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Abstract: Considering various fault states under severe working conditions, the comprehensive
feature extraction from the raw vibration signal is still a challenge for the diagnosis task of rolling
bearing. To deal with strong coupling and high nonlinearity of the vibration signal, this article
proposes a novel multilocation and multikernel scale learning framework based on deep convolution
encoder (DCE) and bidirectional long short-term memory network (BiLSTM). The procedure of the
proposed method using a cascade structure is developed in three stages. In the first stage, each parallel
branch of the multifeature learning combines the skip connection and the DCE, and uses different
size kernels. The multifeature learning network can automatically extract and fuse global and local
features from different network depths and time scales of the raw vibration signal. In the second
stage, the BiLSTM as the feature protection network is designed to employ the internal calculating
data of the forward propagation and backward propagation at the same network propagation node.
The feature protection network is used for further mining sensitive and complementary features.
In the third stage of bearing diagnosis, the classifier identifies the fault types. Consequently, the
proposed network scheme can perform well in generalization capability. The performance of the
proposed method is verified on the two kinds of bearing datasets. The diagnostic results demonstrate
that the proposed method can diagnose multiple fault types more accurately. Also, the method
performs better in load and speed adaptation compared with other intelligent fault classification
methods.

Keywords: deep learning; multilocation learning; multikernel learning; multifeature protection;
deep convolution encoder (DCE); bidirectional long short-term memory (BiLSTM); bearing fault
diagnosis scheme

1. Introduction

Rolling bearings are widely used as indispensable components in modern mechanical
equipment. However, the rolling bearings usually work under the severe conditions of
varying speed, heavy load, variable load, and high temperature for a long time. They are
vulnerable to occur deformation, abrasive wear, or other faults. These faults may lead to
equipment performance degradation and even lead to severe economic loss [1]. Therefore,
it is critically important to develop a system that can accurately diagnose various bearing
faults under complex operating conditions and working environments.

From the perspective of pattern recognition, an intelligent bearing diagnosis process
based on machine learning generally include three steps: data preparation, feature extrac-
tion, and fault classification. The purpose of feature extraction is to mining or summarize
representative features. This operation can present the health condition of hardware de-
vices and is beneficial to improve the accuracy of downstream fault classification tasks.
Traditional bearing fault classification methods are difficult to extract features from the raw
input signals, such as empirical mode decomposition [2], local mean decomposition [3],

Sensors 2021, 21, 3226. https://doi.org/10.3390/s21093226 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21093226
https://doi.org/10.3390/s21093226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093226
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093226?type=check_update&version=3


Sensors 2021, 21, 3226 2 of 26

wavelet transform [4], Hilbert–Huang transform [5], etc. The aforementioned signal pro-
cessing methods can obtain fault features of the different levels. Then, the extracted fault
features with different input types are fed into the shallow machine learning model to ob-
tain the diagnosis results, such as support vector machine [6], random forest [7], or logistic
regression [8]. However, the upper-bound performances of machine learning algorithms
are closely linked with the quality of feature mining or representation. The traditional
intelligent fault diagnosis model composed of shallow learning approaches and feature
extraction methods performs the following disadvantages.

• All features are naturally hand-crafted. The process of feature extraction requires
much prior knowledge about diagnostic experience and signal processing technology,
which needs to consume much labor and time resources. Complex and sophisticated
modern equipment is difficult to extract the comprehensive and detailed internal
features of rolling bearings.

• The feature extraction and fault classification of the diagnostic system are separately
designed and performed, both of which impact the final classification result. However,
the strategy cannot be optimized simultaneously.

• The limited inductive feature ability of shallow learning models cannot flexibly iden-
tify the complex state changes of the bearing. Fault diagnosis methods of the specific
domain cannot be applied to other engineering fields. Therefore, a general-purpose
method is needed to extend to new application areas.

