
Ying Li (Ph.D.) is an associate professor at the College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge
Engineering of Ministry of Education, Jilin University, Changchun, China. Her research topics include machine learning, bioinformatics and computational
biology.
Qi Zhang is a graduate student at the College of Computer Science and Technology, Jilin University, Changchun, China. His research interests include
computational biology and machine learning methods.
Zhaoqian Liu is a Ph.D. student in School of Mathematics, Shandong University, and now she is a visiting scholar at Ohio State University. Her research
interest is computational methods in biology.
Cankun Wang is a biomedical informatics specialist at Ohio State University. His research interests include web development and computational methods
in biology.
Siyu Han is a Ph.D. student in the Department of Computer Science, Faculty of Engineering, University of Bristol. His research interests include
computational biology and machine learning methods.
Qin Ma (Ph.D.) is an associate professor in the Department of Biomedical Informatics, Ohio State University. Dr. Ma has over 10 years research experience
in studying how functional machinery encoded in a genome.
Wei Du (Ph.D.) is an associate professor at the College of Computer Science and Technology, Jilin University, Changchun, China.
Submitted: 30 August 2020; Received (in revised form): 2 November 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

1

Briefings in Bioinformatics, 22(4), 2021, 1–11

https://doi.org/10.1093/bib/bbaa354
Articles

Deep forest ensemble learning for classification of
alignments of non-coding RNA sequences based on
multi-view structure representations
Ying Li, Qi Zhang, Zhaoqian Liu, Cankun Wang, Siyu Han, Qin Ma and
Wei Du

Corresponding author: Wei Du, College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of
Ministry of Education, Jilin University, Changchun 130012, China. Tel.: 86-13500880409; E-mail: weidu@jlu.edu.cn

Abstract

Non-coding RNAs (ncRNAs) play crucial roles in multiple biological processes. However, only a few ncRNAs’ functions have
been well studied. Given the significance of ncRNAs classification for understanding ncRNAs’ functions, more and more
computational methods have been introduced to improve the classification automatically and accurately. In this paper,
based on a convolutional neural network and a deep forest algorithm, multi-grained cascade forest (GcForest), we propose a
novel deep fusion learning framework, GcForest fusion method (GCFM), to classify alignments of ncRNA sequences for
accurate clustering of ncRNAs. GCFM integrates a multi-view structure feature representation including sequence-structure
alignment encoding, structure image representation and shape alignment encoding of structural subunits, enabling us to
capture the potential specificity between ncRNAs. For the classification of pairwise alignment of two ncRNA sequences, the
F-value of GCFM improves 6% than an existing alignment-based method. Furthermore, the clustering of ncRNA families is
carried out based on the classification matrix generated from GCFM. Results suggest better performance (with 20% accuracy
improved) than existing ncRNA clustering methods (RNAclust, Ensembleclust and CNNclust). Additionally, we apply GCFM
to construct a phylogenetic tree of ncRNA and predict the probability of interactions between RNAs. Most ncRNAs are
located correctly in the phylogenetic tree, and the prediction accuracy of RNA interaction is 90.63%. A web server
(http://bmbl.sdstate.edu/gcfm/) is developed to maximize its availability, and the source code and related data are available
at the same URL.

Keywords: pairwise ncRNAs classification; ncRNAs clustering; multi-view structure feature representation; GcForest; deep
fusion framework.
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Introduction
Non-coding RNAs (ncRNAs) play critical roles in a variety of
cellular activities [1, 2]. They have significant associations with
biological regulatory development and cell homeostasis and can
be classified as multiple families with distinct functions [3], such
as miRNAs for regulating gene expression [4], siRNAs for pre-
venting the expression of disease-causing genes [5] and piRNAs
for maintaining the integrity of germline DNA [6]. Recently, ncR-
NAs have been identified as innovative biomarkers of various
diseases, including neurological, cardiovascular, developmental
and cancer diseases, providing insights into the diagnosis and
treatment of these diseases [7–9].

Given the significance, ncRNAs have attracted increasing
attention in biological and biomedical research [10–12]. Con-
ventional experimental methods were initially used to identify
ncRNAs and infer their functions. However, due to tremendous
labor and financial cost, the understanding of ncRNAs is still
limited. Fortunately, one found RNAs with similar sequence or
structure information tended to belong to the same family (a
set of several similar genes, formed by duplication of a single
original gene) and have similar biochemical functions [13–15].
This general understanding motivates various computational
methods to infer the functions by assessing the similarity with
well-studied ncRNAs [16].

