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SUMMARY

This protocol aids both new and experienced researchers in designing retrospec-
tive clinical and translational studies of acute respiratory decline in hospitalized
patients. This protocol addresses (1) the basics of respiratory failure and elec-
tronic health record research, (2) defining patient cohorts as ‘‘mild, progressive,
or severe’’ instead of ‘‘ICU versus non-ICU’’, (3) adapting physiological indices,
and (4) using biomarker trends. We apply these approaches to inflammatory bio-
markers in COVID-19, but this protocol can be applied to any progressive respi-
ratory failure study.
For complete details on the use and execution of this protocol, please refer to
Mueller et al. (2020).

BEFORE YOU BEGIN

Basics of respiratory failure for the non-specialist

Respiratory failure is defined as the inability of a patient’s respiratory system to meet the body’s

oxygenation, ventilation or metabolic requirements. Respiratory failure in hospitalized patients

has several etiologies, including chronic obstructive pulmonary disease, heart failure, pneumonia,

and Acute Respiratory Distress Syndrome (ARDS). The key clinical challenge is predicting which hos-

pitalized patients will remain stable and which patients will have progressive respiratory failure and/

or ARDS. Defining predictors of respiratory decline using retrospective studies could help guide uti-

lization of clinical resources or guide tailored therapeutic intervention.

Understanding respiratory failure. Performing studies of acute hypoxic respiratory failure requires

an understanding of how these patients are diagnosed and managed. Emergency Department

(ED) criteria for inpatient admission vary by institution and clinical context which can lead to dispar-

ities among studies. For example, during the COVID-19 pandemic, some overtaxed hospitals devel-

oped stricter criteria for admission. A patient’s oxygen saturation (SpO2) is measured by non-inva-

sive pulse oximetry, typically a probe wrapped around the patient’s finger or ear. If the SpO2 is

less than 89% while the patient is breathing room air without supplemental oxygenation, the patient

will be considered to have respiratory failure and requires supplemental oxygen and hospital admis-

sion. Patients with SpO2 greater than 89% may still be admitted if it is anticipated that the patient

may clinically worsen. Other factors such as work of breathing, co-morbidities, advanced age,
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non-respiratory illness, need for ‘‘inpatient only’’ treatments (e.g., i.v. antibiotics or antivirals) or psy-

chosocial issues may also necessitate admission.

After admission to the hospital, the patient is triaged to either the intensive care unit (ICU) or a non-

ICU medical floor. Absolute criteria that require ICU admission include need for intubation and inva-

sive mechanical ventilation (IMV), vasopressor infusion for hypotension, or elevated nursing needs

(e.g., due to altered mental status). Admitted patients with acute hypoxemic respiratory failure

that do not require mechanical ventilation will need supplemental oxygen. The amount of O2 and

its delivery method will dictate the location and level of care, and these standards may differ across

institutions. Methods of oxygen delivery and their estimated flow rates are summarized in Table 2.

Patients will be treated with a device that provides the least amount of supplemental oxygen deliv-

ery that normalizes their level of oxygen saturation and respiratory symptoms. For example, patients

with severe respiratory decompensation may avoid intubation and mechanical ventilation by using

special oxygen devices that deliver high amounts of oxygen, such as high flow nasal cannula (HFNC)

or Non-Invasive Positive Pressure Ventilation (NIPPV, or ‘‘Bi-PAP’’), in which a tight-fitting mask that

ventilates a patient with positive air pressure in a manner similar to one mode of mechanical venti-

lation. Institutions may vary on whether patients on HFNC or NIPPV are cared for in the ICU, the non-

ICU floor or a step-down unit that provides a level of care between these two options. Different hos-

pitals triage patient locations differently, and the same hospital may triage patient locations differ-

ently over time. Thus, equating patient location, such as ICU versus non-ICU, may not adequately

distinguish clinical severity of respiratory failure and can lead to systematic errors in the study’s inter-

pretation. Methods to mitigate these concerns is discussed further in the section step-by-step

method details‘‘Develop patient cohorts that discriminate progressive respiratory failure (steps

6–10).’’

P/F ratio to quantify hypoxemia. In addition to the categorical measures of acute hypoxemic respi-

ratory failure, such as requirements for HFNC, NIPPV or IMV, several quantitative measures exist.