Given the above drawbacks, deep learning (DL) combining feature extraction and
fault classification may provide an effective solution for the bearing fault diagnosis system.
In recent years, DL has made great achievements in many application fields such as face
recognition, speech recognition, and computer vision. Schlemper et al. [9] utilized deep
convolutional neural networks to reconstruct cardiac magnetic resonance images that are
capable of preserving anatomical structure more faithfully. Ya et al. [10] solved the problem
of face recognition across ages with deep learning. Motivated by these achievements,
DL has achieved good performance in feature extraction and fault classification for the
diagnosis system. DL attempts to construct the high-level representations of the input
data using the multi-layer nonlinear processing unit in the hierarchical structure [11].
Because of the robust capabilities of extracting and adapting, DL can well establish a
nonlinear mapping relationship between input data and pattern recognition. Compared
with traditional intelligent fault diagnosis methods, the DL network has great performance
in feature extraction and fault classification. Common examples of these DL methods
include deep belief network [12], convolutional neural network [13], long and short-term
memory neural network (LSTM) [14], deep convolutional autoencoder (DCAE) [15], etc.

The purpose of this article is to design an end-to-end bearing fault diagnosis system
based on a deep convolutional encoder (DCE) and bidirectional LSTM (BiLSTM). The
framework is motivated by their strong feature extraction abilities and classification effects.
In essence, the DCE network is a cascade of a series of convolution neural network modules
in structure. In the diagnostic field of rotating machinery, the equipment works in harsh
environments and complicated working conditions. Thus, vibration signals of a rolling
bearing are nonlinear and nonstationary caused by varying working conditions, along
with much information irrelevant to fault diagnosis. From the mathematical viewpoint, the
DCE may provide a novel solution to the bearing fault classification problem. DCE [16] can
deeply compress and restore all the features of the input signal. Guo et al. [17] proposed a
new DCE feature recognition framework, which successfully achieved the classification of
multiple fault states of gearboxes. The encoder behaves like a filter and can help extract
sensitive feature information through the deep network level to level and remove noise in
the vibration signal. Therefore, we believe that DCE is more suitable for fault diagnosis of
the rotating machinery compared with other intelligent methods. Due to its unique feature
learning ability, DCE has been universally applied in fault diagnosis of gearboxes [18],
bearings [19,20], and other rotating machinery [21].



Sensors 2021, 21, 3226 3 of 26

Besides, LSTM has the advantage of dealing with nonlinear and long-term dependent
dynamic problems in sequence data [22]. It can deeply mine the information correlation
between vibration signals with similar features. The advantage is beneficial to the fault
diagnosis of rolling bearings. The structure of BiLSTM can simultaneously utilize the
information of past moments and future moments, which makes the final prediction more
accurate than LSTM. An et al. [23] utilized CNN-based LSTM for fault feature extraction of
the bearing under time-varying working conditions. Rao et al. [24] utilized convolutional
BiLSTM to accurately realize fault diagnosis of rotating machinery. The abovementioned
studies proved that DCE and BiLSTM have better diagnostic results than the normal
machine learning networks in the fault diagnosis of rotating machinery. Therefore, this
article combines DCE and BiLSTM as a basic network for comprehensive feature extraction
of bearing fault information. Generally, in the diagnosis system, the features extraction
by a single network are directly fed into the classifier. However, this approach may cause
inaccurate or even loss of fault feature, resulting in a weakened classification effect of the
diagnostic system under the complex working environment. Directly applying the present
DCE-based and LSTM-based methods is challenging and improper for the bearing fault
diagnosis. Thus, we intend to analyze the dilemma from four aspects.

In the first aspect, the rolling bearing usually works in varying operation conditions,
especially under varying speeds and loads. On this account, the nonlinear vibration signal
measured by the sensor is commonly coupled and complex [25]. If the input signal is
directly sent to a neural network, the traditional methods with time-space processing
will lose the detailed information in the frequency space. We know that deep networks
are specialized in processing highly nonlinear data, so we use the multiscale wavelet
transform technology to map the raw vibration signals to the wavelet domain for deeper
understanding and mining.

In the second aspect, there is only one next layer structure for network propagation
in the DL architecture, and the network outcome only contains the fault feature of the
last layer in the feature extraction process. As the network deepens, these features will
be more robust. Although traditional network frameworks can extract some robust and
invariant features for bearing fault diagnosis, these features will lose some precise and
detailed information that distinguishes the varying fault conditions. Known from the
field of image recognition [26], CNN can directly learn abstract and robust features from
two-dimensional and higher-dimensional images. Each CNN integration module can
only extract local features of vibration signals. The structure of DCE is equivalent to the
cascade of multiple CNN integration modules, and each module alternately convolutes
and pools on the maps to perceive the local characteristics of the vibration signal. Thus,
it is inadequate to use only the features directly extracted from the last layer. Inspired
by the above research, we propose the multilocation scale learning framework. In each
kernel branch, the proposed framework connects a certain skip layer to the last output layer
of the encoder. The positions of the skip connection can skillfully choose from different
CNN integration modules. Therefore, the skip layer allows multilocation feature learning
to dig out more comprehensive features from the input. Then, the multifeature fusion
technology is employed to fuse and optimize the signal features learned from multiple
learning branches. Therefore, the proposed network can effectively complete complex
classification tasks.

