIRT1 in complex with full-length acetylated protein sub-
strates (e.g, p53 or H4) could reveal in more detail exactly
how 446, 450, 417, 424 residues in the vicinity of the SIRT1
active site interact with SIRT1 substrates. These studies could
also reveal the importance of SIRT1 structural dynamics and
conformational changes to substrate recognition. Finally, our
approach can be further utilized for the examination of a
variety of other multispecific PTM catalyzing enzymes includ-
ing kinases/phosphatases, methyl-transferases/demethylases,
and ubiquitin-ligases/deubiquitinases to study the molecular
basis for their multispecificity and shed new light on the
evolution of enzyme-substrate recognition in these diverse
and important systems.

Materials and Methods

Sirtuin-Superfamily Wide SSN and Phylogenetic
Profiles of hSIRT1 Substrates

The UniProtKB (UniProt Consortium 2013) and NCBI (NCBI
Resource Coordinators et al. 2018) sequence databases were
searched for hits of sequence patterns associated with sirtuin
proteins. Signatures from InterPro (Finn et al. 2017)
(IPR026590, IPR026591, IPR003000, IPRO17328, IPR026587,
IPR027546, and IPR028628) and Pfam (Punta et al. 2012)
(PF02146, PF13289) yielded 10,273 unique sequences with
pattern matches. The Structure-Function Linkage database
tools (Barber and Babbitt 2012; Akiva et al. 2014) were then
used to generate a representative SSN, as described before
(Atkinson et al. 2009; Akiva et al. 2017). For phylogenetic
profiles of hSIRT1 substrates, we complied a set of organisms
that sample the phylogenetic tree of eukaryotes and have
fully sequenced genomes. For each organism, we combined
EggNog (Huerta-Cepas et al. 2016) and Inparanoid
(Sonnhammer and Ostlund 2015) to find orthologs of
hSIRT1 substrates. Details can be found in supplementary
materials and methods, Supplementary Material online.

Cloning, Expression, and Purification of SIRT1
Mutants in E. coli

The p38 plasmid containing hSIRT1 (UniProt Q96EB6) gene
fused N-terminal 6xHis tag was obtained as a kind gift from
Haim Cohen lab, the Bar-llan University, Israel. The p38 was
modified by deleting one of the two Kpnl restriction sites to
generate the p38d plasmid followed by cloning of SIRT1 DAC
domain containing the different mutations. Plasmids contain-
ing the WT and mutant hSIRT1 genes were transformed and
expressed in Rosseta 2 E. coli competent cells by IPTG induc-
tion. hSIRT1 variants were purified by Ni-NTA purification.
The purity of the proteins was assessed by SDS-PAGE on 10%
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gel and protein concentration was measured by the Bradford
method. Details can be found in supplementary materials and
methods, Supplementary Material online.

FDL and Ammonia-Coupled Assays for hSIRT1
Variants

The activities of the mutants were measured by FDL assay
using protected N-acetyl lysine substrate conjugated to a 4-
amino-7-methylcoumarin group (AMC) at the carboxyl ter-
minus. The assay was performed based on previously de-
scribed protocol (Wegener et al. 2003) with modifications.
The ammonia-coupled assay was performed as previously
described (Smith et al. 2009) with minor modifications. The
ammonia assay kit (Sigma) and relevant acetylated peptides
(Peptron) were used for preparing the reaction mix. The
PNC1 plasmid was obtained as a kind gift from Jessica L.
Will and Jorge C. Escalante-Semerena from the University of
Georgia and the protein for the assay was purified as previ-
ously described (Garrity et al. 2007). The sequences of all
peptides used in this study are shown in supplementary table
S4, Supplementary Material online. Details can be found in
supplementary materials and methods, Supplementary
Material online.

Native Histone and p53 Deacetylation Assays
Chromatin fractionation was performed as previously de-
scribed (Gertman et al. 2018) with minor modifications.
The full-length proteins were expressed in bacteria that in-
corporated the non-natural amino acid (acK) by expanding
the codon usage. The p53 plasmid with the stop codon in
position 382 was cloned to the pCDF Duet plasmid and pu-
rified as previously described (Arbely et al. 2011). Detailed
description of activity assays for native histones and acety-
lated p53 protein can be found in supplementary materials
and methods, Supplementary Material online.

Coevolution Analysis and ASR of SIRT1

Coevolution analysis was performed on an automatically
compiled >6,000 sequence MSA of the SIRT1 DAC sequences
using the GREMLIN (Balakrishnan et al. 2011) online server
(http://gremlin.bakerlab.org/). For construction of a maxi-
mum likelihood tree, an EFI-EST enzyme similarity networks
(Gerlt et al. 2015) were used to collect sequence orthologous
to hSIRT1, using the Xenopus laevis SIRT1 sequence as seed.
Detailed description of phylogenetic tree construction and
ASR can be found in supplementary materials and methods,
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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