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ABSTRACT: The nonenzymatic replication of ribonucleic acid (RNA) may have enabled the propagation of genetic information
during the origin of life. RNA copying can be initiated in the laboratory with chemically activated nucleotides, but continued copying
requires a source of chemical energy for in situ nucleotide activation. Recent work has illuminated a potentially prebiotic
cyanosulfidic chemistry that activates nucleotides, but its application to nonenzymatic RNA copying had not been demonstrated.
Here, we report a novel pathway that activates RNA nucleotides in a manner compatible with template-directed nonenzymatic
copying. We show that this pathway, which we refer to as bridge-forming activation, selectively yields the reactive imidazolium-
bridged dinucleotide intermediate required for copying. Our results will enable more realistic simulations of RNA propagation based
on continuous in situ nucleotide activation.

RNA is a leading candidate for the primordial genetic
polymer because of its capacity to function as both a

hereditary and enzymatic biomolecule.1−3 The emergence of
life in the RNA World would have required nonenzymatic
RNA replication prior to the emergence of ribozyme-catalyzed
replication.4−6 Primer extension is a model of RNA copying in
which nucleotides 1 are added to a primer when guided by a
template sequence (Figure 1).7−9 Nonenzymatic primer
extension relies on activation of the mononucleotide
phosphate groups.10−14

While alternative phosphate activation pathways for primer
extension exist,15−17 our laboratory has demonstrated efficient
copying of various short RNA templates using 2-amino-
imidazole (2AI) activated ribonucleotides (2AImpN 2),14 and
shown that polymerization proceeds predominantly through
spontaneously generated 5′-5′-imidazolium-bridged dinucleo-
tides 318−20 (Figure 1). The superiority of 2AI as a phosphate

activating group over other imidazole derivatives is due at least
in part to the higher accumulation and greater stability of the
corresponding bridged dinucleotide.21 Activated mononucleo-
tides hydrolyze to generate free 2AI, which in turn attacks the
bridged dinucleotide to yield two 2AImpNs 2.19,21 Bridged
dinucleotides also decay through hydrolysis, yielding one
2AImpN 2 and one nucleoside monophosphate (NMP 1).
A prebiotically relevant model requires in situ activation that

is also compatible with primer extension.11,14,22 Recent
advances in prebiotic cyanosulfidic chemistry suggest a robust
chemical pathway that may have generated the major building
blocks of life.23−27 Sutherland and co-workers have also
recently reported a route to selective phosphate activation with
methyl isocyanide, aldehyde, and imidazole28 in a pH regime
that is potentially compatible with primer extension and
without modifications to the nucleobases.21,28 This prompted
us to seek conditions under which this nucleotide activation
chemistry could be applied to template-directed nonenzymatic
RNA copying (Figure 1).
A major hurdle to the compatibility of activation chemistry

and RNA copying is that excess 2AI is required to drive
nucleotide activation, but excess 2AI specifically inhibits
primer extension by attacking the imidazolium-bridged
dinucleotide intermediate 3 (Figure 1). We report a new
pathway that both circumvents this issue and yields
significantly higher concentrations of bridged dinucleotides
than the spontaneous self-reaction of activated mononucleo-
tides 2.21
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Figure 1. Components of nonenzymatic RNA primer extension.
Nonenzymatic template-directed RNA polymerization at the 3′-end
of a primer proceeds via 3, which forms spontaneously in a pool of
chemically activated nucleotides 2. Isocyanide nucleotide activation
chemistry is incompatible with primer extension due to the required
excess 2AI, which inhibits accumulation of 3.
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As a first step to combining isocyanide activation with
primer extension, we sought reaction conditions compatible
with both. Optimal primer extension requires Mg2+ and mildly
basic buffer (pH ≈ 8).21,29 We examined the effects of Mg2+

concentration and pH on the activation of NMPs 1 to
2AImpN 2 using isocyanide (Figure S1) and acetaldehyde. All
four canonical ribonucleotides were activated under primer
extension conditions (Figures S2, S3a). However, an
undesirable Passerini reaction product 5,30 which depletes
the starting NMP 1 pool (supplementary text, Scheme S1),
also formed (Figure S2, Tables S1, S2). In a screen of longer
chain aldehydes and ketones in place of acetaldehyde, 2-
methylbutyraldehyde (2MBA) decreased the formation of 5
from 12% to 3%, while increasing the yield of 2AImpN 2 from
31% to 81% (Figure S4, Table S3 with 30 mM Mg2+). The
higher yield of 2 may stem from reduced hydrolysis of the
imidoyl intermediate 4 without affecting the 2AI attack on the
phosphate group.
Although the above optimizations define reaction conditions

compatible with primer extension, there remained a significant
obstacle. The high concentration of 2AI required for NMP 1
activation prohibits accumulation of the imidazolium bridged
dinucleotides 3 necessary for RNA copying by driving the
equilibrium toward 2AImpN 2 (Figure 1, Table 1).21