Because the structure information of RNAs has higher
conservation than sequences, current methods of comparison
between different RNAs generally focus on structural character-
istics [17, 18]. Such methods are classified into two categories,
including the alignment-based and alignment-free methods.
Specifically, the alignment-based methods rely on the string or
tree representations of RNA secondary structure by dynamic
programming. The most representative one is the Sankoff-
based algorithm [19]. This algorithm simultaneously folds
and aligns two or more RNA sequences based on free energy
minimization, which has a reliable performance in prediction.
However, the Sankoff-based algorithm has not been widely used
due to the high computational complexity and time complexity.
Given this, several other algorithms have been developed [20],
such as FOLDALIGN [21], the revised Dynalign algorithm [22],
and TOPAS [23]. These algorithms separate the folding and
alignments processes, thereby reducing the computational
complexity. Nevertheless, the alignment-based methods are
still time-consuming due to unavoidable secondary structure
alignments. By contrast, the alignment-free methods are based
on the numerical representations of structure information of
RNAs, improving the efficiency of RNA comparison. Multiple
representations have been used, such as RNA-TVcurve [24, 25],
GraphClust [26], DotcodeR [27] and DotAligner [28]. However,
the alignment-free methods are with lower accuracies than
alignment-based methods in the study of ncRNA families,
because the feature representations of each ncRNA cannot
reflect a consensus structure of each ncRNA family and
obtain the optimal sequence alignment between different
ncRNAs.

Additionally, several deep learning methods have been
applied to predict noncoding-variant effects, DNA-protein
binding, and similarity of RNAs, based on sequences [29–
31]. The most widely used is the convolution neural network
(CNN), which has good feature abstraction capabilities. However,
the unavoidable experimentation for the model architecture
construction and hyperparameter selection is a significant
challenge. Out of a solution to this problem, a multi-grained
cascade forest (GcForest), a kind of deep forest [32] was proposed.

Driven by data, it is possible for the cascade module to
automatically adjust the structure without the manual design of
the structure. GcForest can achieve good performance for small-
scale data. However, memory problems with its abstract feature
extraction front-end multi-grain scanning prevent it from being
applied to large-scale data.

In this paper, we firstly apply multi-view structure represen-
tations, including sequence-structure alignment encoding rep-
resentation (SSR), RNA structure image representation (SIR), and
RNA shape alignment representation (SAR), to capture multi-
view features of ncRNAs. Specifically, SSR integrates secondary
structure information into ncRNA sequences, avoiding the time-
consuming of secondary structure alignment. The novel trans-
formational gray image feature (i.e. SIR) transfers the probabil-
ity of base pairing (i.e. the possibility of binding between two
bases during the formation of a secondary structure) into a gray
image, and the gray images of pairwise ncRNAs are aligned
by subsampling or upsampling. Similar to SSR, SAR integrates
the local shape structure information (i.e. stem, loop) into the
alignments of ncRNA sequences. Then, we combine CNN module
with GcForest module, and construct a deep fusion model, called
GcForest fusion method (GCFM), for the classification of pairwise
alignments of ncRNA sequences. This model can learn abstract
features of ncRNAs at high levels and adjust part of model archi-
tecture automatically during training, improving the Accuracy of
similarity assessment of pairwise ncRNAs.

Methods and materials
GCFM overview

The flowchart of GCFM is shown in Figure 1. It includes two
steps: (i) construction of the multi-view structure feature
representations. When we input two ncRNA sequences,
three features, including SSR, SIR and SAR, can be extracted
automatically. (ii) The overall integrating model. Based on
the obtained multi-view structure feature representations,
the features are extracted through the convolution module.
The final classification results (the two sequences are within the
same family or not) are obtained through the GcForest module
with cascading.

Datasets construction

We firstly downloaded ncRNAs sequences of humans from
the Ensembl database (ftp://ftp.ensembl.org/pub/release-99/
fasta/homo_sapiens/ncrna/) and the Genomic tRNA database
(http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/Hsapi19-
seq.html) used by Aoki [31]. These sequences cover nine widely
studied families, and the detailed information of each family is
listed in Table 1.

Then, for classification of the relation of pairwise ncRNAs,
we, respectively, chose 100 ncRNAs randomly from six families
(snRNA, snoRNA_C/D, snoRNA_H/ACA, YRNA, miRNA and tRNA),
as shown in Table 1. Based on the 600 ncRNAs, we got 179
700 pairwise ncRNAs (according to the combinatorial number
formula, n!

