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The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs
have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of
CRMs has a considerable impact on the performance of CRM identification.The paper proposes a CRMdiscovery algorithm called
ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional
grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it
with five existing methods. Experimental results show that ComSPS performs better than them.

1. Introduction

Eukaryotic gene expression is regulated by cis-regulatory
modules (CRMs). A CRM is a DNA sequence that contains
multiple binding sites of one or more specific transcription
factors (TFs) that regulate together an aspect of a gene
expression pattern. A CRM typically has a length range
from 100 to 2000 bp. Promoters, enhancers, and silencers are
common CRM examples; they perform different regulatory
functions and are located in 5�耠 flanking regions, 3�耠 flanking
regions, promoter regions, intron regions, and even exon
regions of regulated genes. The CRM discovery is the key to
revealing mechanisms of gene regulation and understanding
mechanisms of development, evolution, and disease.

Although CRMs play important roles in the regulation
of eukaryotic gene expression, the discovery of CRMs [1, 2]
remains a challenging problem in biology. The reasons are as
follows. The distribution of CRMs in gene regulatory regions
is very wide and some CRMs are even far from the target
gene up to several hundreds of kbp; motif sites as functional
elements of a CRM are short and degenerate, and their
identification in itself is a difficult problem. Moreover, the
complex regulatory structure of CRMs, which defines how
motif sites within CRMs are organized to form regulatory
complexes in what number, order, orientation, and spacing,

further increases the difficulty of CRM discovery. CRMs of
eukaryotic genes have the complex and varying structure; the
motif sites within orthologous CRMs of different genes often
mutate and rearrange, and the overall structures of CRMs
are not conserved. Unfortunately, the internal regulatory
mechanism of CRMs, which governs the organization of
structure features, has not yet been fully understood. Thus,
it is difficult to deterministically describe the regulatory
structure of CRMs.

Current methods predict CRMs based on motif site clus-
tering or modeling the regulatory structure of CRMs along
the some clues. Although the overall CRM structure is not
conserved, the biological reasons make the arrangement of
motif sites within a CRM nonrandom, and the arrangement
of thesemotif sites should be conducive to TFs binding.Many
studies have shown that motifs are usually organized into
composite elements (CEs) [3] to regulate eukaryotic gene
expression. CEs are defined as functional units consisting
of two or more motif sites that are located close to each
other. The corresponding TFs interact with CEs to enhance
or repress a specific transcriptional activation. The presence
of a CE within a CRM constrains the ordering and spacing
betweenmotif sites within the CRM. Current CRMdiscovery
methods can be divided into the following three categories
according to CRM representation.
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The first category simply views a CRM as a cluster of
motif sites in windows and uses the set model to represent
CRMs [4–9]. Some methods in this category employ statis-
tical approaches to score clusters of motif sites in windows
of a predefined given size and to identify the statistically
significant site clusters as candidate CRMs. For example,
MSCAN [4] uses 𝑝 values to score clusters of motif sites in
each window region. MotEvo [7] uses a Bayesian approach
to calculate the posterior probabilities of all given motifs in
each alignedwindow. Some othermethods use combinatorial
approaches to search a combination of motif sites satisfying
specific constraints in a window region of a given size. For
example, CMStalker [8] and CPModule [10] use a constraint
satisfaction formulation and a constraint programming for
itemset mining approach, respectively. The advantages of
these methods are that they are simple, direct, and easy to
implement. But they just define simple uniformity constraints
for component motifs of CRMs and ignore the regulatory
structure of CRMs, which is unrealistic. Moreover, their
performance is usually limited by the window size setting and
the hard specification of scoring thresholds.

The second category still regards CRMs as sets of motif
sites but directly or indirectly constrains the order anddistance
of motif sites within CRMs based on phylogenetic conser-
vation. Some methods search possible CRMs in orthologous
sequences by looking for a groupof predefinedCRMpatterns,
that is, a set of specific motifs and constraints on ordering
and intersite distances for these motifs; the corresponding
methods are [11, 12]. Some other methods use sequences
alignment, such as [13, 14], or motif site sequences alignment,
such as [15], to detect conserved CRMs among species.
Although this category of methods has achieved a certain
degree of success, they are just applicable to the discovery of
conserved CRMs in related species.

The third category uses probabilistic models to represent
CRMs [16–23]. Most methods use Hidden Markov Models
(HMMs) to model CRMs. The HMM can provide flexible
structure representation by defining different states and
transitions. Early methods, such as Cister [19] and Cluster-
Buster [20], only define the distance constraint betweenmotif
sites but do not model any order between motif sites within
a CRM. Subsequent methods, such as Stubb [21], BayCis [22]
and CORECLUST [23], define transitions betweenmotif sites
to infer the possible spatial arrangement of motif sites within
a CRM. The difference between these methods is that Stubb
defines the correlation between somemotifs, but, in inferring
CRMs, it uses sliding window technology. The limitation of
sliding window technology lies in the fact that the lengths
of predicted CRMs are difficult to know in advance and are
only based on experience to guess. BayCis and CORECLUST
attempt to capture structural characteristics of CRMs by
defining the correlation between all given motifs. This intro-
duces a large number of model parameters to be estimated
leading to a large number of computations.

This paper presents a newCRMdiscovery algorithmcalled
ComSPS (the executable program of ComSPS is available
at https://sites.google.com/site/onehoare/comsps). The algo-
rithm still uses HMM to represent CRMs. Coexpressed genes
often share common expression patterns and CRMs driving

these expression patterns usually have an identical regulatory
structure. We build a regulatory structure model based on
HMM by exploring the rules of CRM transcriptional gram-
mar [24] that governs the arrangement of motif sites within
CRMs. These grammatical rules include not only motifs
constituting CRMs but also the orientation preferences of
motif sites, distributions of motif sites and their spacing,
and the arrangement preferences of motif sites. Searching for
the CRM transcriptional grammar is helpful to distinguish
potential CRMs from background and thus improves the
identification performance of CRMs. Moreover, modeling
the CRM transcriptional grammars allows ComSPS to be
able to analyze the CRM regulatory structure. In addition
to motif states, ComSPS explicitly defines CRM states and
can automatically determine sizes of CRMs. ComSPS uses
the conservation of CRMs across sequences to improve the
prediction accuracy without sequence alignment. We test
ComSPS on three public benchmark datasets and compare
it with five existing methods. Experimental results show that
ComSPS performs better than them.