Acute hypoxemic respiratory failure results in a gradient between the oxygen content of the air

inspired by the patient (FiO2) and the resulting oxygen content of the patient’s blood (partial pres-

sure of arterial oxygen, PaO2). This gradient is most commonly quantified as the ratio of PaO2 to FiO2,

known as the P/F ratio. The P/F ratio allows comparison of patients treated with different concentra-

tions of inspired oxygen. PaO2 can be measured directly by a laboratory test known as an Arterial

Blood Gas, or ABG, from an arterial blood sample. For this purpose, critically ill patients often

have temporary, indwelling arterial catheters. If frequent ABGs are not necessary, intermittent arte-

rial puncture is performed. Patients that are improving or lack indwelling arterial catheters tend to

have ABG drawn less frequently. Thus, studies benefit from estimating PaO2 by imputation from

SpO2, which all hospitalized patients will have recorded. Table 1 shows empirically determined

PaO2and SpO2 correlations (Brown et al., 2017). Patients on mechanical ventilation, high flow nasal

cannula and Venturi face mask have an FiO2 directly selected by the clinician. For other types of sup-

plemental oxygen, the O2 flow rate and delivery device is selected, not the FiO2. FiO2 can be esti-

mated using the formula FiO2= 0.21 + 0.03 X O2 flow rate in L/min (Frat et al., 2015; Coudroy et al.,

2020). Changes to the P/F ratio can reflect changes to clinical therapies or changes to the patient’s

pathophysiology besides hypoxemia. For example, the P/F ratio can change if the clinician adjusts

the end-expiratory pressure (PEEP) settings for a patient on NIPPV or mechanical ventilation, or if the

clinician significantly adjusts the flow rate on HFNC. The P/F ratio can vary moment to moment due

to other factors, including the patient’s posture and position in the bed; airway secretions and clear-

ance; tachypnea; or synchrony with NIPPV and mechanical ventilation.

ROX index to quantify hypoxemia. Like the P/F ratio, the ROX index is another physiological index of

hypoxemic respiratory failure (Patel et al., 2020). The ROX index integrates hypoxemia and respira-

tory rate as a proxy for work of breathing, and its calculation is described in the step-by-step

methods. The ROX index was developed to predict respiratory failure in patients on HFNC. A lower

index corresponds to worse respiratory failure. In this protocol, we suggest the innovative extension
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of the ROX index to non-intubated patients that are on other types of supplemental oxygen besides

HFNC. Extension of the ROX index to oxygen delivery methods besides HFNC will require the

methods to estimate FiO2 described in Tables 1 and 2.

ARDS. Patients can develop progressive respiratory decline culminating in Acute Respiratory

Distress Syndrome (ARDS). In the Berlin criteria, ARDS is defined by acute timing chest imaging

with bilateral opacities and lack of heart failure as the primary etiology (Ferguson et al., 2012). Eti-

ologies of ARDS include respiratory infection, non-infectious lung inflammation) and non-respiratory

illnesses (Table 4) After patients are admitted to the hospital, a key clinical challenge is predicting

which hospitalized patients will remain stable and which patients will have progressive respiratory

failure and ARDS. Defining predictors of respiratory decline could help guide utilization of clinical

resources or guide tailored therapeutic intervention.

Basics of research utilizing electronic health records (EHR) for the non-specialist

Producing novel and reproducible clinical research using EHR has become increasingly important as

these databases may allow researchers to draw inference about exposures without the need for

time-intensive and resource-heavy prospective clinical trials. Despite their ever-increasing availabil-

ity and great potential for research and clinical purposes, the ability to translate clinical electronic

datasets into meaningful knowledge remains challenging. Researchers who endeavor to utilize

Table 2. Estimated fraction of inspired oxygen (FiO2) for O2 delivery devices and their flow rates (Catterall et al.,

1967; Frat et al, 2015; Hardavella et al., 2019; Coudroy et al., 2020)

Oxygen Device Oxygen flow rate (L/min) Estimated FiO2 (%)

Nasal Cannula 1 24

2 27

3 30

4 33

5 36

6 39

Simple Face Mask 6–10 44–50

Non-Rebreather Mask 10–20 Approximately 60–80

20 60

30 ~70

40 ~80

High Flow Nasal Cannula 30–70 50–100

Table 1. The imputation of PaO2 values from SpO2 (Brown et al. 2017)

Measures SpO2 (%) Imputed PaO2 (mmHg)

100 167

99 132

98 104

97 91

96 82

95 76

94 71

93 67

92 64

91 61

90 59

89 57

88 55

87 53

86 51
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electronic and routinely collected data sources should be aware of common pitfalls so as to avoid the

concern of amplifying low-level signals that do not have clinical importance or may not be generaliz-

able beyond the source from which they are derived.

Investigators should become familiar with prior studies into best practices for reproducible clinical

research from electronic medical records. For instance, the MIT Critical Data group have produced

an open-access textbook on the Secondary Analysis of Electronic Health Records which provides

step-by-step guidance and examples (MIT Critical Data, 2016). Knowledge of the pitfalls of research

utilizing EHR will inform the decisions about study design.