(n−m)!∗m! , where m is equal to 2, and n is equal to 600).
For each pairwise ncRNA, we labeled it as a positive sample
(i.e. ‘1’) if the two ncRNAs are in the same family (based on
the prior family information of the Ensembl and Genomic tRNA
databases). Otherwise, we labeled it as a negative sample (i.e. ‘0’).
Ninety percent of pairwise ncRNAs (random selection) will be
employed for training the model, and the left ten percent will be
used for testing. This process will be repeated 10 times (10-fold
cross-validation).

ftp://ftp.ensembl.org/pub/release-99/fasta/homo_sapiens/ncrna/
ftp://ftp.ensembl.org/pub/release-99/fasta/homo_sapiens/ncrna/
http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/Hsapi19-seq.html
http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/Hsapi19-seq.html
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Figure 1. The framework of GCFM. (a) The whole flow chart of the multi-view structure feature representations. When two ncRNA sequences to be predicted are input,

three feature representations (SSR, RNA SIR and SAR), will be extracted, respectively. BPPM represents the base-pairing probabilities matrix. (b) The overall architecture

of the model. According to the obtained multi-view structure feature representations, the multi-view features are extracted through the convolution module. The final

classification results are obtained through the GcForest module with cascading.

Table 1. The number of ncRNAs contained in each family and the number used in the different tasks

Name snRNA snoRNA_C/D snoRNA_H/ACA YRNA miRNA tRNA scaRNA 5s_rRNA Vault_RNA

2069 324 161 835 1910 420 52 15 6
CLF 100RD 100RD 100RD 100RD 100RD 100RD – – –
CLU 10RD 10RD 10RD 10RD 10RD 10RD – – –
CLUw 10RD 10RD 10RD 10RD 10RD 10RD 10RD 10RD 6

Notes: CLF and CLU represent classification tasks and clustering tasks, respectively. RD means random selection. CLUw means clustering with unknown ncRNA families.

Multi-view structure feature representations

The nucleotides in the RNA chain follow the Watson–Crick pair-
ing rules, forming complex structures associated with the func-
tions of RNA. Here, we construct multi-view structure feature
representations (Procedure 1), including SSR, SIR and SAR.

Sequence-structure alignment encoding representation (SSR)

We incorporate RNA secondary structure information into
nucleotide sequence information for a novel sequence-structure
representation. It fuses the secondary structure feature (repre-
sent as point and bracket) into a nucleotide sequence, called
SeqSs, by changing the upper or lower case of nucleotide letters:
the paired nucleotide letters (if a nucleotide can combine with

another one according to Watson–Crick pairing rules, they are
considered as paired and represented by a bracket in secondary
structure sequence) maintain the uppercase, and the unpaired
are represented by lowercase (Equation 1). Additionally, the
secondary structure sequence Ss is obtained by RNAfold [33]
of the Vienna RNA package (Figure 1a). The new representation
contains both secondary structure and alignments of ncRNA
nucleotide sequences, called SSR.

Nucleotidei =
{

NucleotideUc
i , if Ssi is ‘(′ or ‘)′

NucleotideLc
i , if Ssi is ‘.′

(1)

where Uc is denoted as changing to uppercase, Lc means chang-
ing to lowercase.
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Procedure 1 Construction of multi-view structure feature repre-
sentations

Input: two ncRNA sequences: Seq1, Seq2

Output: Multi-view structure feature representations mvs

1. calculate the secondary structure Ss1, Ss2 by RNAfold
2. pairing probability matrix P1, P2 for Seq1, Seq2 by McCaskill

algorithm
3. calculate the sequence representation of shape SAR1, SAR2

according to Section 2.3.3
4. for each Seq do
5. for each Nucleotidei ∈ Seq do
6. obtain SeqSs by changing the Nucleotidei according to Ss

(Eq.1)
7. calculate extra pairing probability-derived features vec-

tor Fepp including Pleft
i , Pright

i , and Punpair
i according to Sec-

tion 2.3.2
8. end for
9. obtain primary mvs by one-hot encoding SeqSs

10. obtain SAR one-hot encoding representation SARohc

11. stack Fepp and SARohc into mvs
12. for each i, j ∈ P do
13. get adjusted image Gray according to Pi,j by Eq.2
14. end for
15. extract image feature Fimg from Gray according to Section

2.3.2
16. stack Fimg into mvs
17. end for
18. stack the two mvs of each ncRNAs
19. return mvs

For pairwise ncRNAs, the two SeqSs of them are different
lengths mostly. Thus, aligning the two sequences with the same
length is required to construct a uniform input shape of the
feature. In our study, the SeqSs alignment is implemented by
DAFS [34] with the fill of hyphen (-) for the alignment gap. Then,
we used one-hot encoding (with nine chars, A, C, G, T, a, c, g, t,
-) of each SeqSs of the pairwise ncRNAs to obtain SSR. The SSR
integrates into multi-view structure feature representation by
stacking on the vertical direction with the other two part (i.e. SIR
and SAR), as shown in the dotted box in Figure 1a.