Confirming this effect on primer extension required an assay
compatible with isocyanide activation chemistry. Because the
isocyanide chemistry modified the fluorophores used for
primer labeling (Figure S5), we developed a postlabeling
strategy for measuring primer extension (supplementary text,
Figures S6, S7). Using a standard primer extension reaction in
which the template sequence is 5′-CCG-3′, we found that the
excess 2AI (200 mM) required for efficient activation severely
inhibits primer extension in the presence or absence of
activation chemistry (Figure S8). Thus, the requirement for
excess 2AI appears to be a fundamental incompatibility
between primer extension and in situ activation with
isocyanide.
Reflecting on the overall primer extension pathwayfrom

nucleotides 1, via activated nucleotides 2, to the bridged
dinucleotides 3 that actually promote the elongation of the
primerwe asked whether the isocyanide activation chemistry
might be relevant to the formation of the bridged dinucleotide.
We therefore introduced 2AImpN 2 to a mixture of isocyanide,
aldehyde, and AMP 1 without any free 2AI. We found that not
only did the bridged dinucleotide species 3 form, but it

accumulated to a significantly higher level than through the
self-reaction of activated monomers in the absence of
activation chemistry. For an equimolar mix of AMP 1 and
2AImpA 2 in the presence of isocyanide activation, 31P NMR
spectra show 16% bridged dinucleotide 3 at t = 229 min (the
time point at which the concentration of bridged dinucleotide
peaks), compared with only 2% in its absence (Figure 2). To

differentiate this scenario from the one in which excess 2AI
drives NMP 1 activation, we call it bridge-forming activation.
In bridge-forming activation, species 3, required for primer
extension, is efficiently generated in the presence of 2AImpN
2, isocyanide, and aldehyde (supplementary text).
In any prebiotically plausible scenario for RNA copying, the

ratio of activated to unactivated nucleotides would vary with
time. We find that bridge-forming activation functions across a
broad range of ratios, with bridged dinucleotide 3 detected in
every case in which activated mononucleotide 2 is present
(Figures S9, S10a−c) but not its absence (Figure S10d).
Interestingly, the treatment of 100% activated mononucleo-

tides 2 with the bridge-forming activation reagents also
efficiently yielded bridged dinucleotide 3 with little accom-
panying hydrolysis (Figure S11): from t = 12 min to t = 135
min, only 1% of the mononucleotides hydrolyzed whereas the
bridged dinucleotide 3 yield was 40%. These observations
suggest a significant contribution from a novel pathway in
which the activation chemistry directly mediates the bridging
of two already-activated nucleotides 2 (rather than only the
bridging of pairs of activated 2 and unactivated nucleotides 1)
(Scheme S2c).
We next considered whether bridge-forming activation

shows any preference for 2AI over 2-methylimidazole (2MI),
the historically most common activating imidazole.10,21

Treatment of an equimolar mixture of AMP and 2MImpA 8
with bridge-forming activation did yield 2MI-bridged dinucleo-
tide 9, though markedly less than with 2AImpN 2. Without
bridge-forming activation, no detectable 2MI-bridged dinu-
cleotide 9 formed (Figure S12). The significant difference in
bridged dinucleotide accumulation between 2AI- 2 and 2MI-
activated mononucleotides 8 led us to consider how they
would behave together. Remarkably, the reaction yielded only
the 2-aminoimidazolium bridged dinucleotide 3 (Figure S13).
Thus bridge-forming activation is highly selective toward 2AI

Table 1. Yields of 2AImpA 2 and Bridged Dinucleotide 3 at
Different 2AI Concentrations Measured by NMR
Spectroscopya

[2AI] (mM) Activation (2) yield (%) Bridged dinucleotide (3) yield (%)

10 6 ± 2 1.8 ± 0.5
20 13.4 ± 0.6 2.8 ± 0.9
50 28.1 ± 0.2 2.1 ± 0.2
100 33.0 ± 0.5 0.8 ± 0.4
200 48 ± 2 0
400 34 ± 1 0
800 19 ± 1 0

aAll reactions were carried out using AMP 1 (10 mM), acetaldehyde
(200 mM), methyl isocyanide (200 mM), 2AI (varied), Mg2+ (MgCl2,
10 mM), and HEPES (200 mM) at pH 8.0 and t = 6 h. Errors are
standard deviations of the mean, n = 3 replicates.