Prior studies have found that the accuracy of different types of EMR data depend on research ques-

tion and context. For example, administrative data, such as ICD-9 billing codes, were highly predic-

tive of heart failure defined by clinical chart review (Lee et al., 2005). In contrast, similar administra-

tive data had poor sensitivity for detecting inpatient adverse events, like deep vein thromboses or

hospital-acquired pneumonia defined by clinical chart review (Maass et al., 2015).

Notably, these studies used chart review as the gold standard. Several types of error can affect chart

review of EHR and are addressed in the section troubleshooting in ‘‘problems 1, 2, 3 and 4.’’ A clinical

study utilizing EHR requires several methodological decisions. First, the EHR data can be gathered

by manual chart review or by electronic query. Manual chart review takes more time and had up to

10% error rate in one study (Feng et al., 2020), although such errors can be mitigated by protocol

designs like using two independent researchers to duplicate chart review. However, electronic

queries can result in datasets that require significant manual clean-up and pre-processing, or, at min-

imum, manual spot-checks of random subjects to ensure data quality. In addition, certain types of

variables often require manual adjudication and input, such as free text notation of clinical decision

making.

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Perform ethical review

Timing: Development of protocol will likely take 2–4 h. However, review and revision may

take 1–6 weeks.

1. Submit the study protocol to the institutional review board (IRB) or ethics panel for comment, revi-

sion, and approval prior to starting the study.

Assess EHR dataset to formulate the research question.

Timing: Varying amounts of time will be required for reviewing EHR, however, likely 1–2 h

will be required.

REAGENT or RESOURCE Source Identifier

Software and algorithms

Prism software (GraphPad) https://www.graphpad.com/scientific-software/prism/ N/A

R software (The R project) https://www.r-project.org N/A

Other

Clinical treatment guidelines
for standards of care

Varies by study. Our study of COVID-19 utilized the Brigham
and Women’s Hospital COVID-19 Clinical Guidelines
(https://www.covidprotocols.org)

N/A
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2. Formulate the research question:

In multi-disciplinary teams of clinicians (domain experts), data scientists, and biostatisticians, re-

searchers must formulate the research question with an appraisal of the available data and its

architecture.

3. Select the method of data entry:

Select manual, electronic query or a combination of both. Decide on protocols to ensure the accu-

racy of data, such random spot checks of data.

4. Pre-process the clinical dataset:

EMR data are of varying granularity and frequency andmust be inspected and prepared in a pre-pro-

cessing step before the case report forms can be completed. Pre-processing may require data mod-

ifications for missingness and outliers. Data-scientists and clinicians must work together to provide

appropriate representation of the data forms.

5. Perform an exploratory data analysis to refine the initial research question:

Assess cohort demographics and the suitability of the dataset for the research question.

Develop patient cohorts that discriminate progressive respiratory failure

Timing: Less than one hour.

6. Secure the availability of domain experts to adjudicate clinical questions on study design, patient

inclusion and exclusion, and data:

For studies of respiratory failure, domain experts include physicians that are board-certified sub-

specialists in Pulmonary Medicine, Critical Care Medicine, or Infectious Disease.

7. Review potential clinical questions regarding respiratory failure that affect study design and pa-

tient inclusion and exclusion criteria:

A key question is whether to identify, segregate, or exclude types of respiratory failure that cause

critical respiratory illness but may not reflect ARDS pathophysiology. For example, an infection

with SARS-CoV-2 could trigger an exacerbation of underlying asthma or COPD that leads to NIPPV

or intubation without severe hypoxemia.

Note: By the definition of ARDS, respiratory failure primarily driven by heart failure is excluded

in studies on ARDS.

8. Assess subjects for inclusion and exclusion; confirm each subject’s diagnosis with criteria relevant

to the research question:

For example, a study of COVID-19 pneumonia should exclude a patient who is hospitalized for

appendicitis and only incidentally found to be SARS-CoV-2 positive by PCR and lacks respiratory

symptoms.

9. Divide subjects in ‘‘mild,’’ ‘‘progressive,’’ or ‘‘severe’’ respiratory failure to distinguish patients

with stable from progressive respiratory failure:
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a. ‘‘Mild’’: Patients who initially present to the hospital with non-critical illness and remain non-

critical throughout their hospital admission. That is, the patients only require room air, low

flow nasal cannula, or face mask (excluding non-rebreathing mask [NRB]) during their hospital-

ization.

b. ‘‘Progressive’’: These patients have the same initial clinical presentation as the ‘‘mild’’ group—

non-critical illness. However, ‘‘progressive’’ patients develop worsening respiratory failure

during their hospital course and later require NRB, high-flow nasal cannula (HFNC), or non-

invasive positive pressure ventilation (NIPPV) or invasive mechanical ventilation (IMV).

c. ‘‘Severe’’: These patients arrive at the hospital with critical illness and require NRB, HFNC,

NIPPV or IMV within 12 h of presentation to the hospital (Table 3).