2. Materials and Methods

2.1. Overview. Binding sites of a TF usually mutate and are
not identical in different sequences, but they have a common
pattern known as a motif. We use a TFBS or a motif site to
refer to an occurrence of a motif in sequences. Here, we use
position weight matrices (PWMs) [25] to represent motifs.

The basic input of the algorithm includes a set of regula-
tory sequences, denoted by 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥�푁}, which are
from a group of coexpressed genes, and a set of motifs that
are represented by PWMs, denoted by𝑊 = {𝑤1, 𝑤2, . . . , 𝑤�퐾}.
These coexpressed genes are assumed to be regulated by
similar CRMs with sites of motifs from W. In addition, the
input includes some other model parameters. The algorithm
outputs positions of found CRMs, along with TF labels of
motif sites within the CRMs and their positions in sequences.

ComSPS employs anHMM tomodel the CRM regulation
grammars shared by a group of coexpressed sequences. The
specific regulation grammar rules introduced by the model
include the number of motif sites, the origination of motif
sites, the distance between motif sites, the order of motif
sites, and the coassociation of motif sites. These rules are
characterized by defining the parameters that are attached
to the HMM model structure (state, state transition, and
state transmission) and are determined by the learning of
model parameters from given datasets. By the inference of the
model, the CRMs following the predefined grammatical rules
are deduced.

Specifically, states of motifs to probably be involved in
the regulation and their reverse complementary counterparts
are defined to capture motif sites constituting CRMs and
their orientation preference; motif emission probabilities are
described by PWMs to characterize the binding affinity of
motifs; intermotif background states are defined to describe
the distribution of nonmotif nucleotides and their dura-
tion distributions reflect the distance constraint between
motifs; motif frequencies are added to the model to infer
the distribution of motif sites; correlation probabilities are

https://sites.google.com/site/onehoare/comsps
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introduced to capture coassociated motif site pairs. The
model is trained using an extended Baum-Welch algorithm
based on the expectation maximization (EM) algorithm, and
most parameters are adjusted automatically. The model uses
the Viterbi algorithm to search CRMs by inferring the most
likely state path. In addition, to improve the time efficiency of
the algorithm, the training and inference of the model on all
sequences are parallelized.

Before and after building the model, we performed some
additional processing. If the given PWMs are directly from
existingmotif libraries (such as TRANSFAC [26] and JASPAR
[27]) or outputs of third party de novo motif discovery
methods, there may be more than one PWM describing
motifs of a same TF, and these PWMs may have different
lengths; however, the HMM architecture depends on the
given PWMs, andmany unnecessary stateswill be introduced
when directly using them, thus increasing search space. In
such cases, it is necessary to merge PWMs that represent the
same TF before constructing the HMM.We further screened
CRMs found by the HMM according to their conservation
among all sequences to reduce false-positive predictions.

Based on these criteria, thewhole algorithmcan be simply
described as follows:

(i) We filter the input PWMs based on clustering of
similar PWMs. This step depends on the quality of
the given PWMs, as optional preprocessing of the
algorithm.

(ii) For the input sequence, we use an HMM to model
the regulatory structure of CRMs based on the filtered
PWMs (or the given PWMs). We train model param-
eters using the Baum-Welch algorithm. Based on the
trained model, we use the Viterbi algorithm to infer
the locations of potential CRMs in sequences.

(iii) For the found candidate CRMs, we further screen
them based on their conservation among sequences
and output them.

Each specific step of the algorithm is described in detail
as follows.

2.2. PWM Filtering. To find the similar PWMs describing
motifs of a same TF, we use a general clustering method. The
basis of clustering is measuring the similarity between these
PWMs. To reduce the impact of uncertainty and noise in
biological data and to better measure the similarity between
PWMs, we use the FISim algorithm [28] to calculate their
similarity. FISim takes into account the relative importance
of bases at different positions in a PWM and can give higher
scores tomore conserved positions, whichmakes FISimmore
robust than othermethods.The following are specific steps of
the filtering process:

(i) Use the FISim algorithm to measure the similarities
between all given PWMs.

(ii) Take similarities as weights, PWMs as vertices, and
PWM pairs whose similarities are above a given
threshold as edges to construct a weighted adjacency
graph.

(iii) Use the process [29] to find all dense subgraphswhose
density are above a given threshold, and return them
as the final clusters; let 𝐾�耠 be the number of clusters(𝐾�耠 ≤ 𝐾). Each cluster corresponds to a unique TF.

(iv) Choose the PWM whose length is closest to the
average of all PWMs in a cluster as representative of
the cluster. After filtering, the PWM set is denoted as𝑊�耠 = {𝑤1, 𝑤2, . . . , 𝑤�퐾}.

2.3. CRM Searching Based on the HMM. Based on the filtered
PWMset𝑊�耠 (if the given PWMsdoes not need filtering, then𝑊�耠 = 𝑊), we build an HMM to identify CRMs in the given
sequences. The HMM characterizes the regulatory structure
ofCRMsby introducing corresponding states and transitions.

2.3.1. Model. The states of the constructed HMM, transition
probabilities, and emission probabilities are defined as fol-
lows.

For a given sequence, it can be viewed as observations of
the HMM.TheHMM encodes the regulatory structure of the
sequence according to a following hierarchical organization.
A sequence can be considered as a mixture of CRMs which
have variable lengths and are separated by inter-CRM back-
ground sequences; a CRM can bemodeled as a concatenation
of motif sites and intra-CRM background sequences.

