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Artificial neural networks (ANNs), like convolutional neural networks (CNNs), have

achieved the state-of-the-art results for manymachine learning tasks. However, inference

with large-scale full-precision CNNs must cause substantial energy consumption and

memory occupation, which seriously hinders their deployment on mobile and embedded

systems. Highly inspired from biological brain, spiking neural networks (SNNs) are

emerging as new solutions because of natural superiority in brain-like learning and

great energy efficiency with event-driven communication and computation. Nevertheless,

training a deep SNN remains a main challenge and there is usually a big accuracy gap

between ANNs and SNNs. In this paper, we introduce a hardware-friendly conversion

algorithm called “scatter-and-gather” to convert quantized ANNs to lossless SNNs,

where neurons are connected with ternary {−1,0,1} synaptic weights. Each spiking

neuron is stateless and more like original McCulloch and Pitts model, because it fires

at most one spike and need be reset at each time step. Furthermore, we develop

an incremental mapping framework to demonstrate efficient network deployments on

a reconfigurable neuromorphic chip. Experimental results show our spiking LeNet on

MNIST and VGG-Net on CIFAR-10 datasetobtain 99.37% and 91.91% classification

accuracy, respectively. Besides, the presented mapping algorithm manages network

deployment on our neuromorphic chip with maximum resource efficiency and excellent

flexibility. Our four-spike LeNet and VGG-Net on chip can achieve respective real-time

inference speed of 0.38 ms/image, 3.24 ms/image, and an average power consumption

of 0.28 mJ/image and 2.3 mJ/image at 0.9 V, 252 MHz, which is nearly two orders of

magnitude more efficient than traditional GPUs.

Keywords: convolutional neural network, spiking neural network, network quantization, network conversion,

neuromorphic hardware, network mapping

1. INTRODUCTION

Deep convolutional neural network (CNN) architectures such as VGG-Net (Simonyan and
Zisserman, 2014) and ResNet (He et al., 2016) have achieved close to, even beyond human-level
performance in many computer vision tasks such as image classification (Russakovsky et al.,
2015) and object detection (Lin et al., 2014) in recent years. However, these large-scale models
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usually consist of tens of millions of parameters, and compute
with massive high-precision (32/64 bits) fixed-point or floating-
point multiply-accumulation (MAC) operations. Although
network training can be implemented on a cloud server
equipped with powerful CPUs or GPUs using backpropagation
algorithm (Rumelhart et al., 1986), inference at edge still
inevitably requires vast power and memory budget. Lots of
works presented various compression (Deng et al., 2020) and
quantization methods (Hubara et al., 2016) of neural network
or concentrated on less memory access and pipeline optimizing
in custom CNN accelerators (Lecun, 2019; Chen et al., 2020),
which greatly improved computation efficiency and reduced
power consumption.

Considering another kind of emerging approach to
incorporate biological plausibility of brain-inspired models
and efficient neuromorphic hardware primitives, spiking neural
networks (SNNs) (Grning and Bohte, 2014) attract more
attention. SNNs inherently communicate and compute with
one-bit spike signals and low-precision synapses toward an
event-driven information processing paradigm (consuming
energy only when necessary) (Sheik et al., 2013; Deng et al.,
2020). It has been proved that SNNs are very suitable to be
implemented on large-scale distributed neuromorphic chip with
impressive energy efficiency (Cassidy et al., 2013; Schuman et al.,
2017). For example, a single TrueNorth chip (Akopyan et al.,
2015) supports real-time running of 1 million neurons and
256 million synapses with only 70 mW power consumption.
Tianjic chip (Deng et al., 2020) is composed of 156 functional
neuromorphic core, and achieve several orders of magnitude of
energy efficiency compared with common platforms like CPUs
or GPUs.

However, training a high-accuracy SNN remains a main
challenge due to discrete spike representation and non-
differentiable threshold function (Tavanaei et al., 2018). To
date, various methods have been applied to construct SNNs
with comparable accuracy to conventional CNNs. Some works
adopt bioinspired learning rules like unsupervised spike-timing
dependent plasticity (STDP) (Falez et al., 2019; Lobov et al., 2020)
for feature extraction. However, these layer-by-layer training
algorithms usually perform less efficiently in deep architectures.
For supervised learning like SpikeProp (Bohtea et al., 2002) and
Tempotron (Gutig and Sompolinsky, 2006), they also fail to deal
with practical tasks like CIFAR-10 (Krizhevsky andHinton, 2009)
classification. Recent works (Lee et al., 2016, 2020; Wu et al.,
2018; Wei et al., 2020; Yang et al., 2021a) use different pseudo-
derivative methods (also called surrogate gradient) to define the
derivative of the threshold-triggered working mechanism. Thus,
the SNNs could be optimized with gradient descent algorithms
as artificial neural networks (ANNs) and achieve good accuracies
with fast response speed, but a unified and effective surrogate
function is the key problem for these methods.

ANN-to-SNN conversion is another popular solution, which
tries to match firing rates of spiking neurons and analog
activations of ANNs. Esser et al. (2016) presented a simple BNN-
to-SNN conversion algorithm, where spike signals are coded
within only one time step, so each neuron will fire at most once.
Binary SNNs can achieve a great model compression rate with

the least resource and power budgets and fastest inference speed
with an acceptable loss of accuracy onMNIST (Lecun and Bottou,
1998) and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets. A
more common approach is to map the parameters of a ReLU-
based ANN to that of an equivalent SNN. Studies (Bodo et al.,
2017; Xu et al., 2017) have found that SNNs can be converted
from trained high-accuracy CNNs efficiently by the means of
data-based threshold or weight normalization. However, the
network performances depend on empirical statistics of average
firing rate, and require dozens even hundreds of time steps to
get a stable accuracy. This may give a large energy and latency
budget for hardware implementation. Besides, the final accuracy
is still declining when compared with its ANN counterpart due
to accumulated errors of spike approximation in higher layers
(Bodo et al., 2017; Rueckauer and Liu, 2018; Yousefzadeh et al.,
2019).