In the third aspect, it is well known that rolling bearings are an important component
of mechanical systems. There are many interactional and coupling effects among rolling
bearings and other mechanical components. Vibration signals measured from rolling
bearings commonly contain complex signals of various mechanical vibrations. Vibration
signals usually exhibit multiscale properties [27]. However, the traditional DCE has a poor
ability to capture multiscale features. To overcome the limitation, this article introduces
feature learning with multiple kernel scales into the encoder. Each CNN integration module
with different convolution kernels is employed to extract multiscale features layer by layer,
and the fault features are refined and compressed. Based on these modules, the multiscale
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learning network is proposed to mining deeper and comprehensive fault features from the
vibration signal. Therefore, the work can enhance the robustness of encoder fault feature
learning. Thus, combining the skip connection and multiple kernel branches, we propose a
strong network scheme of fault diagnosis with multilocation and multikernel scale learning
defined as the generalized multiscale learning (GMSL).

In the fourth aspect, DL algorithms generally employ dropout coefficients in network
propagation to prevent network overfitting. The operation may weaken the importance
of some features or lose the integrity of some features. To overcome the difficulty, the
multifeature protection layer is introduced into the fault diagnosis system and forms a
series structure behind the GMSL fusion layer. Vibration signal is a time series signal
with the attribute of data dependence. The bidirectional long and short-term memory
network with feature protection (PBiLSTM) is designed after the GMSL network. Based on
the robust features extracted by the GMSL network, PBiLSTM considers the relationship
between current and future information to extract data-dependent features. Meanwhile,
PBiLSTM employs the internal calculating data of the forward propagation and backward
propagation to dig more sensitive features at the same network position. This PBiLSTM
network is, to a certain extent, the integration and protection of multifeature fault signals.

Combining the above four innovations, in this article, a framework scheme with
multikernel scale learning and multilocation scale learning cascading the feature protection
layer (MLKDCE-PBiLSTM) is proposed. The scheme can adaptively extract and fuse
bearing fault features from multiple network locations and time scales of the raw data.

The main contributions of this article are summarized as follows:

1. This article combines the skip connection and encoder network and proposes a
multilocation scale learning network that extracts global and local features from the
network layers of different depths. The advantages of this feature extraction can be
accumulated in the entire network by adding multiple skip connections.

2. Multikernel scale learning is introduced into the CNN integration module of the DL
with different kernel sizes to simultaneously learn vibration characteristics at the
different time scales. The advantages will be accumulated in the entire network by
adding multiple kernel scale branches.

3. The feature information fusion layer is employed to automatically fuse the feature
space and optimize the rich features extracted from the multilocation learning network
and multiscale learning network.

4. The PBiLSTM network is used to deeply excavate the efferent robustness features of
the GMSL network and captures dependent and sensitive fault features.

5. Based on the above improvements, the MLKDCE-PBiLSTM scheme is proposed to
extract comprehensive fault features. The MLKDCE-based network can autonomously
extract and fuse useful and comprehensive features using multilocation and multiscale
learning. However, the PBiLSTM-based network is designed to deeply excavate and
protect high-purity features of GMSL network output. Consequently, under the
complicated working conditions of varying speeds and loads, the proposed feature
learning method is used to accurately diagnose various fault types of rolling bearings.

The progress of this article is organized as follows. Section 2 introduces the theoretical
background. Section 3 elaborates the network scheme of this article. Section 4 uses two
kinds of data sets to evaluate the above method. Section 5 verifies the functions of each
component of the proposed model. Finally, Section 6 summarizes the whole article.