Note: Some studies of inpatient acute respiratory failure divides patients into cohorts of ‘‘ICU’’

or ‘‘non-ICU’’, ‘‘severe or not severe disease’’ or focus on an association with mortality (Cum-

mings et al., 2020; Petrilli et al., 2020; Zhang et al., 2020; Haljasmagi et al., 2020). However,

this two-cohort model or the binary outcome of mortality may not elucidate the determinants

of progressive respiratory failure. Predicting which patients with milder illness will remain sta-

ble and which patients will worsen to critical illness is a key clinical need to guide triage, inter-

vention, and clinical studies. The three group model in this proposal is suited to capture the

dynamic process of progressive respiratory failure.

Note: These categories are not to be confused with other classification schemes that use the

term ‘‘severe,’’ such as ‘‘severe ARDS’’ (i.e., P/F ratio < 100) or ‘‘severe COVID-19 pneumonia’’

defined in the ACTT clinical trials (Beigel et al., 2020).

10. Consider sub-dividing the ‘‘progressive’’ and ‘‘severe’’ groups of subjects by their use of NRB,

HFNC, NIPPV or IMV:

To capture progression within critical illness, the study can sub-divide the ‘‘progressive’’ and

‘‘severe’’ cohorts further into these patient sub-cohorts, listed in typical order of escalation of

intensity of respiratory support:

a. ‘‘HFNC’’: These patients required HFNC but did not require NIPPV or IMV at any point during

their hospitalization.

b. ‘‘NIPPV’’: These patients required NIPPV but did not require IMV at any point during their

hospitalization. They may have required HFNC.

c. ‘‘IMV’’: These patients required intubation for IMV at any point. They may have required

HFNC or NIPPV.

Note: Grouping together patients that utilize any one of NRB, HFNC, NIPPV or IMV under a

single definition, as in step 9, is reasonable. Any of these modalities of respiratory support

are a clear escalation from milder respiratory failure that only requires nasal cannula or simple

face mask. However, patients with ARDS can have progression of their respiratory deteriora-

tion within this larger definition of critical respiratory failure. For example, some patients will

remain on HFNC, while other patients will worsen and require IMV after HFNC due to

Table 3. Description of the cohorts of mild, progressive, and severe respiratory failure

Disease severity: Description:

Mild Non-critical illness and remains non-critical throughout the
hospitalization. Adequate oxygen saturation on room air, nasal
cannula, or simple face mask

Progressive Initially non-critical illness however develops worsening oxygenation
during hospitalization requiring high flow nasal cannula, non-invasive
positive pressure ventilation, or mechanical ventilation

Severe Critical illness on presentation requiring high flow nasal cannula, non-
invasive positive pressure ventilation, or mechanical ventilation within
12 h of hospital admission
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worsening hypoxemia or work of breathing. Sub-cohorts within the ‘‘progressive’’ and ‘‘se-

vere’’ categories would capture these clinical changes. Creating sub-divisions within critical

illness quickly raises additional questions since patients can move between HFNC, NIPPV

and IMV. For example, in a retrospective cohort study, the use of HFNC or NIPPV for a partic-

ular patient may be based on clinical characteristics, and the modes themselves may affect

outcomes, as in a systematic review of HFNC and NIPPV in preventing IMV (Zhao et al.,

2017). Should patients that are initially on HFNC or NIPPV but then intubated be distinguished

from patients that go directly to IMV without HFNC or NIPPV? It can be hypothesized for a

given study that extended periods of HFNC or NIPPV in a deteriorating patient risks greater

patient-induced lung injury compared to earlier initiation of low tidal volume IMV; alterna-

tively, delaying IMV, with its risks of complication such as sedation-induced delirium, could

be beneficial. Thus, unless a study is well-powered to accommodate sub-divisions of critical

illness, we recommend limiting the cohorts to ‘‘mild’’, ‘‘progressive’’ and ‘‘severe’’ as

described in step 9 as a simpler yet powerful approach to study the determinants of respira-

tory deterioration.

Develop a case report form (CRF)

Timing: 1–10 h depending on length of CRF and number of variables.

11. Develop a case report form to ensure standardized data collection across sites and staff:

An example of a case report form for a study of respiratory failure is in Table S1.

Note: In steps 2–5, a multi-disciplinary team should have already considered the quality and

availability of data before formulating the research question that drives the design of the CRF.

12. Perform a pilot test of the CRF on a subset of patients:

If a systematic barrier to completing the data fields in the CRF is found, revise the research question

and/or CRF. See section troubleshooting for approaches to common issues in data acquisition, such

as erroneous or missing clinical data.