This work aims to overcome the aforementioned
drawbacks in ANN-to-SNN conversion process and hardware
implementation, i.e., to present a more accurate, general, and
hardware-friendly conversion method, which is compatible
with contemporary neuromorphic hardware. For this purpose,
we first introduce an adjustable quantized algorithm in ANN
training to minimize the spike approximation errors, which are
commonly existed in ANN-to-SNN conversion and propose
a scatter-and-gather conversion mechanism for SNNs. This
work is based on our previous algorithm (Zou et al., 2020) and
hardware (Kuang et al., 2021), and we extend it by (a) testing
its robustness on input noise and larger dataset (CIFAR-100),
(b) developing a incremental mapping framework to carry out
an efficient network deployment on a typical crossbar-based
neuromorphic chip, (c) detailed power and speed analyses are
given to show its excellent application potential. All together, the
main contributions of this article are summarized as follows:

1. Compared with existing ANN-to-SNN conversion methods,
the proposed conversion algorithm with quantization
constraint can be jointly optimized at training stage, which
greatly eliminate the common spike approximation errors.
The final accuracy can benefit from higher quantization level
and upper bound. Our presented spiking LeNet and VGG-Net
achieve great classification accuracies and source code can be
available online1;

2. An incremental mapping algorithm is presented to
optimize network topology placement on a reconfigurable
neuromorphic chip with maximum resource efficiency and
sufficient flexibility. Besides, three novel evaluation criteria
are proposed to analyze resource utilization on general
crossbar-based neuromorphic hardware;

3. Experimental results show that our four-spike LeNet and
VGG-Net can achieve about 99.37% and 91.91% test accuracy
on MNIST and CIFAR-10 dataset, respectively, while our
system can obtain nearly 0.38 and 3.24 ms/image real-time
inference speed, and an average power consumption of 0.28
and 2.3 mJ/image accordingly. It should be noted that the
presented spiking models can be also mapped onto many

1https://github.com/edwardzcl/Spatio_temporal_SNNs
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large-scale neuromorphic platforms like TrueNorth (Akopyan
et al., 2015) and BiCoSS (Yang et al., 2021b) built with
integrate-and-fire (IF) neurons.

The rest of this article is organized as follows. section 2
introduces the principle of proposed median quantization and
scatter-and-gather conversion. In section 3, we introduce a
reconfigurable neuromorphic chip and present an incremental
mapping workflow to completemodel deployment. Experimental
results including classification accuracy, resource utilization, and
inference speed are presented in section 4. Finally, section 5
concludes this paper.

2. NETWORK CONVERSION

2.1. Background
Conventional CNNs aremainly composed of an alternate cascade
of convolutional layer, ReLU (Glorot et al., 2011) activation
function, and pooling layer. For improving final accuracy and
learning efficiency in deep networks, there is usually an additional
batch normalization layer located between the convolution
layer and ReLU activation function, which achieves an output
distribution of zero-mean and unit variance. Used as a standard
module in most state of art CNNs, a general convolutional layer
can be formulated as Equations (1)–(3):

Conv s =
∑

i,j,k

wi,j,k ∗ xi,j,k (1)

BN r =
s− µ

σ + ε
+ β (2)

ReLU y = max(0, r) (3)

where i, j, k indicate the width, height, and channel dimension
of a convolutional kernel, s is inner product result of weight w
and input x, µ and σ are the mean and standard deviation
of s, β is the bias term, ε = 10−6 for numerical stability.
Note, we omit the scaling term in all equations involved with
BN for the convenience of description. Because parameter-
free pooling layer is used for simple down-sampling, most of
the memory and power budgets come from intensive high-
precision (32/64 bits) float-point or fixed-point MAC operations
in convolutional layers.

For a spiking neural network built with IF neurons (Abbott,
1999), the membrane potential V of each neuron will change due
to the spike integration x from other neurons i at every time
step t as Equation 4, where w represents the synaptic strength.
A neuron will emit a spike at some time when its membrane
potential is greater than a pre-defined threshold in Equation 5.
This discrete spiking dynamic behavior is quite different from
ANNs, in which the activation function is continuous.

V(t + 1) = V(t)+
∑

i

xi(t) ∗ wi (4)

Spike =

{

0 if V(t + 1) < θ

1 if V(t + 1) ≥ θ
(5)

To take advantage of end-to-end training process in deep
learning, we are looking forward to an effective method which
can convert a quantized and high-accuracy CNN to a spike-based
SNN with nearly lossless accuracy. By comparison through the
forward process between contemporary CNNs and SNNs, we
summarize several key differences as follows:

1. SNN has no individual normalization layer and pooling layer
but particular threshold terms θ .

2. SNN usually communicates with timed spike trains of binary
value {0,1}, instead of continuous values.

3. If we try an ANN-to-SNN conversion method, how to
ensure that firing rate of each spiking neuron is absolutely
proportional to corresponding activation output of an ANN
neuron without approximation errors.

In this work, we use convolutions with stride of 2 to replace
pooling for structure unity, which was proved to be feasible
(Springenberg et al., 2014; Esser et al., 2016). Therefore, the main
problem is how to deal with incompatible batch normalization
layer and continuous activation function, which are essential for
a deep ANN training and final accuracy performance.

2.2. Training With Median Quantization
Previous works such as Lee et al. (2016) and Bodo et al. (2017)
intend to maintain a balance between the synaptic weights and
firing thresholds using a robust normalization method based
on maximum value of weights or activations in each layer.
However, there are always big spiking approximation errors
accumulated in higher layer, which explains why it takes a
longer time (dozens or hundreds of time steps) to achieve high
correlations of ANN activations. Moreover, the final accuracy
and real-time performance of spiking models will seriously
suffer from this effect. In contrast, we choose to take these
common approximation errors into consideration at model
training stage with a median quantization constraint formulated
as in Equation (6):

Quant(r) = clip(
round(r ∗ 2k)

2k
, 0,B) (6)

where r is the batch normalization output (Equation 2), and
the quantization level k and upper bound B are two hyper-
parameters, which determine the spike encoding precision. For
example, when the quantization level k = 0 and upper bound B
= 4, this quantized ReLU (Figure 1) can be formulated as follows:

y =























2 if r ≥ 1.75
1.5 if 1.25 ≤ r < 1.75
1 if 0.75 ≤ r < 1.25
0.5 if 0.25 ≤ r < 0.75
0 if r < 0.25

(7)

where y is the output of quantized ReLU. Then, we can further
integrate batch normalization (Equation 2) into quantization
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FIGURE 1 | A median quantization with k = 0 and B = 4 for ReLU. The blue

line shows original ReLU function and the red line for the quantized ReLU.

(Equation 7) and modify it as:

y,

=























4 if s, ≥ (1.75− β)(σ , + ε)+ µ,

3 if (1.25− β)(σ , + ε)+ µ, ≤ s, < (1.75− β)(σ , + ε)+ µ,

2 if (0.75− β)(σ , + ε)+ µ, ≤ s, < (1.25− β)(σ , + ε)+ µ,

1 if (0.25− β)(σ , + ε)+ µ, ≤ s, < (0.75− β)(σ , + ε)+ µ,

0 if s, < (0.25− β)(σ , + ε)+ µ,

(8)

µ, = 2 ∗ µ, σ , = 2 ∗ σ (9)

where s, is the new inner product, together with mean µ, and
standard deviation σ , need be scaled twice of original values
in Equation (2). Intuitively, the amplitude of quantized ReLU
exactly matches spike counts of SNNs. In this example, there are
at most four spikes generated. It should be noted that both of the
quantization level and upper bound are adjustable as a trade-off
between final accuracy and firing rate. Higher quantization level
or upper bound may result in a better classification performance
but will bring more spikes, which will be discussed in section
4. To enable gradient-based training, we use a straight-through
estimator (STE) previously introduced in Bengio et al. (2013),
which replaces the piecewise ReLU (red line in Figure 1) with
its continuous version (blue line in Figure 1) in backward
pass process. Therefore, the above conversion coefficients
and accuracy performances can be iteratively optimized with
our proposed quantization constraints during training. More
specially, the batch normalization operation (Equation 2), which
is incompatible with SNNs, can be merged into ReLU activation
function without any computing cost2.