2. Theoretical Background
2.1. Multiscale Wavelet Transform (MSWT)

Various methods of transforming and extracting features of the original data are used
for fault diagnosis of bearings. MSWT can observe the signal gradually from coarse to
fine with the multiscale characteristics, which is adjustable for various frequencies in the
time domain sampling step. The rules of slow changes under low-frequency signals and
rapid changes under high-frequency signals have better effects for diagnosis tasks. MSWT
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overcomes the inflexible time-frequency window characteristics of Fourier transform. In
short, using low-pass filter (LPF) h(k) and high-pass filter (HPF) l(k), the vibration signal
X(t) is iteratively decomposed into [28,29].

p2n
i+1(τ) = ∑

k
h(k− 2τ)pn

i (k) (1)

p2n+1
i+1 (τ) = ∑

k
l(k− 2τ)pn

i (k) (2)

where the signal X(t) is { p1
0(k), k = 1, 2, . . . , N } (N is the raw vibration signal length). At

the ith level, pn
i (k) denotes the MSWT decomposition coefficients of the nth. At (i+1)th

level, p2n
i+1(τ) refers to the approximation coefficients and precise coefficients of LPF and

HPF of the 2nth; p2n+1
i+1 (τ) refers to the coefficients of (2n+1)th nodes. Therefore, the full

vibration signal can be divided into a multiscale frequency band for the precise signal
analysis by MSWT, which is achieved through a recurrent filter of LPF and HPF. At the ith
layer, X(t) is decomposed into 2i nodes, which are denoted as (i, n) (n = 0, 1, 2, . . . , 2i−1) in
the binary decomposition tree. As shown in Figure 1, X(t) can be decomposed into eight
different time-frequency subspaces by a three-level MSWT.

Figure 1. Illustration of Multiscale Wavelet Transform.

Contrary to the operation of aforementioned recursive split in Formulas (1) and (2),
and the reconstruction process based on MSWT coefficients can be expressed as

pn
i (τ) = ∑

k
H(k− 2τ) p̃2n

i+1(k) + ∑
k

L(k− 2τ) p̃2n+1
i+1 (k) (3)

where p̃ means to insert a zero beside each point of p. To reconstruct signals of the same
length as X(t), except for the (i, n) node, it is necessary to set all the coefficients of the
other nodes in the ith reconstruction node to zero. This is just to preserve the frequency
information of reconstructed nodes. In Figure 2, two load frequency distribution is revealed
by the analytical method of time and frequency. For each scalogram, the horizontal axis
stands for a time distribution, while the vertical axis is a frequency distribution under a
specific representation. The vibration signals have different frequencies at different times.
Also, vibration signals have different frequencies at the same moment. The frequency
distribution of different loads shows different brightness.

2.2. Activation Function

As the most common nonlinear unit of deep learning activation function, the choice
of activation function in a deep network has a great impact on the training process and
classification result. Swish is a new self-gated activation function. The researchers con-
ducted experiments on multiple complicated datasets and proved that the Swish activation
function is better than ReLU on the deep model [30]. It is simplicial and similar for the
Swish compared with the ReLU. The advantage allows us to easily replace with Swish
function in the network propagation. The Swish and its derivative are shown in Figure 3.
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The Swish activation function expression is

Swish (x) = x ∗ α(x) (4)

α(x) =
1

1 + e−x (5)

Figure 2. Scalogram of time and frequency under different datasets. (a) Scalogram in PU dataset;
(b) Scalogram in CWRU dataset.

Figure 3. Four curve diagrams of activation function. (a) Relu activation function, (b) Sigmoid
activation function, (c) Swish activation function under various learnable parameters, (d) Swish
derivative under various learnable parameters.

The Swish derivative is

Swish′(x) = σ(x) + x ∗ σ(x)(1− σ(x))= f (x) + σ(x)(1− f (x)) (6)

The Swish activation function has the following advantages.

1. The functions have three characteristics of lower bounds, no upper bounds, and
non-monotonic.

2. Both Swish and its first derivative have smooth characteristics.
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In this article, all CNN integration modules employ the activation function Swish.

2.3. Deep Convolutional Autoencoder (DCAE)

Autoencoder and PCA are similar, both of them can dimensionality reduction and
feature extraction for data. However, among the autoencoder, PCA, and kernel PCA, there
are lots of differences. They are summarized as follows:

1. In the coding process, the autoencoder can perform both linear transformations
with a linear activation function and a nonlinear transformation with a nonlinear
activation function. When PCA performs a nonlinear data process, it is assumed that
the data conform to ideal data distribution. Otherwise, PCA can only perform linear
transformations [31].