Use physiological measures of respiratory failure

Timing: Roughly, 5 min per patient.

13. Calculate the P/F ratio:

P/F = PaO2 / FiO2

Table 4. Berlin criteria for ARDS (Ferguson et al., 2012)

Berlin criteria for ARDS

1. Acute onset respiratory decline

2. Chest imaging revealing bilateral opacities without pleural effusion, lung collapse, nodules, or masses

3. No Clinical evidence of significant heart failure

Etiologies of ARDS

Pulmonary related illness: Infection (bacterial or
viral, aspiration, or interstitial lung disease

Non-pulmonary related illness: Sepsis,
trauma, acute pancreatitis, burns, blood
product transfusion, drug toxicity, or graft vs.
host disease.

Grading of ARDS

ARDS Severity Mild Moderate Severe

PF ratio: 300 200 100
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14. Calculate the ROX index for each subject and time point:

ROX index = (SpO2 / FiO2) / Respiratory Rate

Note: Lower P/F ratio or lower ROX index correlates to worse hypoxemic respiratory failure.

Use inflammatory biomarker trends to predict respiratory decline

Timing: 1–4 h.

15. Pre-specify a statistical analysis of inflammatory and other biomarkers over time, instead of static

values at a single time point, and their association to the primary and secondary end points that

have clinical and/or pathophysiological significance.

16. Challenge any associations with sensitivity analyses to test the risks of confounding bias.

Note: This protocol instructs the comparison of ‘‘mild’’ versus ‘‘progressive’’ respiratory failure

patient groups. This protocol’s model excels at discriminating factors associated with pro-

gression of respiratory failure—a dynamic process. Consequently, the utility of this model is

maximized by examining the dynamics of biomarker trends over time rather than as static

values at single time points.

EXPECTED OUTCOMES

The examples below detail the outcomes after applying this protocol to COVID-19 pneumonia in our

study by Mueller et al.

Method 1: Develop patient cohorts that discriminate progressive respiratory failure (steps 6–

10)

We applied the model of mild, progressive, and severe respiratory failure in this protocol to patients

admitted to a hospital with COVID-19 pneumonia (Mueller et al., 2020). We first used the model of

‘‘ICU’’ versus ‘‘non-ICU’’ patients and we confirm previous studies that found elevated inflammatory

biomarkers in the ‘‘ICU’’ cohort. This ‘‘ICU’’ cohort includes both the ‘‘progressive’’ and ‘‘severe’’ res-

piratory failure groups in this protocol’s model.

After applying this protocol’s model, we found that ‘‘mild’’ and ‘‘progressive’’ groups had largely

overlapping ranges of inflammatory biomarkers at hospital admission (i.e., C-reactive protein

[CRP], d-dimer and procalcitonin), with both ‘‘mild’’ and ‘‘progressive’’ groups distinct from the ‘‘se-

vere’’ group. Thus, this protocol’s model of ‘‘mild’’ versus ‘‘progressive’’ respiratory failure captured

important heterogeneity that was lost in a simpler model of ‘‘ICU’’ versus ‘‘non-ICU.’’

Method 2: Use physiological measures of respiratory failure (steps 13 and 14)

Quantitative analysis of possible determinants of hypoxemic respiratory failure can be facilitated by

use of physiological measures of respiratory failure, such as the P/F ratio and ROX index. In our study

of patients hospitalized with COVID-19 pneumonia, CRP level associated with P/F ratio (r=�0.54,

p < 0.001) (Mueller et al., 2020). We adapted the ROX index for non-intubated patients not on

HFNC.We calculated the ROX index at time zero and 24 h after hospital presentation. By Area Under

the ROC curve (AUROC) analysis, the ROX index had moderate predictive value for respiratory dete-

rioration and intubation later in the hospital course and mildly under-perform the change in CRP.

Hospital day 0 ROX index had AUROC 0.71 [0.58–0.83], and Day 1 ROX index had AUROC 0.68

[0.51–0.85]. Please see Table S2 for example dataset comparing CRP values over time to calculated

ROX index.
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Method 3: Use inflammatory biomarker trends to predict respiratory decline (steps 15 and

16).

In our study of COVID-19 pneumonia, both ‘‘mild’’ and ‘‘progressive’’ groups of patients were

initially admitted to the hospital with non-critical illness. By the definitions described in this protocol,

the ‘‘mild’’ group remained stable, and the ‘‘progressive’’ group had respiratory decline later during

their hospital course to critical illness. The admission CRP levels for the ‘‘progressive’’ group of pa-

tients had a statistically significant elevation compared to the ‘‘mild’’ group (113 [63–198] versus 74

[39–118] mg/L, p = 0.03) (Mueller et al., 2020). However, the ‘‘mild’’ and ‘‘progressive’’ groups had

largely overlapping ranges for admission CRP levels, which limited the practical value and clinical

significance of admission CRP for predicting later respiratory decline.