Figure 2. Bridge-forming activation. (a) Prebiotically plausible
chemistry drives bridged dinucleotide 3 formation. Analyses of the
reaction over the course of 15 h by 31P NMR (b) with and (c)
without bridge-forming activation. The relative percentage of each
species is calculated based on the corresponding peak integration
normalized to the number of phosphorus atoms. Reaction conditions:
AMP 1 (5 mM), 2AImpA 2 (5 mM), Mg2+ (30 mM, MgCl2), HEPES
(200 mM) at pH 8.0 with or without methyl isocyanide (200 mM)
and 2MBA (200 mM).
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over 2MI in a nucleotide concentration regime that is
functional in primer extension.
Encouraged by these results, we sought to apply bridge-

forming activation to primer extension. To copy a 5′-GCC-3′
template, various concentrations of 2-AI activated C and G
mononucleotides were mixed with unactivated C and G and
treated or not treated with bridge-forming activation (Figure
3). As a control we performed primer extension with 5 mM

each 2AImpG and C and observed a baseline distribution of
+1, + 2, and +3 products (Figure 3a). The addition of 10 mM
NMPs 1 inhibited the reaction because unactivated mono-
nucleotides 1 compete for the binding sites of bridged
dinucleotides 3 (compare Figure 3a to Figure 3d). In contrast
bridge-forming activation increased product yield, with 43% +3
products compared to 21% without the bridge-forming
activation (Figure 3d, e). This distribution of products from
an equimolar ratio of activated 2 and unactivated mono-
nucleotides 1 plus bridge-forming activation is comparable to
that found with the use of 20 mM pure activated
mononucleotides 2 (Figure 3f). Finally, applying bridge-
forming activation to 10 mM pure activated mononucleotides
2, with no initial unactivated nucleotides 1, resulted in even
more +3 product (53%) (Figure 3g). Note that in these
experiments the product length is template-limited, because
there are no template bases beyond the +3 position. We
confirmed the identities of the primer extension products using
bridge-forming activation by liquid chromatography−mass
spectrometry (LC-MS). The major component of the peaks
corresponding to the primer and the +1 to +3 products in the
UV trace all have the correct mass, consistent with being the
expected products of primer extension (Figure S15, Table S5).

Additionally, no mismatches were observed. These experi-
ments demonstrate the compatibility of isocyanide-based
nucleotide activation with nonenzymatic RNA copying.
Bridge-forming activation provides several advantages for

primer extension. It requires lower mononucleotide concen-
trations (1.5−5 mM) to generate appreciable proportions of
bridged dinucleotide than required by spontaneous bridging
(10−100s mM range) or direct activation with free 2AI (50
mM-400 mM NMP). The higher proportion of bridged
dinucleotides raises the possibility that the Mg2+ concentration
can be further reduced. High Mg2+ concentrations are
notoriously problematic for primer extension, causing bridged
dinucleotide hydrolysis,31 monomer cyclization,29,32,33 and
template degradation.29,34

Although bridge-forming activation is compatible with
primer extension and promotes the formation of the required
intermediate, it depends on a source of previously activated
mononucleotides. One possibility is that initial activation
occurs under partial dry-down conditions where all reactants
including 2AI are at very high concentrations, followed by
dilution to nucleotide concentrations sufficient for bridge-
forming activation and primer extension, but with low enough
free 2AI to minimize loss of the bridged dinucleotides.
Additional processes that might sequester or degrade 2AI
should also be investigated. For example, UV radiation, the
presumptive energy source for producing isocyanide, photo-
degrades 2AI on the order of days35 although the photo-
degradation rates of 2 and 3 remain unknown (supplementary
text).
A highly desirable feature of bridge-forming activation is the

potential reactivation of spent nucleotides for further rounds of
polymerization. Previously identified activation chemistries
lead to damaging side reactions that destroy both templates
and substrates,29,36−40 whereas bridge-forming activation relies
on RNA-compatible and specific reagents. Further work is
needed to demonstrate nucleotide reactivation in the context
of continuous rounds of primer extension.
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Figure 3. Primer extension using bridge-forming activation. (A)
Products from primer extension reactions using (a) 10 mM 2AImpN
2 (N = C and G), (b) 10 mM NMPs 1 plus 200 mM 2AI, (c) 10 mM
NMPs 1 with isocyanide chemistry, (d) an equimolar mixture of 10
mM 2AImpNs 2 and 10 mM NMPs 1 without bridge-forming
activation and (e) with bridge-forming activation, (f) 20 mM
2AImpNs 2 without bridge-forming activation and (g) with bridge-
forming activation. Bar graph: quantification of primer +3 from lanes
(a) through (g). Reaction conditions: 2AImpNs 2 and NMPs 1 were
added to primer (1 μM), template (1.5 μM), HEPES (200 mM) pH
8.0, and Mg2+ (30 mM, MgCl2) with isocyanide chemistry (gray and
coral pink) or without (dark blue, light blue, black). Extension
products were assayed by PAGE (Figure S14) at 24 h. Error bars
indicate standard deviations of the mean, n = 3 replicates. (B, C)
Time course of primer extension reactions using equimolar mixture of
1 and 2 with (B) and without (C) bridge-forming activation.
Positions of primer and +1 to +3 products are indicated. Reaction
conditions as in (d) and (e).
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