2. In this article, the input data is processed into an image by the Wavelet Transform.
The bearing dataset is highly nonlinear and complicated. For the autoencoder, it can
learn the linear and nonlinear features with encoder and decoder. However, PCA can
only learn the linear features.

3. The dimensions of the kernel PCA method are dependent on the number of input data
in the eigen-decomposition. The autoencoder is flexible. In structure construction,
because of the network representation form of an autoencoder, multiple nonlinear
layers can be used for feature extraction.

The autoencoder has more advantages compared with PCA.

• The structure of the autoencoder is much more flexible than PCA, which can process
more diversified vibration data.

• The application of autoencoder is wider, such as data denoising, visualization and
dimension reduction, image compression, and feature learning.

• PCA is just a special case of a single-layer autoencoder with a linear activation function.

The architecture of DCAE consists of two parts: encoder and decoder, which can be
seen as the combinations of convolution layer, pooling layer, deconvolution layer, and
unpooling layer. This architecture employs the backpropagation theory to extract the key
feature information and expresses the information through feature compression, which well
stains spatial information of the 2D signal. The encoder is a neural network model that can
learn and discover the hidden features of the input data. The decoder is a neural network
model that can reconstruct the original input data using highly compressed features of
hidden layers. Figure 4 shows a three-layer DCAE model.

Figure 4. Architecture of a DCAE with three feature extraction layers.

Suppose we have k convolution kernels, and each convolution kernel is composed of
parameters wk and bk. The parameters are used to express the convolutional layer, then the
obtained feature hk is used to reconstruct. The following formula can be obtained

hk = σ
(

x ∗ wk + bk
)

(7)

x̂i = σ
(

hk ∗ ŵk + ck
)

(8)
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The error Loss is obtained by comparing the input sample and feature reconstruction
result with Euclidean distance, which is optimized with the BP algorithm. The error of the
DCAE is expressed as

Loss =
1

2n

2n

∑
1
(xi − x̂i)

2 (9)

where hk represents the convolution value of the encoder, and x̂ represents the reconstruc-
tion value of the raw data. wk and ŵk represent the weight of the encoder and decoder,
respectively. Similarly, bk and ck are the corresponding bias parameters, and σ(·) is the
activation function. Loss represents the loss of each weight w.

DCAE is composed of multiple convolutional neural networks, so the encoder of
DCAE is designed to extract and compress features of the input signal level to level. The
purpose of the fault diagnosis system is to obtain high-purity discriminative features, so
we only introduce the encoder to the fault diagnosis system. Generally, the architecture of a
convolutional encoder is regarded as an integration of a feature learning layer, a nonlinear
transform layer, a normalization layer, and a feature pooling layer. At the feature learning
layer, the input of each unit is connected to the output of the previous module, and the
local features are extracted by the convolution kernel. In the nonlinear activation layer, the
features of the lower dimension are mapped to the higher dimension space by selected
activation functions. This convolution function can be expressed as

Vi,k
n = σ

(
∑
m

Xi−1
m � Ki

n + bi
n

)
(10)

where Xi−1
m and Vi,k

n respectively represent feature vectors of the mth input and nth output
at (i-1)th layer in the feature extraction. Ki

n represents the convolution kernels between the
mth input nonlinear transform and the nth output nonlinear transform and k expresses
the sum of convolution kernels. bi

n presents the deviation of the nth output nonlinear
transform, and σ(·) is the nonlinear activation function.

Multikernel branch of the proposed MLKDCE-PBiLSTM employ convolutional en-
coders. The specific operations are described in Section 3.

2.4. Bidirectional Long Short-Term Memory Network

The standard RNNs (time recurrent neural networks) structure is a chain form of
repeated neural network modules, and a directed connection is established through math-
ematical relationships. Different from the basic model structural multilayer perceptron,
RNNs can map the target vector from the entire input history input, while the multilayer
perceptron can only map from the original input to the target vector. Due to the char-
acteristics of RNNs that allow historical states to be kept in the memory of the network,
for supervised learning, RNNs can be repeatedly trained through backpropagation. Due
to the characteristics of RNNs that allow historical states to be retained in the memory
of the network, for supervised learning, RNNs can be repeatedly trained through back-
propagation. To capture the semantics in the long sequence, we need to run the RNN on
multiple time steps and turn the unrolled RNN into a deeper network. However, this
method brings about the gradient vanishing situation as RNN training, which seriously
affected the accuracy of the fault classification. This means that traditional RNNs may not
be able to capture long-term dependencies.