As shown in Figure 1, inter-CRM backgrounds are
denoted by the state 𝑏�푔; a CRM is denoted by the state 𝑐�푠,
which indicates the start, and the state 𝑐�푒, which indicates
the end. Here, 𝑐�푠 and 𝑐�푒 are auxiliary states. The auxiliary
states do not emit specific bases and are only used to label the
model structure; they are represented by circles in Figure 1.
For the given sequence, themodel assumes that it is regulated
by at most 𝐾�耠 different TFs. The 𝐾�耠 states 𝑚1, 𝑚2, . . . , 𝑚�퐾
represent the corresponding motif sites, and PWMs of these
motifs are from𝑊�耠. Considering that motif sites may appear
on the reverse complementary strand of the sequence, we
define the reverse complementary of themotifs.We use𝑚�퐾+�푖
to denote the reverse complementation of a motif 𝑚�푖. Thus,
the model has 2𝐾�耠 motif states. The model introduces an
auxiliary state next�푖 to indicate that a motif state next to 𝑚�푖
is still within a CRM and to establish a transition of the
motif 𝑚�푖 to other motifs to capture the correlation between
them and motif frequencies. 𝑏�푐(�푖,�푗) denotes spacers between
sites of motifs 𝑚�푖 and 𝑚�푗, also known as intra-CRM back-
grounds; when not specifically referring to spacers between
two specific motifs, the superscript is removed and expressed
as 𝑏�푐. The model assumes that emission probabilities of these
background states follow the same distribution.

The transition probabilities are regarded as unknowns in
the model and are defined as follows. For each position of
the sequence, a decision is made to determine whether to
initiate a CRM or generate a segment of background, from
the CRMmodel with probability𝑝�푟 or the backgroundmodel
with probability 1 − 𝑝�푟, respectively. If the model starts a
CRM at the current position, then the current state becomes𝑐�푠, indicating the start of a CRM. From the state 𝑐�푠, there is
a probability 𝑞�푖 to initiate the CRM’s first motif site 𝑚�푖, and
each position in the following region with the length 𝑙�푖 has
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Figure 1:The ComSPS HMM state transition diagram. Emission states are represented by shaded circles. The auxiliary states are represented
by circles, which are only used to model the structure (not to emit specific bases). 𝑆 and 𝐸 are the initiating and terminating states of the
model, respectively. Only the transition probabilities marked by dotted lines need estimating in the model training.

the same state𝑚�푖, where 𝑙�푖 is the length of the motif𝑚�푖. Then,
the model transits to 𝑐�푒, with the probability 𝑞0, to end the
CRM and return to the background 𝑏�푔; or the model can
alternatively continue the CRM with the probability 1 − 𝑞0
and then chooses a next motif 𝑚�푗 with the probability 𝑞�푖,�푗,
implanting the corresponding background 𝑏�푐(�푖,�푗) between the
sites of𝑚�푖 and𝑚�푗. Figure 1 shows theHMMarchitecture, with
the transition probabilities marked at the arrows.

To capture the spatial correlations of coassociated motif
sites as done in Stubb we introduce a parameter 𝑟�푖,�푗, which
describes the probability that, along aDNA strand, amotif𝑚�푗
site is located downstream of amotif𝑚�푖 site and characterizes
their specific arrangement, as shown in Figure 2. All motif
state pairs are initialized to be noncorrelated; when themodel
detects that the cooccurrences of motifs 𝑚�푖 and 𝑚�푗 are
statistically significant, the correlation betweenmotifs𝑚�푖 and𝑚�푗 is identified and the parameter 𝑟�푖,�푗 is added to the model
parameters. Under this definition, the transition probability
between any motif sites is calculated as follows. If there exists
correlation between 𝑚�푖 and 𝑚�푗, their transition probability𝑞�푖,�푗 is 𝑟�푖,�푗; if they are not correlated, 𝑞�푖,�푗 is renormalized to

ensure that ∑2�퐾�푗=1 𝑞�푖,�푗 = 1. Thus, the model only considers the
correlation probabilities of the motif pairs which frequently
cooccur and the estimated model parameters are reduced.
Let 𝑅�푖 = {𝑗 | cooccurrence times of motifs 𝑚�푖 and 𝑚�푗 be
statistically significant}, and 𝑞�푖,�푗 can be specifically expressed
as

𝑞�푖,�푗 = {{{{{{{
𝑟�푖,�푗, 𝑗 ∈ 𝑅�푖,
𝑞�푗 1 − ∑�푘∈�푅𝑖 𝑞�푖,�푘∑�푘∉�푅𝑖 𝑞�푘 , 𝑗 ∉ 𝑅�푖. (1)

To determine whether the cooccurrence of motifs𝑚�푖 and𝑚�푗 is statistically significant on a given sequence set, a 𝑧-score
[21] for their cooccurrence times 𝑇�푖�푗 is defined as follows:

𝑧�푖�푗 = 𝑇�푖�푗 − 𝐸�푖�푗𝜎�푖�푗 , (2)

where 𝐸�푖�푗 and 𝜎�푖�푗 are the expectation and standard deviation
of𝑇�푖�푗, respectively.When 𝑧�푖�푗 and𝐸�푖�푗 are greater than the given
thresholds, themodel determines the correlation between the
two motifs.
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Figure 2: Correlation of coassociated motifs. In gene regulation,
a TF usually works synergistically with other TFs by interactions
to regulate a highly specific expression pattern. To facilitate such
interactions, their binding sites are located adjacent to each other
and form modules, also called composite elements (CEs) [3]. The
same CEs perform similar functions in different genes, and they
should be conserved in sequences and have a preferred arrange-
ment. To capture coassociated motifs constituting CEs, the model
defines the correlation probabilities. Based on CE’ conservation
assumptions, such motif pairs may cooccur repeatedly in regulatory
sequences of genes, which are marked in rectangles in the example.
The region within each pair of brackets represents a CRM. Each
polygon represents a motif site within a CRM.

The emission probabilities of the model are considered as
known. In our HMM model, each state can emit a string of
bases with variable length instead of a single base; this type of
HMM is called the HMM with duration [30]. In the HMM,
the probability of each state emitting a base sequence with a
specific length is expressed as the product of the probability
that the state generates any sequence of the length and the
probability that the state generates the base sequence given
the length.