However, the ‘‘mild’’ and ‘‘progressive’’ groups had markedly distinct CRP trends over the first 72 h

of their hospital course (Figures 1 and 2; Mueller et al., 2020). The CRP trend of ‘‘mild’’ patients re-

mained flat, while ‘‘progressive’’ patients had an early rise in CRP levels. We compared how admis-

sion CRP level (a single, static value) compared to rise in CRP (change in CRP over the first 72 h) in

predicting later intubation. By AUROC analysis, change in CRP (0.74 [0.59–0.88], p = 0.02, cutoff

value for change in CRP = 13) modestly outperformed the single value of CRP at admission (0.68

[0.55–0.80], p = 0.008, cutoff value for admission CRP = 146).

QUANTIFICATION AND STATISTICAL ANALYSIS

The following describes key considerations for statistical analysis. This approach was used in our

study of COVID-19 detailed in ‘‘expected outcomes’’.

1. Assess whether the data have a normal distribution:

a. Test for a normal distribution using the Shapiro-Wilk test, D’Agostino and Pearson test, Kol-

mogorov-Smirnov test, or Anderson-Darling test. Typically, one sets the significance (a) at

0.05.

Figure 1. Trend of mean CRP values for mild, progressive, and severe cohorts, from first collected value to 14 days

after admission

(Reproduced from Mueller, Tamura et al., 2020)
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Note:When data have a normal distribution, a parametric test can be utilized. However, when

data do not follow normal distribution, a non-parametric test of significance should be used.

Note: Since the central limit theorem dictates that datasets tend towards a normal distribution

with large N, studies with small N are most vulnerable to non-normal distributions. For

example, the distribution of inflammatory biomarkers in several retrospective cohort studies

of COVID-19 were non-normally distributed.

2. Assess the null hypothesis with the proper statistical test by considering the number of compar-

isons and whether the distribution is normal.

3. For descriptive statistics, calculate the mean with standard deviation for normal distributions or

median values with interquartile ranges for non-normal distributions.

4. For comparisons of continuous variables, if two groups, use the Student’s t test (if normal) or

Mann-Whitney U test (if non-normal). For comparison of continuous variables among three

groups, such as the mild, progressive, and severe groups in our study, use analysis of variance

(ANOVA) with Turkey’s multiple comparison or the Krusakal-Wallis test with Dunn’s multiple com-

parison. Carefully note whether one way or two-way comparisons are required.

5. For comparisons of binary variables, use the chi-square or fisher exact test.

6. To assess correlation between two variables, use the Spearman rank correlation coefficient.

7. To analyze repeated measures, use a mixed effects model with Sidak’s multiple comparison.

8. To assess the predictive performance of variables for a binary outcome, utilize Area Under the

Receiver Operating Characteristics curve (AUROC) with 95% confidence interval and the optimal

cutoff value per Younden’s J statistic.

9. In our study (Mueller et al., 2020), statistical analysis was performed using R (version 3.6.1, The R

Project) and Prism (version 8.4.1, GraphPad).

Figure 2. CRP values for mild, progressive, and severe cohorts collected 0–24 h, 24–48 h, and 48–72 h after

admission to the hospital

(Reproduced from Mueller, Tamura et al., 2020)
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LIMITATIONS

Method 1: Develop patient cohorts that discriminate progressive respiratory failure (steps 6–

10)

Early versus late progressive respiratory decline. The ‘‘mild, progressive, severe’’ respiratory failure

approach to patient cohorts is a key improvement in the granularity of patient groups compared to

‘‘ICU’’ versus ‘‘non-ICU’’ models while still maintaining simplicity. However, the ‘‘progressive’’ pa-

tient group in this protocol does not distinguish between patients with respiratory decline early in

their hospital course, such as the first four days of hospitalization, and patients with later decline

in their hospital course, such as one week or greater after admission. Disease pathophysiology

and windows of therapeutic intervention likely to differ between patients with early or later respira-

tory decline.

Method 2: Use physiological measures of respiratory failure (steps 13 and 14)

Quantification of physiological processes. The ROX index uses respiratory rate as a proxy for work of

breathing. Inevitably, respiratory rate does not capture the full complexity of the physiological pro-

cesses in ‘‘increased work of breathing,’’ which includes the interplay of lung compliance, resistance,

strength of respiratory muscles, use of accessory respiratory muscles and respiratory drive.