The emergence of LSTMs solves the above gradient vanishing and gradient explosion
problems. In LSTMs, memory units including input gates, forget gates, and output gates
replace each neuron in hidden layers of RNN. In each component, input gates update the
unit states; forget gates selectively discard certain information and reset memory units to
prevent the long-term dependence; output gates output unit states. For capturing the valid
dynamic characteristics of nonlinear time series data, LSTMs perform more advantages
than traditional CNN. LSTMs have been successfully used in speech recognition, natural
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language processing, subtitle translation, picture description, and many other occasions.
The MLKDCE-PBiLSTM in this article employs PBiLSTM to build a time series model.
PBiLSTM consists of two ordinary RNNs, a forward RNN that uses past information, and
a backward RNN that uses future information. The network diagnoses more accurately
than the prediction result obtained by using LSTM alone. When extracting fault features at
time t, each unit gate can simultaneously apply the calculated data at t−1 and t+1 time.
The structure of PBiLSTM is illustrated in Figure 5.

Figure 5. Architecture of the BiLSTM network for the sequential data.

U0 → U1 → · · ·Ui represents the forward RNN, which participates in the forward
calculation. Specially, the input value at time t is the algebraic sum: the sequence data St at
time t and the output value Ut−1 at time t−1.

U′i → · · ·U′2 → U′0 represents the backward RNN, which participates in the backward
calculation. Specially, the input value at time t is the algebraic sum: the sequence data St at
time t and the output value U′t+1 at time t+1.

The final output data at time t depends on Ut−1 and U′t+1.

3. Comprehensive Feature Learning Method

This article intends to provide a network scheme that can automatically learn the
multifeature from various time scales of the input data by the varying skip connections
and the multiscale learning. The operation of fusing the feature space can improve the
fault diagnosis performance of rolling bearings under variable conditions of loads and
speeds. Especially, the multifeature protection layer is cascaded to the GMSL network of
the fault diagnosis system. A reliable intelligent fault diagnosis system should accomplish
comprehensive and in-depth feature extraction of the vibration signal, and simultaneously
performs global and local features learning. The core contribution of this article is to
construct an end-to-end framework that integrates feature transformation, multiscale
learning, multifeature fusion, multifeature protection, and fault classification. The network
combines multiscale learning and multifeature protection to comprehensively and deeply
extract the signal feature. The overall MLKDCE-PBiLSTM framework of bearing fault
diagnosis is shown in Figure 6. The first step is to perform wavelet processing on the
raw signal to construct a 2D image. Then 2D images as network input are fed into the
elementary features extraction layer to perform the feature extraction at the initial period.
In this process, a bigger convolution kernel is employed to ensure that the features of the
input data are completely extracted. In this article, multiscale feature learning has two
meanings, one is multilocation scale learning with multiple skip connections, and the other
is multikernel scale learning with different kernel sizes under multiple branches. Similarly,
multifeature fusion refers to fuse the skip layer and the last layer of convolution in each
kernel branch on the one hand and fuse the GMSL features of the MLKDCE-PBiLSTM
framework on the other hand.
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Figure 6. Architecture of the proposed MLKDCE-PBiLSTM scheme.

The fusion features of GMSL are relatively pure (filtering operation of multiscale
convolutional neural network). The features are fed into the feature protection module for
sensitive and ultimate feature extraction that all features are re-extracted by the network
and given more reasonable weight coefficients at this time. In this case, it is more conducive
for PBiLSTM to extract new and in-deep discriminative features by considering the front
and back sequential relationship of the fault signal. Finally, the newly extracted features
are fed into the softmax layer, so that the probability distribution of each sample is clearly
obtained. Thus, the multiscale features extracted of MLKDCE-PBiLSTM are much more
robust with precise details, which effectively realizes the task of feature recognition and
fault classification.

3.1. Generalized Multiscale Learning (GMSL)

The bearing fault diagnosis method with multilocation scale learning and multikernel
scale learning is defined as the generalized multiscale learning. The method has been
verified to be much more robust in this article.