2.3. Conversion With Scatter-and-Gather
Based on quantized ANNs presented above, we develop a rate-
based conversionmethod called scatter-and-gather for SNNs. For
instance of network with quantization level k = 1 and upper
bound B= 2, we need configure four SNN neurons with different
thresholds described as in Equation (10) to match the activation

2In this paper, we focus on neural networks with batch normalization, but our

quantization method can also support other architectures without that.

FIGURE 2 | A scatter-and-gather mechanism in artificial neural network

(ANN)-to-spiking neural network (SNN) conversion: Four integrate-and-fire (IF)

neurons (neuron group) work synchronously and replace an equivalent ANN

neuron.

output of one ANN neuron, and each spiking neuron will fire at
most once within only one time step,



























V(t + 1) = V(t)+
∑

i
xi(t) ∗ wi

θ1 = µ, + (0.25− β) ∗ (σ , + ε)
θ2 = µ, + (0.75− β) ∗ (σ , + ε)
θ3 = µ, + (1.25− β) ∗ (σ , + ε)
θ4 = µ, + (1.75− β) ∗ (σ , + ε)

(10)

where V is the shared membrane potential for four IF neurons,
x is the incoming spike, w is the strength of corresponding
synapse which is same as original ANN counterpart, θ is the
threshold, and other variables are the batch normalization terms
in Equation (8). This converted neuron model is really similar
to the McCulloch and Pitts model (Hayman, 1999), where
simple threshold gates are enabled and there is no temporal
information integration. The only difference is that threshold
choices of each neuron may be different. This scatter-and-gather
mechanism is described in Figure 2. Four SNN neurons work
synchronously, receive the same spike inputs, and share the
same synaptic strengths, but fire with respective threshold (θ1-
θ4). Hence, the total time step for one sample simulation will
be always 1 and membrane potential will be reset after firing
and prepare for next new sample. It should be noted that
the proposed scatter-and-gather conversion is really different
from AMOS algorithm (Stckl and Maass, 2019). AMOS needs
to use different transmitting delays between intra- and inter-
layer neurons to maintain information synchronization within
multiple time steps. Besides, their conversion coefficients and
thresholds are determined by fitting activation gates after ANN
training, but our parameter determination method described in
Equations (8)–(10) guarantees a lossless conversion from the
corresponding quantized ANNs. Compared with Esser et al.
(2016), our method can be seen as a generalization from a single
spike to multi-spike conversion, to some extent.
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3. NETWORK MAPPING

In this section, we briefly describe the structure and function of
a reconfigurable neuromorphic chip (Kuang et al., 2021), and
then present an incremental mapping workflow to demonstrate
efficient hardware deployments for our converted SNNs.

3.1. Neuromorphic Processor
This chip (Kuang et al., 2021) is designed as a neuro-synaptic
processing core, which consists of 1,152 transmission axons,
1,024 basic LIF spiking neurons, and an 1,152 ∗ 1,024 synaptic
crossbar (see Figure 3). There is a multicasting router working
with an address event representation (AER) protocol (Boahen,
2000) in each chip. The AER router is responsible for receiving
and sending signals, which includes general spike packets and
programming and test packets. With four AER interfaces in the
east, west, north, and south directions, multiple chips can be
formed as an 8 ∗ 8mesh network to support a larger-scale system.

Each basic spiking neuron has an individual programmable
connectivity strength shared by connected 1,152 synapses, each
of which can be additionally configured as on or off state. We
can employ multiple basic neurons with different connectivity
strengths, to make up a complete neuron and achieve a multi-bit
(1, 2, 4, 8) weight representation. For example, for a combination
of four basic neurons with respective connectivity strength {w1

= 1, w2 = 2, w3 = 4, w4 = −8}, we can achieve a 4-bit
representation range of −8 to 7. Moreover, this neuro-synaptic
crossbar supports a spatial axon extension at most 64 (1, 2,
4, 8, 16, 32, 64) times during a complete computing period,
to take in a larger feature map input (fan-in) with the cost of
decreasing the number of output neuron ports (fan-out) on chip.
As illustrated in Figure 4, a spatial neuron is comprised of two
complete neurons to support a double (1,152 ∗ 2) fan-in of
feature receptive field and the output neuron ports halve. For an
extreme instance, we can support a largest convolutional kernel
of 3 ∗ 3 ∗ 2,048 and output only one feature point. All in all, these
two reconfigurability functions improve the precision of synapses
and enhance the ability for processing larger receptive field of
convolution and pooling.

In the working mode, the dynamic LIF neuron dynamics
behavior is performed and membrane potential is updated. It
should be noticed that synaptic nodes which are not triggered
by spike events will have no computation activity. Spike events
in typical neuromorphic systems are generally discrete and
sparse, which can be efficiently delivered by the AER router and
multicast among multiple cores. For some larger-scale neural
networks exceeding on-chip memory, two alternate SRAMs
will work alternately like a ping-pong buffer to enhance the
computing throughput. In other words, whenmemory controller
is reading the current weight parameters and neuron states from
one of them, a direct-memory-access (DMA) controller will
take new programming data (weight parameter and scheduling
information) from off-chip memory and writes them to the other
one to update the synapse connectivity and neuron states. With
the ability of ping-pong reuse, our chip should have potential
to implement large-scale network architectures like VGG-Net
(Simonyan and Zisserman, 2014) on one core, compared with

many other large-scale neuromorphic chips (Akopyan et al.,
2015; Yang et al., 2021b) in general.

3.2. Mapping Strategy
However, almost all contemporary neuromorphic hardwares,
designed with 2D crossbar-based structure, have typical block-
wise constraints for neuron connectivity (Bouvier et al., 2019).
For a standard 2-D crossbar unit with finite inputs and outputs
(256 ∗ 256 for TrueNorth), it is impossible to process a complete
convolutional layer individually. Building with 256 ∗ 256 synaptic
computing core, TrueNorth has to use group convolution (Esser
et al., 2016) to cut a large convolutional layer intomany slices. For
the sake of description, we adopt a series of definitions in Table 1

for different notations. Due to local speciality of convolution
operation, a common approach is to partition 3-D input feature
maps into a number ofm ∗ n patches seeing (Figure 5) to ensure
that the size of each patch is less than the number of input axons.
In this case, each patch is a spatial topographic location involving
all of input feature map channels in Equation (12). Adjacent
patches have a specific overlapping region that depends on the
kernel size and stride of convolution or pooling. In contrast, our
chip could extend processing receptive field for a larger input
patch with larger width or height by reusing 1,152 input axons
for f times in Equation (11).

wl ∗hl ∗dl ≤
1, 152∗f

krep
, wl+1 ∗hl+1 ∗dl+1 ≤

1, 024

f ∗ kwei ∗ krep
(11)

dl = Dl, dl+1 ≤ Dl+1 (12)

wl+1 =
wl − cl+1

sl+1
+ 1, hl+1 =

hl − cl+1

sl+1
+ 1 (13)