Given a motif 𝑚�푘, its PWM and length 𝑙�푘 are known. Let𝑥1:�푙𝑘 = 𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥�푙𝑘 be a site of the motif and let 𝑤�푘[𝑖, 𝑗] be the
probability of base 𝑖 at position 𝑗 of its PWM.The probability
generating the motif site is expressed as

𝑃 (𝑥1:�푙𝑘 | 𝑚�푘, 𝑤�푘) = �푙𝑘∏
�푖=1

𝑤�푘 [𝑥�푖, 𝑗] . (3)

The inter-CRM background state 𝑏�푔 and the intra-CRM
background 𝑏�푐 are modeled as the 𝑘th order and 𝑘�耠th
order local Markov chains with the parameters 𝜃0 and 𝜃1,
respectively.The two parameters are easily estimated from the
given sequences. For the state 𝑏�푐, we assume that its length
satisfies a geometric distribution with the expectation ℎ, and
the corresponding geometric distribution parameter 𝑝ℎ =1/ℎ is taken as a parameter of the algorithm to be specified
in the configuration. Under the distribution, the probability
of an intra-CRM background segment has a length 𝑑 and is
represented as follows:

𝑃 (𝑑 | 𝑏�푐, 𝑝ℎ) = (1 − 𝑝ℎ)�푑−1 𝑝ℎ. (4)

For the state 𝑏�푔, its length reflects the distance between CRMs
and is approximated by a geometric distribution with the
expectation 1/𝑝�푟.
2.3.2. Inference and Training of the Model. Given a training
set 𝐷, the model assumes that these sequences are indepen-
dent. Therefore, the estimation of parameters can be done
separately on each sequence. Let 𝜆 = {𝑝�푟, 𝑞0, 𝑞1, . . . , 𝑞�퐾, . . . ,𝑟�푖,�푗, . . .} and Θ = 𝑊�耠 ∪ {𝜃0, 𝜃1}. In these parameters, other
parameters except for 𝑟�푖,�푗 are derived from the existingHMM.
To get 𝑟�푖,�푗 from a 𝑄 function, we follow the same process as
done in [31]. Specifically, 𝑟�푖,�푗 is estimated on the training set
as follows:

𝑟�푖,�푗 =
{{{{{{{{{{{{{

𝑇�푖�푗∑�푘∈�푅𝑖 𝑇�푖�푘 , 𝑅�耠�푖 = ⌀,
𝑇�푖�푗∑�푘∈�푅𝑖 𝑇�푖�푘 (1 − ∑

�푘∈�푅𝑖

𝑟�푖,�푘) , 𝑅�耠�푖 ̸= ⌀, (5)

where 𝑅�耠�푖 is the complement of 𝑅�푖 and 𝑇�푖�푗 are cooccurrence
times of motifs 𝑚�푖 and 𝑚�푗 on the given training set. Under
the assumption of sequence independence, 𝑇�푖�푗 is the sum
of cooccurrence times 𝑇�푖�푗(𝑥) of motifs 𝑚�푖 and 𝑚�푗 on each
sequence 𝑥: 𝑥 ∈ 𝐷.𝐸�푖�푗 and the second term 𝐸(𝑇2�푖�푗) of 𝜎�푖�푗 can be estimated on
the training set𝐷 as follows:

𝐸�푖�푗 = ∑
�푥∈�퐷

𝑇�푖�푗 (𝑥) 𝑃 (𝑥 | 𝜆)
= ∑
�푥∈�퐷

∑
�휋

𝑇�푖�푗 (𝑥, 𝜋) 𝑃 (𝑥, 𝜋 | 𝜆) ,

𝐸 (𝑇2�푖�푗) = 𝐸((∑
�푥∈�퐷

∑
�푘

𝐼�푖�푗�푘 (𝑥))2)

= 𝐸(∑
�푥∈�퐷

∑
�푘

𝐼2�푖�푗�푘 (𝑥))
+ 2∑
�푥∈�퐷

∑
�푘,�푘>�푘

𝐸 (𝐼�푖�푗�푘 (𝑥) , 𝐼�푖�푗�푘 (𝑥))

= 𝐸(∑
�푥∈�퐷

∑
�푘

𝐼�푖�푗�푘 (𝑥))
+ 2∑
�푥∈�퐷

∑
�푘,�푘>�푘

𝑃 (𝐼�푖�푗�푘 (𝑥) , 𝐼�푖�푗�푘 (𝑥)) ,

(6)

where 𝜋 is a state path and 𝐼�푖�푗�푘(𝑥) is the indicator variable for
the event where motif 𝑚�푖 is followed by motif 𝑚�푗 located at
position 𝑘 in a sequence 𝑥 of the training set𝐷.

To estimate 𝜆, the Baum-Welch algorithm is extended to
maximize the likelihood log𝑃(𝐷 | 𝜆, Θ). For a sequence 𝑥 ∈𝐷, we define 𝜋 and 𝑑 as a state path of the model and the
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state duration sequence, respectively. Finally, log𝑃(𝐷 | 𝜆, Θ)
is represented as follows:

log𝑃 (𝐷 | 𝜆, Θ) = ∑
�푥∈�퐷

log𝑃 (𝑥 | 𝜆, Θ)
= ∑
�푥∈�퐷

∑
�휋,�푑

log𝑃 (𝑥, 𝜋, 𝑑 | 𝜆, Θ) . (7)

To maximize the likelihood log𝑃(𝐷 | 𝜆, Θ), we turned to
maximize the 𝑄 function of log𝑃(𝑥, 𝜋, 𝑑 | 𝜆, Θ) following
the process in [31]. The 𝑄 function is solved by the EM
algorithm to iteratively update 𝜆 and finally converge to a
locally optimum 𝜆.

Based on the trained model, we use the Viterbi algorithm
[31] to infer the most possible state path in each given
sequence to be searched. The algorithm finds a group of
CRMs in the sequences. For a given CRM 𝑐, we give a score
to it by a log likelihood ratio as follows:

LLR (𝑐) = log
𝑃 (𝑐 | 𝜃1, 𝜆,𝑊�耠)𝑃 (𝑐 | 𝜃0) , (8)

where 𝑃(𝑐 | 𝜃1, 𝜆,𝑊�耠) and 𝑃(𝑐 | 𝜃0) are the probabilities of 𝑐
generated by the CRM and background models, respectively.

2.3.3. Implementation. The implementation is as follows:

(i) In the determination of the correlation between
motifs, thresholds of the 𝑧�푖�푗 score and the expectation𝐸�푖�푗 are set to 1.

(ii) In the model, for two local Markov chains used by
background models, the default values of their orders𝑘 and 𝑘�耠 are 1 and 2, respectively, and their parameters𝜃0 and 𝜃1 are off-line calculated in a bookkeeping way.