Additionally, we compare SSR with another one-hot encoding
representation of nucleotide-only sequences to a previous study
[31] under the same CNN architecture. The validity of the sec-
ondary structure information contained in the SSR can be seen
in the Supplementary S1, which suggests the feasibility of our
innovative secondary structure alignment approach by using the
alignment information of nucleotide sequences.

RNA structure image representation (SIR)

The RNA secondary structure is generally measured by free
energy, in which the most commonly used is minimum free
energy (MFE) [35]. However, the predicted structure by MFE is
not fully consistent with the real structure in nature [36]. The
folding of RNA’s primary structures into secondary structures is
a dynamic process, each base has the probability to pair with
others in this process. SIR which ensembles the probability of
all base pairing is widely needed to considering all possible
secondary structures.

McCaskill’s partition function [37] is used to predict the ther-
mal average probabilities of RNA base pairs rather than one

single structure. The base pair probability matrix P = p(i,j) of RNA
sequence can be predicted by McCaskill’s algorithm, which is
implemented by the RNAfold program of the Vienna RNA pack-
age in this study. To consider all possible secondary structures of
RNA, we transform P = p(i,j) into an image by Equation 2.

Grayij = Grayadj + Graymax − Graymin

pmax − pmin
× p(i,j) (2)

where p(i,j) is the probability of base pairing of nucleotide i and j.
To highlight the low pairing probability, we introduce Grayadj

to adjust the display of gray image (Supplementary S2), enabling
the original pair with a low probability to be discovered. This RNA
SIR ensembles all possible structures, providing a novel insight
into RNA structure analysis. Additionally, given that the lengths
of pairwise RNA sequences are inconsistent, we use smooth
filtering for subsampling and bicubic smooth for upsampling to
normalize the images. After the transformation, the size of the
images was consistent.

Based on the generated RNA structure images, we test the
ability of eight common pretraining models to discriminate ncR-
NAs derived from image features. Results in Supplementary S2
showed that three models, VGG16, ResNet101 and AlexNet, can
discriminate the ncRNA families. After that, we used the three
models to extract the features of the RNA structure images. Each
model calculates image features by forward-propagating and
restricts the output feature shape by adding a fully connected
layer. In this way, the image can be transferred into a vector with
a fixed length, which can classify different ncRNA preliminary
and reduce our model training complexity.

In addition, according to the base-pairing probability matrix
P, the three-dimensional base-pairing probability-derived fea-
tures can be calculated. For each position i, we got three kinds
sum of base pairing probability, nucleotide i pairing at left side
probability Pleft

i = ∑
j>i Pij, pairing at right Pright

i = ∑
j>i Pij and

unpaired probability Punpair
i = 1 − Pleft

i − Pright
i .

RNA shape alignment representation based on RNA structural
subunit (SAR)

From a micro-perspective, local secondary structure can form
different RNA structural subunits, such as hairpin, stem, loop,
budge and multiloop. The global RNA secondary structure com-
posed of these local shapes, implies a wealth of information,
contributing to RNA function and evolution. Therefore, it is of
great significance to integrate shape information into a feature
representation.

The sequence of RNA shape is formed by a local secondary
structure and can be calculated by a dynamic programming algo-
rithm (Supplementary S3). For pairwise ncRNAs, the sequences
of RNA shape can be aligned as same as the way of SSR, according
to the hyphen for the alignment gap filled by DAFS. Then, as
same as the process of SSR, the two sequences of RNA shape are
represented by one-hot encoding, and stacking on the vertical
direction with the other two part.

Architecture of GCFM

In this paper, we integrate the convolution module and the
cascade forest, GcForest, to construct a deep ensembling learn-
ing architecture of GCFM (Figure 1b). The convolution module
can not only extract high-level features but also reduce the
dimension of features. The GcForest algorithm is a novel deep

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa354#supplementary-data
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ensemble learning framework with no need to adjust a large
number of parameters.