Accordingly, the size of resulted output patch can be calculated
from the size of input patch as in Equation (13). As introduced in
previous section, the output size may be greater than the number
of fewer output neurons, because of higher weight precisions or
spatial axon extension. For example, if we want to implement a
1-bit convolution (krep = 1, kwei = 2) for an input feature maps
of 4 ∗ 4 ∗ 128 (Wl ∗ Hl ∗ Dl) with a filter kernel of 2 ∗ 2 ∗ 128 ∗
256 (cl+1 ∗ cl+1 ∗ Dl ∗ Dl+1) and stride of 2 (sl+1 = 2), the size
of output feature maps can be calculated as 2 ∗ 2 ∗ 256 (Dl+1 ∗

Hl+1 ∗Dl+1) according to Equation (13). Then, there may be two
mapping options: 1: four identical input patches of 4 ∗ 4 ∗ 128
(wl ∗ hl ∗ dl) distributed on four computing cores, respectively;
each of which contributes to an output patch of 2 ∗ 2 ∗ 64 (wl+1 ∗

wl+1 ∗ wl+1); 2: two complementary input patches of 4 ∗ 2 ∗ 128
distributed on two computing cores, respectively; each of which
contributes to an output patch of 2 ∗ 1 ∗ 256. Detailed mapping
results are shown in Table 2.

Here, we define three practical evaluation criteria (Equations
14–16) to thoroughly figure out how many effective axons,
neurons, and synapse connections are occupied in a standard
neuro-synaptic crossbar. Higher utilization density means a
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FIGURE 3 | A structural view of our neuromorphic chip: 8 * 8 chips form a multi-chip array, each chip consists of 1,024 LIF neurons, 1,152 axons and a connected

synaptic crossbar of 1,152 * 1,024 size.

FIGURE 4 | A functional view of our neuromorphic chip. (A) describes a spatial neuron with axon extension f = 2 (two complete neurons) and a combination for 4-bit

weights. (B) is the equivalent one.
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more compact mapping with less resource consumption and
reduces redundancy.

Densityneuron =
krep ∗ (wl+1 ∗ hl+1 ∗ dl+1)∗f ∗ kwei

1, 024
(14)

Densityaxon =
krep ∗ (wl ∗ hl ∗ dl)

1, 152∗f
(15)

TABLE 1 | Summary of main notations.

Notation Description

W Width of input/output feature map

H Height of input/output feature map

D Depth of input/output feature map

w Width of input/output patch

h Height of input/output patch

d Depth of input/output patch

l lth layer of convolution/pooling

m Number of horizontal patches

n Number of vertical patches

p Number of depth-oriented patches

c Kernel size of convolution/pooling

s Stride of convolution/pooling

krep
a How many SNN neurons replace an ANN neuron

kwei
b Bit-width of weight parameter

f Axon extension

core Neuro-synaptic crossbar

patch Partial feature map

time step Computing time for all neurons on a core

aFor spatial conversion, an ANN neuron will be replaced by multiple SNN neurons, i.e.,

krep = B*2k .
bkwei represents the quantization bit-width for weight parameters of convolution kernels.

In this article, we fixed kwei = 2 for a simple ternary quantization of {–1, 0, +1}.

Densitysynapse

=
krep ∗ (wl+1 ∗ hl+1 ∗ dl+1) ∗ (c

2
l+1

∗ dl ∗ krep ∗ kwei)

1, 152 ∗ 1, 024
(16)

We summarize the three criteria of two plans in Table 3. It
can be found that both of the Densityneuron and Densityaxon are
the same, but Densitysynapse of the No. 2 is twice as high as
that of the No.1. From a hardware perspective, worse utilization
of crossbar will lead to a more resource budget and multicast
communication workload for fixed sized feature maps. Hence,
there is a tradeoff between the size of input patch and output
patch. Larger width or height of patches does not mean better
resource efficiency on a specific chip. For each patch on a
neuro-synaptic crossbar, dl,cl+1,krep,kwei are all constant, we
need to selectively increase wl,hl,f or dl+1 for a maximum
utilization of axon, neuron, and synapse. Learning from the
example above, a progressive strategy is to give the priority
to increase output channel dl+1 and do not increase wl and
hl until dl+1 is up to Dl+1, while there are still available
neurons for axon extension. This priority leads to the minimum
overlapping chance of sliding windows along width and height
and guarantees all of hardware modules are working with a high
resource efficiency.

After the primary size of each patch is determined, another
problem is how to choose the shape. We can take an intuitive
understanding in Figure 6. It shows output patches with the same
size (2 ∗ 2 and 1 ∗ 4) may have multiple options to be generated
from different sized input patches. Similarly, input patches with
the same size but different shapes will generate different number

TABLE 2 | Mapping results of two plans.

Plan wl hl dl wl+1 hl+1 dl+1 f core

No. 1 4 4 128 2 2 64 2 4

No. 2 4 2 128 2 1 256 1 2

FIGURE 5 | Input and output patches on the corresponding feature maps.
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of sliding windows, which means the size of output patches are
not equal. We can consider the mean-value inequality for wl,hl
seeing (Equation 17). The equality become valid only when wl

= hl. The size of input and output patch is proportional to the
product result on the left of Equations (17) and (18). If wl ∗ hl is
a constant, maximizing wl+1 ∗ wl+1 must require wl = hl. This
means a square patch is more compact than rectangular one and
should be the first choice.

wl ∗ hl ≤
(wl + hl)

2

4
(17)

wl+1 ∗ hl+1 = (
wl − cl+1

sl+1
+ 1) ∗ (

hl − cl+1

sl+1
+ 1)

=
wl + h+ (wl + hl) ∗ (sl+1 − cl+1)+ (sl+1 − cl+1)

2

s2
l+1

(18)

For an overall consideration of patch size and shape, a channel-
major and square-major mapping algorithm is described in
Algorithms 1, 2 and Figure 7, respectively. We integrate above
two priority principles into a progressive grid search strategy to
obtain an optimal choices for undetermined parameters, i.e., a
list of wl, wl, wl, wl+1, hl+1, dl+1, and f. In Algorithm 1, we first
initialize each parameter with minimum, and then Algorithm 1

would gradually increase the number of patch channels (dl+1)
but fix the patch width and height (wl+1, hl+1) until dl+1 equals
Dl+1 or the output neurons on a core are used up. Last but
not least, if there are still remaining resources unused after

TABLE 3 | Resource efficiency of two plans.

Plan Densityneuron Densityaxon Densitysynapse

No. 1 100% 89% 22%

No. 2 100% 89% 44%

Algorithm 1 procedure,Algorithm 2will perform a step-by-step
multi-path grid search process for potential and feasible mapping
choices and output the maximum one for target crossbar-based
neuromorphic chip.

3.3. Spatial Mapping
As mentioned above, in this work, we mainly use a simple
ternary-valued {−1,0,+1} weight quantization. Therefore, for an

Algorithm 1 Channel-major search.