(iii) Considering the fact that data sparsity can lead to
overfitting, for the probability 𝑝�푟 to initiate a CRM
and the probability 𝑞0 to terminate a CRM, they
are specified in the configuration without using the
Baum-Welch algorithm for estimation. In the model,𝑝�푟 and 𝑞0 are set to 0.001 and 0.1, respectively, which
works well in most cases. For the expectation ℎ of the
distance between motif sites within a CRM, ℎ is set
to 50 as a default; for a CRM with dense clustering of
motif sites, ℎ is set to a small value, such as 20.

(iv) To improve time performance of ComSPS, we per-
form parallel optimization for the training and infer-
ence processes of themodel. Since themodel assumes
that all sequences are independent, some steps of the
two processes on a set of sequences can be performed
concurrently. Specifically, for themodel training, dur-
ing each iteration, each of the calculations for expec-
tations of state transition counts and the revaluation
of sequence likelihoods can be executed concurrently
on each sequence. The inferring process on each
sequence is an independent task and thus it can be
simultaneously performed on multiple sequences. In
the concrete implementation, we perform the parallel
acceleration by multithreading technology.
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Figure 3: An example of clusters of CRMs. Given 𝑁 coexpressed
sequences, it is assumed that there are two types of CRMs to be
predicted in 𝑛 sequences. CRMs belonging to a same type constitute
a clique. The region within each pair of brackets represents a CRM.
Each polygon represents a motif site within a CRM. Dotted lines
connect sufficiently similar CRMs (above a given threshold). The
arrow indicates the gene start site.

2.4. CRM Screening. Before further processing, the CRMs
predicted by the HMM are first filtered according to a weight
threshold𝑤�푐, leaving CRMs above the threshold as candidate
CRMs.The threshold𝑤�푐 is set in the configuration file.These
CRMs fit to the model and are statistically significant. Real
CRMs should be conserved across multiple genes. So we
further screen the candidates based on their conservation
among given sequences. This step is executed only when
the sequence set to be searched contains more than three
sequences with predicted CRMs.

To explore the conservedCRMsbetweenmultiple sequen-
ces, we integrate all information on similarities between
CRMs into one graph. In the graph, each node represents
a CRM, and an edge between two nodes indicates that the
corresponding CRMs coming from different sequences are
sufficiently similar (their similarity score is above a given
threshold). According to the definition, the node sets contain-
ing CRMs conserved across multiple sequences form a clique
in the graph, and amaximum clique of the graph corresponds
to a possible type of CRMs, as shown in Figure 3. Therefore,
the steps of identifying conserved CRM can be described
briefly as follows.

Firstly, an undirected adjacency graph to describe the
similarity relation between CRMs is constructed. In the
model, the similarity between two CRMs is scored based
on the contained motifs and motif sites without considering
intra-CRM background. Specifically, the similarity score𝐷(𝑐�푖, 𝑐�푗) between two CRMs 𝑐�푖 and 𝑐�푗 is defined as follows:

𝐷(𝑐�푖, 𝑐�푗) = 𝜇�푚
𝑀�푐𝑖 ∩ 𝑀�푐𝑗 𝑀�푐𝑖 ∪ 𝑀�푐𝑗  + (1 − 𝜇�푚)

MS�푐𝑖 ∩MS�푐𝑗
MS�푐𝑖 ∪MS�푐𝑗
 , (9)

where 𝜇�푚 is a weight coefficient as a configurable parameter,𝑀�푐𝑖 andMS�푐𝑖 are the motif set and the motif site set of a CRM𝑐�푖, respectively.
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Then, the process [29] is performed to enumerate all the
maximal cliques with three or more than three nodes.

Lastly, we combine these found CRM cliques and then
output all CRMs in these cliques. The conservation CS(𝑐type)
of a type of CRMs 𝑐type from a clique with the node set 𝑈 can
be scored as follows:

CS (𝑐type) = 1𝑁 ∑
�푖,�푗∈�푈;�푖<�푗

𝐷(𝑐�푖, 𝑐�푗) , (10)

where𝑁 is the sequence number of the whole sequence set.

3. Results and Discussion

We selected five comparedmethods, CPModule [10],MotEvo
[7], Cluster-Buster [20], Stubb [21], and BayCis [22], and
evaluated thesemethods on three public benchmark datasets:
XIE dataset [32], Muscle dataset [33], and REDfly dataset
[34]. Using public benchmark datasets is more convenient to
measure the similarity between the prediction results of the
methods and the actual results and objectively evaluate their
performances.

3.1. Performance Evaluation. Given sequences to be searched,
all CRM discovery methods output positions of predicted
CRMs. The prediction of a method for CRMs can be viewed
as classifying for the base at each position in the sequences.
The bases are predicted to belong to a CRM, and they are
annotated as Positive (P); the bases are predicted to belong
to background, and they are annotated as Negative (N). Each
annotation is either True (T) or False (F); thus, corresponding
annotations are divided into four categories. Counting each
category of annotations, they are denoted as nTP, nFP, nTN,
and nFN. Obviously, the more true annotations of nTP and
nTN relative to the false annotations of nFP and nFN, the
higher the similarity between the prediction result and the
actual result.

To quantify the similarity, some measures are designed.
Let nPP (Predicted Positives) represent the number of bases
that are predicted as CRMs, where nPP = nTP + nFP. Let
nAP (Actual Positives) represent the number of bases that
the actual CRMs contain, where nAP = nTP + nFN. The
ratios of nTP to nPP and nAPdefine two importantmeasures,
sensitivity (Sn) and precision (Pr), respectively.

However, from their definitions, we can easily see that the
two measures oppose each other. In this sense, if a method
is expected to highlight a single measure by only changing
the tightness of the search conditions but keeping the search
strategy, it will inevitably decrease the other measure. Thus,
to comprehensively evaluate the performance of a method, it
needs to consider them together, for example, using P/R curve
analysis or introducing balanced measures of Sn and Pr, such
as F1-score and ASP.

In particular, the correlation coefficient (CC) as a com-
mon overall performance measure is often used to measure
statistical correlation between the prediction results and the
actual results. As a special case of the Pearson correlation
coefficient of two variables, it was introduced by Burset and
Guigó [35] to evaluate gene structure prediction and later

widely used in other aspects of bioinformatics. The value of
CC ranges between −1 and +1.