Method 3: Use inflammatory biomarker trends to predict respiratory decline (steps 15 and

16)

Bias in availability of lab values sent by clinicians in retrospective studies. Retrospective, observa-

tional studies depend on lab tests or physiological parameters measured by clinicians. Thus, the

types of variables are limited, and there may be bias in the data, as addressed in the section trou-

bleshooting. This issue applies to all clinical data points but is a key problem in assessing bio-

markers, as only a limited range are available to clinicians and may be inconsistently ordered. For

example, in our study of COVID-19 pneumonia, we had a full dataset of CRP measurements but

many missing subjects for IL-6 and no data on IL-1 and other cytokines that may be upstream of

CRP (Mueller et al., 2020).

TROUBLESHOOTING

Problem 1

Retrospective cohort study (steps 1–5)

All retrospective cohort studies are vulnerable to multiple biases, such as selection bias, misclassi-

fication bias, and confounding bias, with the ultimate caveat that association, not causation, is

established.

Potential solution 1

Minimizing biases requires multiple approaches. To reduce selection bias, prospective randomiza-

tion is ideal. For a retrospective cohort, the study subjects should be defined in a manner that min-

imizes bias, such as all consecutive patients over a time period without major changes in clinical prac-

tice. One approach to reducing misclassification bias is rigorous examination of the accuracy of the

clinical data before initiation of the study. For example, if a study is examining the association be-

tween a patient’s prior use of statin and their respiratory outcomes, the investigators must assess

whether home medications are consistently and accurately recorded. A particularly problematic

misclassification bias would be introduced if the accuracy of the clinical records varied in a non-

random way with clinical care. In this hypothetical example, home medications may be more often

omitted, with patients incorrectly labeled as a statin non-user, when a hospital is busiest during the

Covid-19 surge. Thus, rates of misclassification may associate with other changes to clinical care that

occurred during the busiest periods of the Covid-19 surge. The text of the manuscript, particularly

the conclusion and discussion, should be rigorous in acknowledgment of the limitations of a retro-

spective cohort study due to bias and confounding variables.
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Problem 2

Missing data (steps 2–5)

Both retrospective and prospective studies can suffer frommissing or unevenly sampled data. Retro-

spective cohort studies rely on data recorded by clinical staff and so are vulnerable to non-random

missing data. For example, nurses may record clinical data less frequently or less accurately for pa-

tients that are less ill or recovering. Thus, missing data can lead to exclusion of subjects and intro-

duce bias in the dataset.

Potential solution 2

Several strategies can be employed to mitigate the effect of missing data. If the data are missing

completely at random (MCAR), investigators can perform listwise deletion, in which a subject is

removed completely from the analysis. Investigators can alternatively employ pairwise deletion, in

which the subject is deleted from analyses that depend on the missing data, but the subject is

included in other analyses for which data are available. Investigators should pre-specify their defini-

tion and strategy for missing data that triggers subject deletion. Alternatively, the data may be

missing at random (MAR), meaning that the likelihood of missing data is linked to a patient charac-

teristic, but randomwithin that subgroup of patients with that characteristic. Themissing data can be

considered random for analyses within that subgroup. For example, patients admitted from the

study site’s emergency department may tend to have different inflammatory biomarkers sent and

different initial clinical care than patients that presented to a different hospital’s emergency depart-

ment and were directly admitted to an inpatient floor of the study site. Here, treating missing

biomarker values could be treated as random within the subgroup of patients that were admitted

from the emergency department, but it could introduce systematic error to treat missing lab values

as random across the entire cohort.

If the missing data are random, an alternative approach to avoid exclusion of subjects is imputation

to replace the missing data value with a calculated value. Older imputation techniques include re-

placing the missing value with the mean of non-missing observations (mean substitution) or with

values from a regression model (regression substitution). Newer methods include the multiple

imputation method (Gold and Bentler, 2000), maximum likelihood estimation (Enders and Peugh,

2004), and full information maximum likelihood (FIML) method (Enders and Bandalos, 2001). Full

discussion of these statistical methods is beyond the scope of this protocol focused on respiratory

decline, and investigators should refer to primary statistical sources. In brief, the effect of imputa-

tion can be assessed with the multiple imputation method, in which a missing data point is replaced

with slightly different values multiple times, which allows estimate of the standard error introduced

by imputation. In maximum likelihood estimation methods, no data are imputed, but the original

dataset, with missing values, is analyzed. In FIML, a likelihood function is calculated for each subject

based on the observed data to model the function most likely to have led to the observed dataset.

Maximum likelihood methods generate estimates of standard error. It bears repeating that these

imputation methods assume that the missing data are random and not associated with subject

characteristics. Unfortunately, in a retrospective study, missing data can be non-random. For

example, the more labile or critically ill patients may have the most data missing from the chart

if the clinical providers were more occupied with direct clinical care and had less time to record

data. This protocol is focused on challenges specific to studies of respiratory failure, so investiga-

tors are urged to refer to general biostatistical resources for in-depth discussion of data techniques

(MIT Critical Data, 2016).