This is the first procedure to generate an primary input and
output patch size including (wl, hl, dl, wl+1, hl+1, dl+1, f ). The
output channel dl+1 will be less than or equal to Dl+1.

Require: quantization precisions (krep, kwei), kernel size (cl+1)
and the number of output feature map channels (Dl+1)

Ensure: primary input and output patch size including (wl, hl,
dl, wl+1, hl+1, dl+1, f )

1: Initialize: wl = cl+1, hl = cl+1, dl = Dl, f = 1;
2: for dl+1 = 1 to Dl+1 do

3: ifmeet the left of constraint (Equation 11) then
4: ;
5: else

6: f = f ∗ 2, jump to line 3;
7: end if

8: if not meet the right of constraint (Equation 11) then
9: output (wl, hl, dl, wl+1, hl+1, dl+1 − 1, f );
10: else

11: ;
12: end if

13: if dl+1 = Dl+1 then

14: output (wl, hl, dl, wl+1, hl+1, dl+1, f );
15: end if

16: end for

FIGURE 6 | Two kinds of input patches (A,B) which generate the same sized output patches. But the shape is square in (A) and rectangular in (B). Each colored box

denotes a 5 * 5 receptive field of convolution, except the red box that denotes a total input patch.
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Algorithm 2 Square-major search.

This is the second procedure that should be executed after
Algorithm 1 and when dl+1 = Dl+1, and obtain a final input and
output patch size including (wl, hl, dl, wl+1, hl+1, dl+1, f ).

Require: quantization precisions (krep, kwei), kernel size (cl+1)
and the width and height of input feature map (Wl, Hl)

Ensure: final input and output patch size including (wl, hl, dl,
wl+1, hl+1, dl+1, f )

1: for wl = cl+1 toWl or hl = cl+1 to Hl do

2: take a red step in Figure 7;
3: ifmeet the left of constraint (Equation 11) then
4: ifmeet the right of constraint (Equation 11) then
5: ;
6: else

7: take a bluestep in Figure 7;
8: ifmeet the right of constraint (Equation 11) then
9: mark (wl, hl, dl, wl+1, hl+1, dl+1, f )
10: else

11: take a green step in Figure 7;
12: if meet the right of constraint (Equation 11)

then

13: mark (wl, hl, dl, wl+1, hl+1, dl+1, f )
14: else

15: take a blue step in Figure 7;
16: if meet the right of constraint (Equation

11) then
17: mark (wl, hl, dl, wl+1, hl+1, dl+1, f )
18: else

19: jump to line 11;
20: end if

21: end if

22: end if

23: end if

24: compare all marks and output the maximum, exit;
25: else

26: if f == 64 then
27: output (wl, hl, dl, wl+1, hl+1, dl+1, f );
28: else

29: f = f ∗ 2, jump to line 3;
30: end if

31: end if

32: end for

SNN with different spike encoding precisions (k and B), we can
configure krep and kwei as follows:

krep = B ∗ 2k, kwei = 2 (19)

where krep means an ANN neuron is replaced by B ∗ 2k SNN
spatial neurons, each of which has the same synaptic connections
and spike inputs but fire with different thresholds as discussed
in section 2; kwei means each complete neuron is composed
of two basic spiking neurons with respective weight {w1 = -1,
w2 = 1} as in Figure 8. The number (f ) of complete neurons
contained in a spatial neuron is determined by the size of feature

FIGURE 7 | A graphical description for Algorithms 1 and 2. A step-by-step

grid search is performed and arrows with different colors denote different

search directions. Each of colored dots is a candidate item of parameter

configurations.

maps and krep according to Algorithms 1, 2. For a complete
convolutional or pooling layer, if we keep each patch equal,
the numbers of horizontal, vertical and depth-oriented patches
would be calculated as Equations (20)–(22), respectively.

Wl = wl ∗ml − (ml − 1) ∗ (cl+1 − sl+1) (20)

Hl = hl ∗ nl − (nl − 1) ∗ (cl+1 − sl+1) (21)

Dl+1 = pl ∗ dl+1 (22)

Finally, we can distribute a total ml ∗ nl ∗ pl convolution
patches onto our multi-chip (8 ∗ 8) system on schedule, together
with ping-pong working mode. If resources are sufficient, fully
unfolded mapping can achieve highest throughput and power
efficiency, because the scatter-and-gather conversion ensures all
spike signals are accessible at one computing time step for a layer.
More importantly, expensive off-chipmemory access budgets can
be saved.

4. EXPERIMENTS

In this section, we first conduct an ablation study about
quantization level k and upper bound B to evaluate the
effectiveness of our proposed conversion and quantization
algorithm on MNIST and CIFAR-10/100 dataset using LeNet
and VGG-Net architecture, respectively. Then, we carry
out practical mapping of above spiking networks onto our
neuromorphic system and provide corresponding speed and
power analysis results.

4.1. Benchmark Applications
1. MNIST dataset

TheMNIST dataset (Lecun and Bottou, 1998) of handwritten
digit has been widely applied in image classification field,
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FIGURE 8 | Spatial mapping for spiking neural networks (SNNs) with scatter-and-gather conversion. An artificial neural network (ANN) neuron is replaced by B * 2k

spatial SNN neurons, and each spatial neuron comprises f complete neurons with ternary-valued weights.

which was collected from postal codes, including a training
set of 60,000 examples, and a test set of 10,000 examples.
Each example is an individual 28 ∗ 28 pixel grayscale
image labeled 0–9. Pixel values are integer (0–255), where
0 means background (white) and 255 means foreground
(black). We adopt a classical LeNet (Lecun and Bottou, 1998)
architecture (16C5-16C5-2P2-32C5-2P2-256FC-10FC)3 for
this task.

2. CIFAR-10/100 dataset
The CIFAR-10 dataset (Krizhevsky and Hinton, 2009)
consists of 60,000 32 ∗ 32 pixel color images in 10
classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images. The CIFAR-100
dataset4 is just like the CIFAR-10 but more challenging.
It has 100 classes containing 600 images each. There are
500 training images and 100 testing images per class. A
VGG-Net (Simonyan and Zisserman, 2014) variant with
13 layers (64C3-64C3-64C3-2P2-128C3-128C3-2P2-256C3-
256C3-2P2 -512C3-512C3-10FC) is designed for these two
image classification tasks. No data augmentation is used
other than standard random image flipping and cropping for
training. Test evaluation is based solely on central 24 ∗ 24
crop from test set (for both CIFAR-10 and CIFAR-100).