CC

= nTP × nTN − nFN × nFP√(nTP + nFN) (nTN + nFP) (nTP + nFP) (nTN + nFN) .
(11)

All the above measures are based on the classification
for bases, and they are referred to as the measures at base
(or nucleotide) level. A similar classification can be made at
motif site level, when an evaluated method gives all motif
site information within predicted CRMs. However, since not
all methods give the specific motif sites within CRMs, our
evaluation is only limited at base level.

For the experiment on the XIE and Muscle datasets, we
used CC as the measure to evaluate the methods. For the
experiment on the REDfly dataset, we evaluated the methods
according to the evaluation protocol of Ivan et al. [34]. The
evaluation protocol is simply described as follows. On each
subdataset, the average length of CRMs in the subdataset is
calculated and then provided to CRM discovery methods as
a parameter.These methods are required to output the CRMs
closest to the length. Limited by this evaluation framework,
it has nPP = nAP; thus, Sn = Pr. Hence, it can use only
Sn as the measure. Furthermore, to evaluate the statistical
significance of the prediction results, an empirical 𝑝 value is
introduced. Specifically, the empirical𝑝 value is defined as the
probability that Sn of a stochastic prediction is greater than
that of the prediction result.This𝑝 value is calculated by using
the stochastic simulation. When the 𝑝 value of Sn is less than
0.05, the prediction is considered statistically significant.

3.2. XIE Benchmark

3.2.1. XIE Dataset. The dataset was constructed by Xie et
al. [32]. The dataset contains 22 sequences. Each of these
sequences is 1000 bp in length and they are from human,
chicken, and mouse genomes. Among these sequences, there
are 20 sequences with each containing an implanted CRM
and two sequences containing no implanted CMRs. These
CRMs have the length of at most 164 bp and contain binding
sites of three TFs: Oct4, Sox2, and FoxD3. The distance
between these TFBSs follows a Poisson distribution with
expectation of 10.

The benchmark constructed four PWM test sets by
adding different number of decoy PWMs. Specifically, noise
ratios of these PWM test sets are 7/10, 17/20, 27/30, and
37/40, respectively. Each PWM test set contains 10 collections
independently sampled from 516 TRANSFAC PWMs. This
dataset can be downloaded from the web site provided by [9].

3.2.2. Testing Results. On this dataset, following the way of
three otherHMM-basedmethods, Cluster-Buster, Stubb, and
BayCis, all sequences are used as the training set and the test-
ing set simultaneously for ComSPS. For Stubb, CPModule,
and MotEvo, which depend on window size settings, they
were tested with three window size settings, 100 bp, 150 bp,
and 200 bp, which are around the average length of CRMs.
Other parameters of all these methods remain default.



8 BioMed Research International

0 7/10 17/20 27/30 37/40

ComSPS
MotEvo
Cluster-Buster

CPModule
Stubb
BayCis

C
or

re
lat

io
n 

co
effi

ci
en

t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Window size: 100

0 7/10 17/20 27/30 37/40

ComSPS
MotEvo
Cluster-Buster

CPModule
Stubb
BayCis

C
or

re
lat

io
n 

co
effi

ci
en

t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) Window size: 150

0 7/10 17/20 27/30 37/40C
or

re
lat

io
n 

co
effi

ci
en

t

ComSPS
MotEvo
Cluster-Buster

CPModule
Stubb
BayCis

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) Window size: 200

Figure 4: CC performances of all methods at different noise levels on the XIE dataset.

Figure 4 shows the means and variances of CCs of all
methods at different noise levels on the dataset. Overall,
ComSPS performed more stably than other methods and
made the best predictions at different noise levels.

The figure also shows that, with increasing noise, the
performances of all methods inevitably decreased, and their
sensitivities to noise revealed great differences. ComSPS
and Stubb performed the most stably, while Cluster-Buster
was most sensitive to noise. Moreover, at the same noise
level, these methods also showed a consistent trend for the
collections of different decoy PWMs. The window clustering
methods showed different performance trend for different
window size settings. MotEvo seemed to perform better for
small window size settings and CPModule was the opposite,
while Stubb tended to perform best with the window size
setting of 200 bp close to the average length of CRMs on the
dataset. This may be the result of their different scoring or
search strategies for CRMs.

3.3. Muscle Benchmark

3.3.1. Muscle Dataset. The dataset was initially compiled
by Wasserman and Fickett [36]. Later, it was extended by
Klepper et al. [33] and used for the evaluation for CRM
discoverymethods in [33].The dataset contains 24 sequences,
as well as five motifs (Mef2, Tef, Srf, Sp1, and Myf), which
play an important role in muscle regulation. The 24 genomic
sequences are frommouse, cow, rat, chicken, and human, and
their lengths range from 269 bp to 1000 bp (the average is
851 bp). The dataset has one CRM in each sequence. These
CRMs range in length from 14 bp to 194 bp, with an average
of 120 bp. Each CRM contains two to eight motif sites (the
average is 3.5). The dataset and CRM annotations are taken
from the companion web site of [33].

3.3.2. Testing Results. For ComSPS, all sequences are used as
the training and testing sets simultaneously consistent with
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Figure 5: CC performances of all methods at different window sizes
on the Muscle dataset.

other threeHMM-basedmethods, Cluster-Buster, Stubb, and
BayCis. For the window clustering methods, we chose four
different window sizes, 100 bp, 150 bp, 200 bp, and 300 bp,
which are close to the median, mean, third quartile, and the
maximum value of CRM lengths on the dataset, respectively.
Other parameters of all these methods remain default.

Counting all TPs, TNs, FPs, and FNs predicted by each
method on each sequence, we calculated their CC scores on
the whole sequence set. Moreover, for the window clustering
methods, we calculated the CC scores under each window
size setting. The results are shown in Figure 5.

On this dataset, the prediction performance of ComSPS
significantly outperformed the other methods. Overall, the
HMM-based methods were superior to window clustering
methods. Specifically, Cluster-Buster and BayCis made good
predictions, which are second only to ComSPS. The window
clustering methods showed a similar trend to that on the XIE
dataset and still had a greatly different performance under
different window settings. For example, Stubb made a good
prediction close to ComSPS under the 200 bp window setting
but performed slightly better than the lowest CPModule
under the 100 bp window setting.