Convolution unit module

To combine the advantages of the convolution module and
GcForest, we use the convolution unit module for preliminary
feature learning and dimensionality reduction. Consequently,
the extracted high-level abstract features are of sufficient and
critical information with functions and with small dimensions,
which is suitable for learning of GcForest.

The architecture of the convolution module employed in this
paper consists of a three-layer fully connected network with one
hidden layer following two convolution layers and two pooling
layers. In our GCFM, the feature of the convolution unit module
is computed by following formulae:

h1 = Pool1
(
ReLU

(
Batch (Conv1(x))

))
(3)

h2 = Pool2
(
ReLU

(
Batch

(
Conv2(h1)

)))
(4)

F = Drop
(
ReLU

(
fc1(h2)

))
(5)

y = fc2(F) (6)

where hi represents the i stacked part of the convolution module,
F is the output vector, x is the multi-view structure feature repre-
sentations and y is the output label. In the calculation process of
hi, the convolution layer extracts the pattern of the input features
and outputs relevant features. The batch normalization layer
regularizes the outputs of the convolution layer to a fixed mean
and variance. ReLU is used for the regularized data from the
batch normalization layer. The pooling layer is used to compress
the input data of ReLU and preserve the main features. For
expression of F, the fully connected layer fc1 is employed to learn
all the weights to integrate better features and transform the
output features into vectors, Dropout is only used in the model
training. The last fully connected layer fc2 is used to evaluate the
convolution ability in the initial process of model selection.

By adjusting the hyperparameters within ranges shown in
Supplementary S4, we finally selected the parameter settings for
the convolutional modules of the best test results. For h1 and
h2, the input channel of the convolution layer is 1 and 64, the
output channel of the convolution layer is 64 and 128, the size
of the convolution kernel is 15×38 and 15×1, the size of pooling
window is 10×1 and 14×1, the stride of pooling applications are
both eight and pooling methods are both max pooling. For F,
the number of units in fully connected layer fc1 is a 3/4 ratio to
the number of units in the input layer. The weights of convo-
lution layers are initialized by the value drawn independently
from scaled Gaussian distribution whose mean is 0, and the
standard deviation is scale ×

√
1

fanin
, where scale is a constant

that determines the scale of the standard deviation and can
be set as 1.0, fanin is the number of input units. Notably, the
convolution module is mainly for preliminary feature learning,
extraction and dimensionality reduction. Thus, the parameters
can be changed optionally.

GcForest module

GcForest is a fire-new deep ensemble architecture based on
a non-differentiable non-neural network-style module, which
has fewer hyperparameters and better performance than other
widely used deep neural networks. The model complexity of

GcForest can be automatically determined in a data-dependent
way.

Here, the GcForest module contains several cascade layers
with the same components. Each layer consists of three algo-
rithms, XGboosting, RandomForest and ExtraTrees (Figure 1b).
These algorithms are implemented by the xgb class of xgboost
and ensemble class of scikit-learn. After several adjustments
within ranges shown in Supplementary S4, it is found that the
following parameter settings have given better results and kept
the complexity of the cascade forest small. For XGboosting, the
maximum tree depth is 5, the number of boosted trees is 10,
the boosting learning rate is 0.1 and the objective function is
softmax. For RandomForest and ExtraTrees, the same parameter
is set except default values: the maximum tree depth is 5, and
the number of trees is 10. Five-fold cross-validation is used for
the class vector generation of each classification. The number
of cascade levels is automatically determined, but the cascade
level will stop automatically growing when the accuracy does not
increase in three rounds. And the maximum number of cascade
layers allowed in our experiment is 7 to limit the complexity of
this part of the self-adjusting model architecture. The default
parameters settings of GcForest turned out to be good for classi-
fication, and it is no need to be adjusted excessively. Additionally,
robustness analysis of the GcForest module under different CNN
modules can also be found in Supplementary S4.

Evaluation criteria

We evaluate GCFM on two aspects: the performance on classifi-
cation and the performance on clustering. In classification eval-
uation, we obtain the prediction labels of GCFM classification for
each pair of ncRNAs in test data. According to prediction labels,
for each pairwise ncRNAs, the true positive (TP) is accumulated if
the real label and the prediction label are both positive. The true
negative (TN) is defined if those labels are both negative, false
positive (FP) is that the label of real is positive, but the prediction
is not, false negative (FN) is opposed to the FP.