3mCn represents a convolutional layer with m filters and filter size of n ∗ n. mPn

is a pooling layer with m ∗ m size and stride of n. It should be noted that we use

convolution with stride of 2 to replace pooling. mFC is the fully connected layer

withm neurons.
4http://www.cs.toronto.edu/~kriz/cifar.html

In our experiments, we use a ternary-valued {-1,0,1} weight
quantization as in Li and Liu (2016), not full precision (16 or 32
bits) like many others (Lee et al., 2016, 2020; Bodo et al., 2017;
Mostafa et al., 2017; Rueckauer and Liu, 2018; Wu et al., 2018;
Yousefzadeh et al., 2019), to facilitate hardware deployment,
because we find the weight quantization with more bit-width
contributes very little to final accuracy, which is consistent with
(Rastegari et al., 2016; Zhou et al., 2016). All convolutional
networks are trained using standard ADAM rule (Kingma and
Ba, 2014) with an initial learning rate set to 0.001 and 10 times
decayed per 200 epochs, based on TensorLayer (Dong et al.,
2017), a customized deep learning library. We did not use any
weight or spike penalty or dropout (Srivastava et al., 2014)
during training.

4.2. Quantization Precision
Here, we conduct a series of ablation experiments on two
hyper-parameters, i.e., quantization level k and upper bound B,
both of which jointly determine how many spikes each neuron
will fire at most and relate to overall resource, latency, and
power consumption on hardware. In fact, choosing a proper
quantization level and upper bound for a specific network is
completely subjective, because less spikes with a low-precision
quantization inevitably result in a bigger accuracy loss.

Considering a successive combination of quantization level k
in {0,1} and upper bound B in {1,2,4}, we report six different
test accuracies for LeNet on MNIST and VGG-Net on CIFAR-
10/100 (Figure 9). It should be noted we choose not quantize the
first and last layer because they are usually used for an image-
to-spike encoding and loss calculation as in Esser et al. (2016).
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FIGURE 9 | Classification accuracy for LeNet on MNIST (A) and VGG-Net on CIFAR-10/100 dataset (B,C), with different quantization precisions.

Experimental results show that the final accuracy can benefit
from both of higher quantization level and upper bound. More
importantly, we find that the spiking LeNet and VGG-Net with
quantization level k = 1 and upper bound B = 4 are on a
par with their full-precision (FP) baselines. For a comparison
with other works, we summarize our results (for k = 1, B =

2) and many state-of-the-art works in Tables 4–7. It shows that
our proposed spiking models are lossless with their quantized
ANN counterparts and able to achieve great performance on
MNIST among other works, and even better on CIFAR-10/100
dataset. In all experiments except for full-precision baseline, both
of weights and activations adopt a low-precision quantization
not full-precision (16 or 32 bits) like many others (Bodo et al.,
2017; Xu et al., 2017). On the contrary, using this low-precision
quantization does not harm to the final accuracy, but enables a
cheap memory budget on many popular neuromorphic systems
such as Akopyan et al. (2015), Davies et al. (2018), and Kuang
et al. (2021). More specially, our networks complete simulation

for one input sample within only one time step, compared
with other conversion methods with dozens even hundreds of
simulation time steps (Lee et al., 2016, 2020; Bodo et al., 2017;
Mostafa et al., 2017; Xu et al., 2017; Rueckauer and Liu, 2018; Wu
et al., 2018; Yousefzadeh et al., 2019).

For evaluation on robustness, we impose two different
levels of noises (10%, 20%) on the neurons of input layer.
More specifically, the IF neuron branches in Figure 2 will
be randomly shut down and never give spike outputs. This
robustness evaluation is very similar to the Dropout technique
(Srivastava et al., 2014), but we use it at network inference
stage. We test LeNet on MNIST and VGG-Net CIFAR-10/100
with quantization precision k = 1 and B = 2 as in Tables 4–
7. It shows our spiking networks are robust enough to tolerate
broken neurons (input layer with noises) with maximum
degradation of 3% when noise ratio is up to 20%. For
noise at 10% level, our spiking LeNet even shows a slightly
better accuracies.
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TABLE 4 | Classification accuracy on MNIST.

Activation quantization ANN SNN

This work (Full precision) N 99.52% N/A

This work (Rate coding) k = 1, B = 2 99.37% 99.37%

This work (10% noise) k = 1, B = 2 99.37% 99.39%

This work (20% noise) k = 1, B = 2 99.37% 99.22%

Mostafa et al. (2017) (Temporal coding) N 98.50% 96.98%

Rueckauer and Liu (2018) (Temporal coding) N 98.96% 98.57%

Wu et al. (2018) (Rate coding) N N/A 99.42%

Yousefzadeh et al. (2019) (Rate coding) N 99.21% 99.19%

Bodo et al. (2017) (Rate coding) N 99.44% 99.44%

The bold values are our experimental results.

TABLE 5 | Classification accuracy on CIFAR-10.

Activation quantization ANN SNN

This work (Full precision) N 92.85% N/A

This work (Rate coding) k = 1, B = 2 91.91% 91.91%

This work (10% noise) k = 1, B = 2 91.91% 90.32%

This work (20% noise) k = 1, B = 2 91.91% 89.65%

Esser et al. (2016) (Rate coding) 1-bit N/A 89.32%

Bodo et al. (2017) (Rate coding) N 88.87% 88.82%

Lee et al. (2016) (Rate coding) N 85.97% 83.54%

Lee et al. (2020) (Rate coding) N 91.98% 90.54%

The bold values are our experimental results.

TABLE 6 | Classification accuracy on CIFAR-100.

Activation quantization ANN SNN

This work (Full precision) N 67.4% N/A

This work (Rate coding) k = 1, B = 2 65.0% 65.0%

This work (10% noise) k = 1, B = 2 65.0% 63.93%

This work (20% noise) k = 1, B = 2 65.0% 62.25%

Esser et al. (2016) (Rate

coding)

1-bit N/A 65.48%

The bold values are our experimental results.

4.3. Mapping Results
For verifying effectiveness of our mapping algorithm, we carry
out practical mapping for spiking LeNet and VGG-Net with
various spike encoding precisions onto our neuromorphic chip.
The mapping results of spiking LeNet and VGG-Net are
summarized in Tables 6, 7. As a convention, we denote the
networks with the configurations of {k = 0, B = 1}, {k = 0, B =

2}, and {k = 1, B = 2} as single-spike, two-spike, and four-spike
model, respectively. From the two tables, it can be found either
different quantization precisions or model sizes show different
resource utilization while both spiking LeNet and VGG-Net with
higher spike encoding precisions bring linearly better resource
efficiency. For spatial mapping of scatter-and-gather SNNs, it is
easy to understand that the input and output spike representation
with higher precision mean a smaller patch height hl and width

wl and increase effective synaptic connections for each output
neuron, but total patch number, i.e.,ml ∗ nl ∗ pl would be bigger.

For LeNet convolutional layer with dozens of channels, the
height (hl) and width (wl) of each patch are much bigger than
the kernel size, because all of the output channels (dl+1) can be
placed on one neuro-synaptic core according to Algorithm 1.