3.3.3. Cross Validation. To evaluate the ability of ComSPS to
learn the parameters, we performed 10-fold cross validation
on the dataset. Since other HMM-based methods cannot
explicitly specify the training set and the test set, we only
verified ComSPS.The CRM prediction is not a simple binary
classification task. The structural flexibility of CRMs leads
to the great difference in performance of methods even to
identify different occurrences of similar CRMs in different
sequences, as shown in Table 1. As a result, variation in the
prediction performances of methods when using different
training sets will be obscured by inherent differences in
prediction performance for different occurrences of CRMs.
We performed 10 times 10-fold cross validation by shuffling

Table 1: The mean and standard deviation (STD) of CC perfor-
mance on single gene on the muscle dataset.

Sequence name CC mean (STD)
M13631 0.92 (0.00)
J04971 0.37 (0.04)
K01464 0.93 (0.00)
M20543 0.46 (0.15)
M21390 0.82 (0.02)
M22381 0.00 (0.00)
J04699 0.15 (0.01)
M57905 0.43 (0.00)
X14726 0.89 (0.09)
X59034 0.00 (0.00)
V01218 0.70 (0.01)
M63391 0.38 (0.04)
X12971 0.35 (0.16)
M95800 0.42 (0.03)
L21905 0.00 (0.00)
X05632 0.15 (0.29)
U02285 0.38 (0.13)
M62404 0.62 (0.05)
X62155 0.36 (0.01)
M13483 0.53 (0.00)
M84685 0.00 (0.00)
X73887 0.42 (0.04)
X67686 0.89 (0.00)
U18131 0.00 (0.00)

and splitting the given sequence set into different training and
testing sets.

As shown in Table 1, the variance of the performances of
ComSPS on most of sequences was small, which indicates
that ComSPS was not sensitive to varying training sets. So
it demonstrated that the process of parameter estimation
of ComSPS stably converges to some values around a local
optimum in most cases.

3.4. REDfly Benchmark

3.4.1. REDfly Dataset. Compared to the XIE and Muscle
datasets, the REDfly dataset [34] is a larger dataset and it con-
tains longer sequences andmore complex CRMs.The dataset
contains a total of 33 subdatasets. These subdatasets contain
53 PWMs and 719 sequences in total. Each subdataset has
4–77 sequences, with an average of 16, and these sequences
have a total length of about 5.7Mbp. On each subdataset,
each sequence contains only one CRM. Each CRM has a
different length and overall their average lengths have a range
of 442–1248 bp. These CRMs perform functions in the early
development ofDrosophila and their annotations are derived
from the REDfly database [37]. For the statistics on each
subdataset, please refer to Table 1 in [34].

3.4.2. Testing Results. On this dataset, for ComSPS, all
sequences were used simultaneously as the training set and
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Table 2: The performances of all methods on the REDfly dataset.

Data Set #Seq, Length,
Max. Sens.∗ ComSPS† MotEvo† Cluster-

Buster† CPModule† Stubb† BayCis†

mapping1.adult mesoderm 34/254800/0.71 0.34 (0.14) 0.63 (0.05) 0.32 (0.15) 1.00 (0.00) 0.51 (0.05) 0.63 (0.05)
mapping1.amnioserosa 5/28085/0.76 0.00 (0.43) 0.13 (0.13) 0.31 (0.09) 0.09 (0.16) 0.25 (0.15) 1.00 (0.00)
mapping1.blastoderm 7/49635/0.84 0.02 (0.15) 0.00 (0.32) 0.76 (0.07) 0.02 (0.15) 0.00 (0.36) 0.04 (0.14)
mapping1.cardiac mesoderm 77/698840/0.77 0.00 (0.26) 0.09 (0.15) 0.42 (0.07) 0.65 (0.02) 0.08 (0.22) 0.60 (0.03)
mapping1.cns 8/42979/0.76 0.94 (0.04) 0.51 (0.10) 0.15 (0.14) 0.04 (0.17) 0.48 (0.10) 0.63 (0.08)
mapping1.dorsal ectoderm 34/352108/0.80 0.55 (0.08) 0.17 (0.17) 0.04 (0.24) 0.58 (0.08) 0.08 (0.22) 0.90 (0.00)
mapping1.ectoderm 8/67490/0.77 0.72 (0.07) 0.02 (0.16) 1.00 (0.02) 0.09 (0.13) 0.01 (0.20) 0.01 (0.21)
mapping1.endoderm 37/311000/0.72 0.00 (0.47) 0.09 (0.15) 0.44 (0.08) 0.82 (0.03) 0.01 (0.24) 0.67 (0.05)
mapping1.eye 51/416473/0.74 0.01 (0.31) 0.46 (0.07) 1.00 (0.00) 0.01 (0.28) 1.00 (0.00) 0.38 (0.12)
mapping1.fat body 16/92723/0.82 0.14 (0.21) 1.00 (0.00) 0.57 (0.04) 0.37 (0.12) 0.14 (0.20) 0.37 (0.12)
mapping1.female gonad 6/49494/0.70 0.59 (0.04) 0.00 (0.33) 1.00 (0.00) 0.49 (0.05) 0.03 (0.24) 0.02 (0.26)
mapping1.glia 18/156531/0.69 0.00 (0.56) 0.19 (0.13) 1.00 (0.00) 0.09 (0.18) 0.49 (0.09) 1.00 (0.00)
mapping1.imaginal disc 5/22831/0.93 0.00 (0.19) 0.53 (0.07) 0.45 (0.08) 0.18 (0.10) 0.55 (0.09) 0.00 (0.19)
mapping1.male gonad 10/44269/0.62 0.03 (0.24) 0.12 (0.17) 0.48 (0.07) 1.00 (0.00) 0.22 (0.15) 0.55 (0.05)
mapping1.malpighian tubules 7/63008/0.82 0.24 (0.12) 0.02 (0.28) 1.00 (0.00) 0.40 (0.04) 0.10 (0.25) 1.00 (0.00)
mapping1.mesectoderm 47/441597/0.77 0.58 (0.05) 0.14 (0.21) 0.63 (0.03) 0.05 (0.30) 0.18 (0.20) 0.63 (0.03)
mapping1.mesoderm 12/149915/0.80 0.05 (0.19) 0.00 (0.35) 0.69 (0.06) 0.47 (0.10) 0.02 (0.21) 0.34 (0.12)
mapping1.neuroectoderm 69/616635/0.76 0.02 (0.21) 0.00 (0.36) 0.39 (0.06) 0.01 (0.23) 0.01 (0.34) 0.05 (0.16)
mapping1.pns 8/69044/0.85 0.37 (0.11) 0.01 (0.22) 0.50 (0.09) 0.35 (0.11) 0.03 (0.19) 0.39 (0.10)
mapping1.salivary gland 4/31338/0.81 0.27 (0.08) 0.13 (0.12) 0.60 (0.01) 0.61 (0.01) 0.55 (0.06) 0.21 (0.10)
mapping1.somatic muscle 5/45712/0.83 0.29 (0.14) 0.60 (0.08) 0.41 (0.11) 0.55 (0.09) 0.29 (0.12) 0.13 (0.18)
mapping1.tracheal system 16/87140/0.72 0.71 (0.05) 0.55 (0.08) 0.70 (0.05) 0.74 (0.04) 0.55 (0.08) 1.00 (0.00)
mapping1.ventral ectoderm 45/233441/0.75 0.01 (0.23) 0.00 (0.31) 0.17 (0.13) 0.11 (0.15) 0.00 (0.38) 0.44 (0.08)
mapping1.visceral mesoderm 7/40315/0.80 0.04 (0.19) 0.06 (0.18) 1.00 (0.00) 0.64 (0.05) 0.46 (0.10) 0.64 (0.05)
mapping2.ectoderm 54/534081/0.78 0.02 (0.16) 0.08 (0.14) 0.08 (0.14) 0.02 (0.16) 0.01 (0.18) 0.04 (0.15)
mapping2.eye 24/234532/0.78 0.27 (0.12) 0.07 (0.16) 0.43 (0.09) 0.70 (0.06) 0.19 (0.14) 0.34 (0.12)
mapping2.imaginal disc 21/154400/0.69 0.16 (0.10) 0.20 (0.09) 0.00 (0.29) 0.09 (0.12) 0.57 (0.08) 0.63 (0.03)
mapping2.mesoderm 6/47232/0.74 0.62 (0.08) 0.00 (0.24) 0.26 (0.11) 0.12 (0.13) 0.00 (0.22) 0.00 (0.24)
mapping2.neuronal 12/86317/0.79 0.49 (0.09) 0.16 (0.12) 0.90 (0.05) 0.91 (0.05) 0.24 (0.12) 0.72 (0.07)
mapping2.reproductive system 9/111351/0.85 0.00 (0.30) 0.37 (0.08) 0.59 (0.05) 0.02 (0.15) 0.16 (0.14) 0.00 (0.20)
mapping2.wing 12/84154/0.77 0.02 (0.17) 0.14 (0.12) 0.89 (0.04) 0.28 (0.10) 0.14 (0.13) 0.18 (0.11)
mapping3.adult 12/54278/0.77 0.00 (0.20) 0.03 (0.14) 0.05 (0.13) 0.34 (0.09) 0.01 (0.20) 0.05 (0.13)
mapping3.larva 33/340094/0.78 0.97 (0.03) 0.06 (0.11) 1.00 (0.01) 0.24 (0.09) 0.05 (0.14) 0.97 (0.03)
∗The number of sequences, total length of sequences, and maximum sensitivity of sequences on a subdataset.
†The empirical �푝 value (and sensitivity) of a method’s predictions. Statistically significant predictions (�푝 value ≤ 0.05) are shown in bold.