In clustering evaluation, we obtain the clusters generated by
a clustering method for a set of ncRNAs. A pair of ncRNAs is
counted as TP if they are clustered in the same cluster by a
clustering algorithm, and meanwhile, they belong to the same
ncRNA family in reality. Similarly, to the case in classification,
TN, FP and FN are defined.

We calculate accuracy and F-value as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(7)

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

F-value = 2 × Recall × Precision
Recall + Precision

(10)

Result
Here, we evaluated the performance of the GCFM. Firstly,
multiple feature representations are used to compare with
multi-view feature representations of GCFM. Then, the cascade
module integrated with the CNN architecture (i.e. the architec-
ture of GCFM) is used to explore whether there is a performance
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Table 2. The performance on classification pairwise ncRNAs

Methods Accuracy F-value

CNN with Clustal Omega (one-hot encoding) 0.9580 0.8500
CNN with DAFS (one-hot encoding) 0.9710 0.9010
CNN with DAFS (word2vec) 0.9800 0.9310
CNN with SSR, SIR and SAR 0.9923 0.9954

GCFM’s architecture with SSR 0.9945 0.9834
GCFM’s architecture with SIR 0.9076 0.9459
GCFM’s architecture with SAR 0.9589 0.9697
GCFM 0.9991 0.9973

Notes: ’CNN with Clustal Omega (one-hot encoding)’ represents the CNN model
with the input of Clustal-Omega alignments and one-hot encoding represen-
tation, ’CNN with DAFS (one-hot encoding)’ represents the CNN model with
the input of DAFS alignments and one-hot encoding representation, ’CNN with
DAFS (word2vec)’ denotes the CNN model with the input of DAFS alignments
and word2vec distributed representation, ’CNN with SSR, SIR and SAR’ repre-
sents the CNN model with the input of our multi-view structure representation,
’GCFM’s architecture with SSR,’ ’GCFM’s architecture with SIR’ and ’GCFM’s
architecture SAR,’ respectively, denotes the model architecture of GCFM with the
input of SSR, with the input of SIR and with the input of SAR, ”GCFM” represents
deep ensembling learning architecture with the input of multi-view structure
representation (i.e. SSR, SIR and SAR). Bold font is used to indicate the best
performance.

improvement over other existing methods. Next, we studied
whether the multi-view feature representation of GCFM could
improve the performance of ncRNA classification. Furthermore,
we performed clustering based on the ncRNAs classification
matrix generated from GCFM to evaluate the performance of
classification.

GCFM suggests great performance on the classification
of ncRNA

To our knowledge, only the study by Aoki et al. has focused
on the classification using the alignments of ncRNA sequences.
Therefore, our method was compared with this study in terms
of both feature representations and model architecture.

The two input ncRNA sequences were aligned by DAFS,
Clustal Omega [38] to eliminate factors of unequal length. The
aligned sequences were encoded using one-hot encoding and
word2vec as a matrix representation and then used as the
input of CNN. The performance of several existing feature
representations of ncRNA sequences is shown in the upper
part of the Table 2 (under the same CNN architecture). Results
showed the multi-view feature representations outperform
other feature representations, both Accuracy and F-values were
improved.

The impact of the GcForest module on model classification
capabilities can be obtained by removing the GcForest module
and keeping CNN module and feature representations constant.
Results demonstrated the model capability of classification is
the best while integrating the GcForest module.

Besides, we compared the three individual features within
of changes into the multi-view feature representations. SSR
yielded the best performance for ncRNA classification since it
has accurate nucleotide sequence information than SIR and SAR.
SAR performed better than SIR due to the abundant shape of sec-
ondary structure sequence information it contains. The last line
in the bottom half of the Table 2 demonstrated the improvement
of multi-view feature representation integrating SSR, SIR and
SAR. The multi-view feature representation performed better
due to the integrated information from multiple perspectives.

Moreover, ncRNA data from Rfam [39] were employed to ver-
ify the classification ability of GCFM. Rfam contains 3125 ncRNA

Figure 2. The time-consumption of CNN part and GcForest part under different

data volumes.

families. We randomly selected 19 families from 30 families with
more than ten thousand ncRNAs for model training and testing.
The dataset construction (both positive and negative datasets) is
the same as ’Datasets construction’ Section. Results showed that
GCFM performs well with 97.33% accuracy and 98.62% F-value
base on 10-fold cross-validation. When using the model without
the GcForest module (only convolutional module), we found that
the Accuracy and F-value are reduced by 3% and 4%, respectively,
suggesting the great performance of GCFM.