Also, it can be seen that the shape of patches are not square

occasionally, which can be explained by a balance between wl,hl
and dl+1 discussed in Algorithm 2. For example, the first layer

of two-spike LeNet choose an input patch of 8 ∗ 6 ∗ 16 instead
of 7 ∗ 7 ∗ 16 or 6 ∗ 6 ∗ 16 as the final mapping plan to
attain fine-tuned resource efficiency. This is because the same
area (the product of wl, hl) of input patch with unequal height
and width (wl 6=hl) results in a smaller area (the product of
wl+1,hl+1) for output patch but allow a bigger capacity to hold
all of output channel (dl+1 = Dl+1). This tradeoff is more
explicit in VGG-Net with hundreds of channels. Table 8 shows
that the channel-major and square-major priorities acquire a
more symmetric mapping, where the height and width of
each patch are usually equal to kernel size (cl+1). Although
each patch cannot contain all output channels (dl+1<Dl+1),
the mapping algorithm improves the overall resource efficiency
(Densitysynapse) compared with LeNet.

Moreover, total component neurons and spiking sparsity of
LeNet and VGG-Net running on chip are listed in Figure 10.
Higher spike precisions significantly bring more spikes and
neuron occupations. However, spiking sparsity (spiking times
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TABLE 7 | Mapping results for LeNet.

Single-spike Two-spike Four-spike

Input patch Output patch f Ab N S Input patch Output patch f A N S Input patch Output patch f A N S

16C5a 9 * 8 * 16 5 * 4 * 16 1 1.0 0.63 0.22 8 * 6 * 16 4 * 2 * 16 2 0.67 1.0 0.35 6 * 6 * 16 2 * 2 * 16 2 1.0 1.0 0.69

2P2 8 * 8 * 16 4 * 4 * 16 1 0.89 0.50 0.03 6 * 6 * 16 3 * 3 * 16 1 1.0 0.56 0.06 4 * 4 * 16 2 * 2 * 16 1 0.89 0.5 0.11

16C5 8 * 8 * 16 4 * 4 * 32 1 0.89 1.0 0.35 6 * 6 * 16 2 * 2 * 32 1 1.0 0.5 0.35 6 * 5 * 16 2 * 1 * 32 2 0.83 1.0 0.69

2P2 4 * 8 * 32 2 * 4 * 32 1 0.89 0.5 0.03 4 * 4 * 32 2 * 2 * 32 1 0.89 0.5 0.06 4 * 2 * 32 2 * 1 * 32 1 0.89 0.5 0.22

256FC 4 * 4 * 32 1 * 1 * 256 1 0.44 0.5 0.22 4 * 4 * 32 1 * 1 * 256 1 0.89 1.0 0.89 4 * 4 * 32 1 * 1 * 64 2 0.89 1.0 0.89

10FC 1 * 1 * 256 1 * 1 * 10 1 0.22 0.02 0.01 1 * 1 * 256 1 * 1 * 10 1 0.44 0.04 0.02 1 * 1 * 256 1 * 1 * 10 1 0.89 0.08 0.07

The first and last layer are usually processed off chip and not considered here.
aLayer is described as output channels-layer type-kernel size, where C is convolution, P is pooling and FC is the fully connected layer.
bThe initial abbreviation A, N, and S refer to three evaluation criteria including Densityaxon, Densityneuron and Densitysynapse introduced in section 3.

TABLE 8 | Mapping results for VGG-Net.

Single-spike Two-spike Four-spike

Input patch Output patch f A N S Input patch Output patch f A N S Input patch Output patch f A N S

64C3 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.25 4 * 3 * 64 2 * 1 * 64 2 0.67 1.0 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

64C3 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.25 4 * 3 * 64 2 * 1 * 64 2 0.67 1.0 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

2P2 4 * 4 * 64 2 * 2 * 64 1 0.89 0.5 0.11 4 * 2 * 64 2 * 1 * 64 1 0.89 0.5 0.22 2 * 2 * 64 1 * 1 * 64 1 0.89 0.5 0.44

128C3 4 * 4 * 64 2 * 2 * 128 1 0.89 1.0 0.5 3 * 3 * 64 1 * 1 * 128 1 1.0 0.5 0.5 3 * 3 * 64 1 * 1 * 64 2 1.0 1.0 1.0

128C3 4 * 3 * 128 2 * 1 * 128 2 0.67 1.0 0.5 3 * 3 * 128 1 * 1 * 128 2 1.0 1.0 0.5 3 * 3 * 128 1 * 1 * 32 4 1.0 1.0 1.0

2P2 4 * 2 * 128 2 * 1 * 128 1 0.89 0.5 0.22 2 * 2 * 128 1 * 1 * 128 1 0.89 0.5 0.44 2 * 2 * 128 1 * 1 * 64 2 0.89 1.0 0.89

256C3 3 * 3 * 128 1 * 1 * 256 1 1.0 0.5 0.5 3 * 3 * 128 1 * 1 * 128 2 1.0 1.0 1.0 3 * 3 * 128 1 * 1 * 32 4 1.0 1.0 1.0

256C3 3 * 3 * 256 1 * 1 * 256 2 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 64 4 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 16 8 1.0 1.0 1.0

2P2 2 * 2 * 256 1 * 1 * 256 1 0.89 0.5 0.44 2 * 2 * 256 1 * 1 * 128 2 0.89 1.0 0.89 2 * 2 * 256 1 * 1 * 32 4 0.89 1.0 1.0

512C3 3 * 3 * 256 1 * 1 * 256 2 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 64 4 1.0 1.0 1.0 3 * 3 * 256 1 * 1 * 16 8 1.0 1.0 1.0

512C3 3 * 3 * 512 1 * 1 * 128 4 1.0 1.0 1.0 3 * 3 * 512 1 * 1 * 32 8 1.0 1.0 1.0 3 * 3 * 512 1 * 1 * 8 16 1.0 1.0 1.0

10FC 1 * 1 * 512 1 * 1 * 10 1 0.44 0.02 0.01 1 * 1 * 512 1 * 1 * 10 1 0.89 0.04 0.03 1 * 1 * 512 1 * 1 * 10 2 0.89 0.16 0.14

FIGURE 10 | Spiking sparsity of spiking LeNet (A) and VGG-Net (B) with different precisions.

per neuron) is gradually decreasing, from about 0.23 to 0.17 for
LeNet and 0.32 to 0.21 for VGG-Net. This result corresponds
to the fact that neurons with higher thresholds in an IF neuron
group Figure 2 is more difficult to generate spikes.

4.4. Speed and Power Analysis
Since this kind of multi-chip system is quite difficult to
be instrumented to measure total power, such testing tools
are presently undergoing development. For total performance
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TABLE 9 | Chip utilization and latency for LeNet.