the test set. For the methods that depend on a window size,
according to evaluation protocol in [34], we precomputed the
average length of real CRMs on each subdataset and provided
the length for the methods as a predetermined window size
parameter. These methods outputted CRMs that have the
length of the specified window size and have the highest
scores as the final prediction results. Other methods still
maintained their default settings.

Sensitivities and empirical 𝑝 values of the prediction
results of all methods are shown in Table 2. The results
indicate that ComSPS performed very well on 16 of the
33 subdatasets, was superior to other methods, and made
significant predictions on approximately half of subdatasets.

In its all statistically significant predictions (𝑝 value ≤
0.05), the range of the sensitivity of ComSPS is 15–56%, with
an average of 26%. Since the evaluation protocol limits the
length of CRMs to be predicted, 100% sensitivity was very
hard to get. Actually, from the table, we can see that the
maximum possible average sensitivity on all subdatasets is
approximately 77%. It assumes that there is a 100 bp CRM to
be predicted in a 1000 bp sequence. The average sensitivity
of 26% means that the overlap of a predicted CRM with the
real CRM is about 26 bp. According to the definition of the
maximum possible sensitivity, the real CRM has 77 bp to be
predictable. Thus, in the sense, the overlap of the prediction
of ComSPS with it is more than 1/3. From a biological point
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of view, this resolution is sufficient to recover real CRMs.
Specifically, we can first roughly locate CRMs byComSPS and
then accurately determine the specific positions of CRMs by
experimental means.

Regarding other methods, their prediction performances
were greatly different on the dataset. Stubb and MotEvo
showed excellent prediction performance, as they made
statistically significant predictions on 12 and 10 subdatasets,
respectively; BayCis and CPModulemade statistically signifi-
cant predictions on 8 and 7 subdatasets, respectively; Cluster-
Buster performed worst and made random predictions on
most of the subdatasets.

4. Conclusions

CRMsplay an important role in the transcriptional regulation
of eukaryotic genes, and their identification is the key to
understanding the mechanisms of gene transcription regu-
lation. To improve the identification performance of CRMs,
this paper presents a new CRM discovery algorithm from
the perspective of exploring the rules of CRM transcriptional
grammar to build a regulatory structure model of CRMs.
Experimental results revealed that the proposed algorithm
performed better than compared methods on these tested
benchmark datasets.

CRMdiscovery algorithmshave been developed formany
years and have experienced great progress, but they are
far from being mature and still require further improve-
ment. Currently, chromatin immunoprecipitation sequenc-
ing (ChIP-Seq) technology provides a large amount of data
that can be used for the identification of motifs and CRMs.
With the help of these newdata, we believe that the prediction
accuracy for CRMs can be further improved. However,
these data are often short in length and huge in number;
thus, they bring new challenges to existing methods. After
processingChIP-Seq results, the data analysis requires special
algorithms. Developing new algorithms that are able to
effectively identify CRMs from ChIP-Seq data is the focus of
our future research.
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