3.1.1. Multilocation Scale Module (MLS)

In the academic research of diagnosis task, only the single layer of the convolutional
encoder network is commonly employed for the next layer input in network propagation,
and the network outcome only contains the fault information of the last layer in the feature
extraction process. Although the deep features extracted from the last layer of multilocation
feature learning (MLFL) are more invariant and robust than the features of the lower layers,
the multilayer convolution operation may lose many sensitive and detailed features that
exist in the middle layer. Therefore, it is insufficient to directly use the features extracted
from the last layer.

In each branch, MLS considers the feature mapping which contains a certain middle
layer of the network and the last layer of the network by a skip connection as the input
of the feature fusion layer. Therefore, the network can learn the fault features of different
convolutional layers, effectively combining the MLFL with the convolutional encoder.
The core of MLFL is to learn invariant features (global feature) and detailed features
(local feature) of vibration signals in different network locations. So better classification
performance can be achieved. Specifically, MLFL uses skip connections in the multilayer
convolutional structure to select the middle layer (one or more) of the network at different
locations to combine with the final convolutional layer. The network can simultaneously
learn the discriminative fault features of different locations and adopts the convolution
operation to fuse multilocation features across channels.

In the illustration, we only use the penultimate convolutional layer as skip layer for
the limited computing power. According to Figure 7, MLFL uses n serial CNN integration
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modules with convolution layer and maxpool layer to learn the rich features of the input
signal X(t) at different locations in the network. The output of MLFL fusion layer is
expressed as

yj
l = σ

(
∑

i
hc

i � wc
i,j + ∑

i
hs

i � ws
i,j + bj

)
(11)

where � represents convolution operation, i denotes the ith feature map of the (n-1)th
convolutional layer. j denotes the jth feature map of the nth largest pooling layer, hc

i , wc
i,j, hs

i ,
and ws

i,j represent neurons and network weights of the (n-1)th layer and the nth maxpool
layer, respectively. BN presents batch normalization (BN) [32].

Figure 7. Structure of the MLFL.

First, yh performs feature fusion by the feature fusion layer Cl . Then, yh is fed into the
CNN integration module for deep feature mining again. Finally, the MLFL output layer is
yl = σ

(
Cl ∑ yh

j �ωh
j

)
.

3.1.2. Multikernel Scale Module (MKS)

The core of multikernel feature learning (MKFL) is to learn the multiscale comple-
mentary features of vibration signals in different time scales. MKS can skillfully adjust
the size of the convolution kernel to enable CNN integration modules to extract the fault
characteristics of different time scales. The module successfully combines the MKFL with
the encoder. Specifically, MKFL uses several parallel network branches, that is, each CNN
integration module in the multiple branches has different sizes of the convolution ker-
nel. Therefore, the network can learn the rich vibration features of different scales at the
same time, and use the convolution operation to fuse the features of multiple time scales
across channels.

According to Figure 8, MKFL uses n parallel CNN integration modules that consist
of convolution layer and maxpool layer and m branches to learn the rich features of the
vibration signal X(t). The output of the MKFL layer of each branch is expressed as

oi =
m
∪
1
(σi(ωi � x + bi)) (12)

where ∪m
1 (•) represents a continuous convolution operation, that is, convolution operations

are performed on all the feature output layers in sequence.

Figure 8. Structure of the MKFL.
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The outputs of n MKFL branches are connected into feature vectors O = [o1, o2, . . . , on]
across channels. Then vectors O is put into the feature fusion layer Cs, which effectively
fuses complementary features of various kernel branches. The output of the fusion layer is
expressed as ys = Cs(O).

3.2. Multifeature Fusion

In this article, to give full play to the comprehensive capabilities of fault feature
extraction, each network branch is designed to simultaneously embed the MLS mod-
ule and MKS module. The combination is regarded as a new network module with
comprehensive feature learning (CFL) module. This is more conducive to extract abun-
dant and in-depth feature of the raw input signal. The output of each CFL branch
network is yh = [si, oi], Using the fusion layer Cs, the GMSL can be expressed as

y fi
= GMSL(x) = Cs

(
yh
)
= Cs([si, oi]).

The proposed GMSL fuses the fault feature of multiple network locations and multiple
time scales. Such deep features are much more abundant and complementary with precise
details. However, these robust features may not promote each other, resulting in the
features weakening. Therefore, it is necessary to use a valid feature fusion mechanism for
the multikernel structure. The features of multiple CEL branch network are the different
levels of understanding for the raw signal.