Problem 3

Errors in clinical data measurement and recording (steps 2–5)

Studies that rely on physiological data recorded by clinicians can suffer from inaccuracy that varies by

type of parameter. The quality of charted clinical data varies by location, data type, and mode of
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data entry, such as manual input by healthcare staff versus automated pull of data from clinical moni-

toring equipment to the electronic medical record. The institution and location within the institution

can have different norms. In addition, the status of the institution and sub-locations may change over

time in a non-random manner, such as with increased clinical volume during a surge of COVID-19

infections. Furthermore, even precisely recorded data may not accurately reflect the patient’s clin-

ical status. For example, a SpO2 by pulse oximeter may not accurately reflect oxygenation due to

poor placement and can have racial bias due to skin pigmentation (Feiner et al., 2007; Sjoding

et al., 2021).

Potential solution 3

Some errors in clinical data can be detected by research staff with clinical expertise. These research

staff are aware of the pitfalls of different types of clinical measurements and can assess the validity of

the data point by clinical context. For example, to calculate the ROX index for our study, staff with

clinical experience knew that the respiratory rate is much more prone to inaccurate measurement

and charting than the SpO2. For SpO2, experienced researchers evaluated whether an outlier low

SpO2 value reflected true respiratory decline or a technical artifact by examining clinical context,

such as an isolated low SpO2 value without any response by clinical staff paired with a nursing

note in the clinical flowchart that noted a likely reason for artifact at that time, such as the patient’s

agitation that led to poor measurements.

Problem 4

Rapid variability in clinical measurements over time (steps 2–5)

A patient’s clinical measurements, even if exhibiting an overall trend, can have hour to hour vari-

ability that makes data collection challenging.

Potential solution 4

First, the investigators should determine which unit of time reflects the study’s hypothesis and prac-

tical constraints of data availability and generation. In our comparison of inflammatory biomarkers

and physiology indices in Covid-19, since laboratory biomarkers were measured once per hospital

day, we assessed the ROX index daily. Second, for clinical measurements that vary throughout the

study’s time unit, the investigators should select a consistent protocol tailored to the clinical mea-

surement. For example, the ROX index, based on SpO2 and respiratory rate, varies throughout

the day, so for our study we used the day’s lowest value. Alternatively, a study could select the

day’s highest value or the value at a set time each day. The selection of a set time can be informed

by the clinical site. For example, an institution may know that respiratory rates are most accurately

assessed during the nursing assessment at the beginning of their shift.

Problem 5

Differences between clinical institutions and clinical practice (steps 2–5)

In multi-center studies, differences among clinical institutions can introduce error or complicate

the study even if data collection is standardized across sites. Key differences among centers

include characteristics of the patient population, clinical practices that affect patient care, or

clinical practices that affect data collection. Some differences will be noted by standard assess-

ments, such as patient demographics, scores of severity of illness on admission, or obvious

aspects of clinical care such as percentage of HFNC, NIPPV and IMV. Other differences may be

more subtle and not typically assessed. For example, the families of patients may elect to with-

draw care and end life-supporting measures at different rates and timing due to factors unique

to each center, such as the local beliefs of the community or the structure of palliative care

consultation.
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Potential solution 5

The investigators should pre-specify clinical variables that will be assessed for association with the

primary and secondary endpoints, such as patient demographics and characteristics of the clinical

care. Clinical variables should be informed by discussion with clinicians and clinical researchers at

each site, who will be most familiar with local factors in the patient population and clinical practice

patterns that could confound outcomes.

Problem 6

Type II error (steps 15 and 16)

These studies are vulnerable to type II error, in which an underpowered study incorrectly supports

the null hypotheses.

Potential solution 6

Careful consideration of power calculations to drive sample size is key to avoiding type II error. For

these calculations, selection of the power (typically 80% to 95%) and significance (typically a = 1%–

5%) are individual to each study. A major challenge is predicting effect size, particularly in novel

clinical situations. A pilot retrospective cohort study can be invaluable to assess data quality, trou-

bleshoot data gathering and estimate effect size. Effect size and required sample size will be

affected by the definition of groups. Moving from two groups (e.g., ‘‘ICU’’ versus ‘‘non-ICU’’) to

the three groups suggested in this protocol (‘‘mild,’’ ‘‘progressive,’’ and ‘‘severe’’) may increase

the total number of patients required for the study in many cases. However, in some cases, since

the three groups in this protocol may associate clinical pathophysiology, dividing into three groups

may increase the effect size seen in pilot experiments and lead to power calculations that require a

smaller sample size than expected.
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