Furthermore, we demonstrated the time-consumption of
GCFM (Figure 2). Our architecture has two parts, the CNN
and GcForest modules. The sum of CNN and GcForest time-
consumption is our architecture time-consumption, while the
CNN part represents the time-consumption of the method
of Aoki et al. Results suggested that our method takes 15%
more time than the method of Aoki et al. However, the f-
value improved more than 6% in classification. We consider
it is worthy to exchange a small amount of time for better
performance.

GCFM contributes to accurate clustering of ncRNAs

The identification of ncRNA families is critical for the under-
standing of ncRNA functions. To further evaluate the perfor-
mance of GCFM on capturing potential relationships of ncRNAs,
we carried out clustering based on the relationship matrix from
GCFM. A classification matrix with the size of N × N containing
all pairwise ncRNAs relationships, where N is the number of
ncRNAs, obtained by classification method. Then, the clustering
algorithm used to cluster the rows of the relational matrix as
vectors with a length of N to obtain the final result of family
affiliation. Different from most of the current popular unsuper-
vised clustering methods of ncRNA families, the clustering can
be supervised by introducing the result of classification.

Specifically, we performed clustering for two datasets. The
first dataset consists of 60 ncRNAs from six known families
(randomly selected ten ncRNAs from each of the six families),
as shown in Table 1. The second contains ncRNA with unknown
families, and we randomly selected ten ncRNAs from each of
nine families (including scaRNA, 5s_rRNA, and Vault_RNA) for
the clustering tasks. Then, the classification matrix for these
two datasets was generated by GCFM, respectively. Multiple
widely used clustering algorithms, including K-means [40],
spectral clustering [41, 42], Affinity propagation [43], birch
[44], Mean-shift [45] and agglomerative clustering [46] were
used here to ensure the stability of the results and to verify
the validity of the relation matrix as clustering feature based
on GCFM supervision. Our supervised clustering based on
GCFM was compared with the previous supervised methods,
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Figure 3. The performance of clustering ncRNA families. This bar plot shows the accuracy and F-value of nine different clustering methods on the two datasets.

CNNclust [31], and unsupervised methods, RNAClust [47] and
Ensembleclust [48].

The results suggested that the clustering based on the rela-
tionship matrix from GCFM shows a great performance for both
two datasets (Figure 3). In the clustering for ncRNA families, the
F-value of clustering results based on the classification matrix
from GCFM was over 10% higher than other models. Especially,
in the clustering for the ncRNAs containing unknown families,
the performance of clustering based on the classification matrix
from GCFM dramatically outperforms other models with the
improvement of an about 20% increase in accuracy and a 10%
increase in F-value, showing strong robustness and general-
ization of GCFM classification of pairwise ncRNAs. This also
indicates that GCFM can indeed capture potential relationships

between ncRNAs and can enhance the performance of super-
vised clustering.

GCFM helps infer ncRNA phylogenetic tree and RNA
interaction accurately

To demonstrate the ability of GCFM and have a more system-
atic understanding of ncRNAs, two examples are shown here,
including the construction of the phylogenetic tree and the
prediction of ncRNA interaction. Phylogenetic tree construction
which more visually shows the ability of relation prediction of
GCFM between the pairwise ncRNAs and their family. We ran-
domly selected three ncRNAs from each of the six families that
were trained. Then, the phylogenetic tree was constructed based
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Figure 4. A phylogenetic tree for similarity calculation of pairwise ncRNAs based

on GCFM.

on the similarity calculated by GCFM using Neighbor-Joining
algorithm [49]. The ncRNAs of the same family should be in the
same branch or close to each other on a phylogenetic tree. By
checking the family information of ncRNAs on the constructed
tree, we found that 15 out of 18 ncRNAs show up in the right
place (the right place means ncRNA belonging to the same family
should be close to each other or within the same branch on the
tree) in the phylogenetic tree (Figure 4). The correctness of tree
construction suggests GCFM can measure the similarity between
ncRNA accurately. To further demonstrate the universality of the
similarity calculated by GCFM, we provided the results of other
methods of phylogenetic tree construction in Supplementary
S5. To show the feasibility of RNA interaction prediction, we
predicted 1526 pairs of RNA interactions (from RNAInter [50]) by
the trained model of our work. Based on the GCFM predictions,
we screened them for interaction with a confidence level greater
than 0.5 and found that 90.63% of them were correctly predicted
to have interaction information.