Single-spike Two-spike Four-spike

Cores Latency (ms) Cores Latency (ms) Cores Latency (ms)

16C5 36 0.0549 72 0.1097 144 0.1646

2P2 9 0.0549 16 0.0549 36 0.0549

16C5 4 0.0549 16 0.0549 32 0.0549

2P2 2 0.0549 4 0.0549 8 0.0549

256FC 1 0.0549 1 0.0549 1 0.0549

Total 52 0.2745 109 0.3293 221 0.3842

evaluation including network inference speed and power
consumption with various model workloads, we adopt a mixed
software–hardware methodology as in (Esser et al., 2016; Deng
et al., 2020). We run an 8 ∗ 8 chip array in software simulation
environment while refer to a actual single-chip performance.
For a convolutional or pooling layer less than the capacity of 8
∗ 8 multi-chip system, such as LeNet, our system can achieve
fully unfolded running of this layer within only one computing
period. If the size of a layer exceeds the system capacity such as
VGG-Net, the direct-memory-access (DMA) controller needs to
take data from off-chip memory and write it to the other on-
chip SRAM and perform a ping-pong simulation. As provided in
Kuang et al. (2021), our chip is operated at a power-supply voltage
of 0.9 V, 252 MHz, and achieves up to 21.5 GSOPs and 0.57
pJ/SOP computational performances (idle power contributions
are included). The inference latency of each layer of spiking
LeNet and VGG-Net for different spike precisions is summarized
in Tables 9, 10 It can be seen that all inference latency is at
millisecond level but is not linearly proportional to the resource
budgets (cores). This is because different spike precisions or
model sizes bring different resource utilization as discussed in the
last section.

Furthermore, we count the average number of synaptic
operations (SOPs) of one sample simulation for spiking LeNet
on MNIST and VGG-Net on CIFAR-10 with different spike
precisions (see Figure 11). Each synaptic operation delivers a 1-
bit spike event through a unique 1-bit non-zero synapse and adds
it to membrane potential. It should be noted that for SNNs on our
neuromorphic system, no multiplication operation is performed
and only low-bit addition is required. Moreover, there are no
computation budgets for a synaptic node without spike input, a
neuron need update its state only when a spike from the previous
layer is coming, so the active power would be proportional to
firing activity, i.e., the number of synaptic operations. Total
power consumption Ptotal is the sum of (a) leakage power Pleak,
which is scaled by measuring idle power for single chip, and (b)
active power Pactive, which can be calculated with the number of
SOPs during network inference.

In all cases, the first (the transduction layer) and last layer (the
classification layer) are computed off-chip to convert multivalued
image inputs into a series of binary spike trains and obtain
the final decoding output, respectively. Table 11 shows our
results for the evaluated spiking LeNet and VGG-Net on MNIST

TABLE 10 | Chip utilization and latency for VGG-Net.

Single-spike Two-spike Four-spike

Cores Latency (ms) Cores Latency (ms) Cores Latency (ms)

64C3 144 0.1646 288 0.2743 576 0.4937

64C3 144 0.1646 288 0.2743 576 0.4937

2P2 36 0.0549 72 0.1097 144 0.1646

128C3 36 0.0549 144 0.1646 288 0.2743

128C3 72 0.1097 144 0.1646 576 0.4937

2P2 18 0.0549 36 0.0549 72 0.1097

256C3 36 0.0549 72 0.1097 288 0.2743

256C3 36 0.0549 144 0.1646 576 0.4937

2P2 9 0.0549 18 0.0549 72 0.1097

512C3 18 0.0549 72 0.1097 288 0.2743

512C3 4 0.0549 16 0.0549 64 0.0549

Total 553 0.8781 1294 1.5362 3520 3.2366

and CIFAR-10 dataset, with their corresponding accuracies,
throughput, power and classifications per energy (FPS per Watt).
It can be seen that higher spike precisions for both LeNet
and VGG-Net bring higher classification accuracy but larger
inference power and latency. The four-spike LeNet and VGG-Net
on chips achieve a real-time inference speed of 0.38 ms/image,
3.24 ms/image, and an average power consumption of 0.28 and
2.3 mJ/image, respectively, at 0.9 V, 252 MHz. Compared with
GPUs (Titan Xp and Tesla V100) computing with the default
FP32 precision, our system can obtain comparable accuracies but
nearly two orders of magnitude power efficiency improvements.
On the other hand, our results show that we can achieve a close
classification speed on CIFAR-10 compared with TrueNorth
(Esser et al., 2016) and even faster than Tianjic chip (Deng et al.,
2020). The weakness in power efficiency (FPS/W) results from
heavy communication workloads for off-chip memory access and
inter-chip routing because of the relatively smaller (8 ∗ 8) system
capacity for ours, while the other two adopt quite large-scale
multi-core design (4,096 for TrueNorth, 156 for Tianjic) and
asynchronous communication protocol (TrueNorth).

5. CONCLUSION AND DISCUSSION

In this work, we introduce an adjustable quantization and
training algorithm for ANNs to minimize common spike
approximation errors, and propose a scatter-and-gather rate-
based conversion method for SNNs built with simple IF
neurons. Besides, we develop an incremental and resource-
efficient mapping framework for these SNNs on a reconfigurable
neuromorphic ASIC. Experimental results show that our spiking
LeNet on MNIST and VGG-Net on CIFAR-10/100 dataset yield
great classification accuracies. Meanwhile, the employment with
our presented mapping algorithm is able to flexibly manage
network topology placement on target neuromorphic chip with
maximum resource efficiency. The four-spike LeNet on MNIST
and VGG-Net CIFAR-10 on our system achieve millisecond-
level speed and millijoule-level power. It should be noted that
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FIGURE 11 | The average number of synaptic operations (SOPs) of one input sample when running spiking LeNet (A) and VGG-Net (B) with different precisions.

TABLE 11 | Summary of main performance.

Models Accuracy FPSa mJb FPS/W

MNIST Single-spike (This work) 99.27% 3642 0.1897 5271

Two-spike (This work) 99.32% 3036 0.2293 4361

Four-spike (This work) 99.37% 2602 0.2751 3635

TrueNorth (Esser et al., 2015) 99.42% 1000 0.121 8264

Tianjic (Deng et al., 2020) 99.48% 2126 0.069 14555

Titan Xp (FP32 precision) 99.52% 1433 35 29

V100 (FP32 precision) 99.52% 2185 22 45

CIFAR-10 Single-spike (This work) 89.12% 1138 0.6148 1626

Two-spike (This work) 90.95% 650 1.0854 921

Four-spike (This work) 91.91% 308 2.3013 434

TrueNorth (Esser et al., 2016) 83.41% 1249 0.1637 6109

Tianjic (Deng et al., 2020) 93.52% 1751 0.12 8217

Titan Xp (FP32 precision) 92.85% 617 67 15

V100 (FP32 precision) 92.85% 1181 42 24

aFPS is denoted as frames/second and FPS/W is fames/second per Watt. bThe average

energy consumption for one input frame inference.

in this power and speed evaluation stage, we treat the inter-chip
communication identical with the intra-chip one. However, for
a normal multi-chip system, the inter-chip communication is
usually more expensive. Hence, integrating multiple computing
cores into a single chip to reduce inter-chip communication is a
main future work. Besides, a more thoughtful mapping scheme
with the consideration of overall resource and communication
can also help to alleviate cross-chip overhead. For more

complicated applications, future works will concentrate on the

conversion and mapping function on other architecture such as
ResNet and RNN. A more rewarding work is to try training and
mapping of hybrid-precision models. This may bring a further
performance improvement on this neuromorphic chip.
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