GCFM web server
We developed a web server (http://bmbl.sdstate.edu/gcfm/) of
GCFM to facilitate users, as shown in the screenshot of GCFM’s
web server in Figure 5. The web server consists of three modules:
(i) calculating whether the two ncRNAs are in the same family.
When the sequences in the FASTA format of the two RNAs are
input by a user, the server obtains similarities between two
ncRNAs and evaluate whether they are in the same family.
(ii) Clustering of multiple sequences based on a classification
matrix and affinity propagation algorithm. The clustering func-
tion implements the derivation of bulk ncRNA family attribution
and makes the classification matrix available for download,
allowing users to further build phylogenetic trees based on the

classification matrix, etc. (iii) Batch feature extraction. For the
batch sequence input by users, features can be extracted auto-
matically. For those who just want to use multi-view features,
we provide unmatched feature extraction, where the extracted
features can be applied to the study of multi-categorization of
ncRNA and the study of interactions with ncRNA and protein.
We provided usage examples of code and web server (Supple-
mentary S6 and S7). Additionally, to facilitate the understanding
of the multi-view structure feature representation construction,
we provided three numerical examples of the construction of
the multi-view structure feature representation in the resources
available for download on the web server. More detail of multi-
view structure feature representation can be found in Supple-
mentary S8.

Discussion
Inferring the relationships of pairwise ncRNAs is a fundamental
and critical step for understanding the function and evolution
of ncRNAs. The mainstream methods for pairwise ncRNAs rela-
tionship inference are generally based on unsupervised learning.
Inspired by the supervised learning method in Aoki’s work, we
propose a supervised deep forest ensemble learning model for
pairwise ncRNAs classification. Additionally, the integration of
multi-view structure representations greatly improved classifi-
cation performance. The web server is developed to facilitate
users.

GCFM can capture the deep and abstract information auto-
matically, providing insights into ncRNA clustering. The GCFM
dramatically outperforms the state-of-the-art methods with
strong robustness and generalization, as well as high accuracy of
both classification and practical application of ncRNA clustering,
not limited to species. One of our main contributions is the use of
multi-view structure feature representations, including the SSR,
SIR and SAR, based on RNA sequences, RNA secondary structure
and RNA structural subunits. These features reflect the deep
structure properties of RNA from micro- to macro-perspectives
and can be highly beneficial for another RNA-related research.
Another contribution is the integration of CNN and GcForest.
In GCFM, the CNN unit reduces the data dimensionality and
decreases the high memory cost of GcForest, and GcForest has
strong learning power. The architecture of GCFM is validated of
high effectiveness and efficiency. Especially, the GCFM only need
fewer adjusted parameters compared with other traditional deep
learning frameworks. Therefore, GCFM can be easily extended
to the applications for classifier construction.

Additionally, GCFM has the ability to classify the relation of
long sequences, such as the sequences of lncRNA. We found
that several ncRNA sequences are longer than lncRNAs’, such
as SNORA59B with 701 bp, and these sequences have been well-
processed by GCFM.

In the future, we will explore the novel applications based
on our proposed structure representation such as the evolution
of analysis or deleterious mutation detection of ncRNAs. For
the deleterious mutation detection, multi-view can highlight the
changes in nucleotide bases. According to a simulated mutation
on each position of the nucleotide sequence, the similarity of
the simulated mutation sequence with the original sequences
can be calculated by GCFM. If the result of them is dissimilar,
the possibility of that position for harmful mutations may be
large. Furthermore, we will exploit the architecture based on
GcForest to multi-classification problems, such as the prediction
of ncRNA family and ncRNA subcellular location.
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Figure 5. The screenshot of GCFM’s web server.
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Key Points
• Based on three perspectives of a protein, including

sequence, structure and shape, a multi-view structure
feature representation is employed to provide a com-
prehensive feature of ncRNAs.

• GcForest fusion method (GCFM) fuses convolution neu-
ral network and multi-grained cascade forest (GcFor-
est) improving the Accuracy of ncRNA prediction. This
method can contributes to the clustering of ncRNA
sequences.

• GCFM is suitable for exploring various relationships
between RNAs even for lncRNAs with long lengths.
GCFM shows a great performance for not only the pre-
diction of ncRNA family affiliation but also the predic-
tion of the interaction between ncRNAs.

• Released as a web server, GCFM can be run on multi-
ple OS platforms. GCFM is useful tool for feature con-
struction based on sequence, machine learning model
construction and performance evaluation.

Supplementary Data

Supplementary data are available at Briefings in Bioinfor-
matics online.
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