In the following two aspects, MLKDCE uses the multifeature fusion method. One
is to employ the feature fusion layer Cl to fuse the multilocation features learned from
MLS. The other is to employ the feature fusion layer Cs to fuse the MKS features learned
from MKS. Both Cl and Cs adopt the feature learning and nonlinear transformation
of different depth convolutional layers to adaptively integrate multifeature signal; the
main difference is the location of the skip connection in each branch and the kernel size
of the feature extraction. According to Figure 6, the MLKDCE-PBiLSTM concatenates
y f1 , y f2 and y f 3 of the multifeature learning into the feature vector yF =

[
y f1 , y f2 , y f 3

]
.

Then multifeature fusion layer Cs adaptively fuse the abundant feature vector yF. The
final feature learned from the raw vibration signal X(t) can be obtained by

y f = Cs
(
yF) = Cs

([
y f1 , y f2 , y f 3

])
. This CFL method helps to provide excellent classi-

fication effect for bearing fault diagnosis tasks.

3.3. Multifeature Protection Layer

In the bearing fault diagnosis system, the fused multifeature vector is directly put
to the classification layer. The operation may weaken the importance of some features or
even lose the integrity of some features, and may not performs the best classification effect.
Therefore, it is necessary to use valid feature integration and protection mechanisms. The
basic LSTM network is limited in its ability to effectively use the context. In the process of
bearing fault feature learning, there is a strong dependence between sequential perception
data. Considering the connection between current and future data is a kind of protection
for feature integrity. PBiLSTM has achieved remarkable success in feature extraction of
dependent sequence data [33,34]. Therefore, this article introduces PBiLSTM into the
protection layer for the feature output of the multikernel networks.

PBiLSTM can process the sequence data forward and backward through two bidirec-
tional units which are fed forward to the same output layer [35].

→
it = σ

( →
Wi �

→
y f

t +
→
Vi �

→
ht−1 +

→
bi
)

(13)

→
f t = σ

( →
W f �

→
y f

f +
→
V f �

→
ht−1 +

→
b f
)

(14)
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→
ot = σ

( →
Wo �

→
y f

o +
→
Vo �

→
ht−1 +

→
bo
)

(15)

→
ct =

→
f t ∗

→
ct−1 +

→
it ∗ tanh

( →
Wc �

→
y f

t +
→
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→
ht−1 +

→
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)

(16)

→
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→
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)
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←
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←
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←
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(19)

←
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( ←
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←
y f
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←
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←
ht−1 +

←
bo
)

(20)

←
ct =

←
f t ∗

←
ct−1 +

←
it ∗ tanh

( ←
Wc �

←
y f

t +
←
Vc �

←
ht−1 +

←
bc
)

(21)

←
ht =

←
ot ∗ tanh

(←
ct
)

(22)

Then, the representation of complete PBiLSTM hidden unit ht is a cascaded vector
output from the forward and backward processes, the formula is

ht =
→
ht ⊕

←
ht (23)

3.4. Fault Classification

In this article, the classification task of rolling bearing is a multi-classification task.
Generally, the features obtained by the last layer of the traditional BiLSTM network are
vectorized and then sent to the conventional fully connected layer and feature classifier.
This approach makes the parameters of the fully connected layer very large and prone
to overfitting. Thus, in the output layer, we use the global average pooling layer (GAP)
instead of the fully connected layer (FCL) [36] and output the conditional probability for
each class by the softmax function. One of the benefits of this operation is that the feature
map is directly related to the diagnosis accuracy. Another advantage is that the GAP does
not need to calculate and optimize additional network parameters. Therefore, the model
scale and calculation are greatly reduced compared with the FCL, and overfitting can
be prevented.

It is assumed that there are n types of input samples, and the output probability Qj of
kth class is calculated as (24). The diagnostic output is the fault label corresponding to the
maximum Qj.

Qj =
exp
(

θ(j)GAP(y)
)

∑n
j=1 exp

(
θ(j)GAP(y)

) , j = 1, 2, . . . , n (24)

where θ(j) denotes the network parameter; GAP(y) expresses the input of the model and
∑n

j=1 Qj = 1.
For MLKDCE-PBiLSTM training, we use the cross-entropy as the loss function, which

is the absolute value of the true class label and predicted class label. The Adam optimization
algorithm [34] is adopted to minimize the loss value, which has high computational
efficiency and less memory.

Meanwhile, the proposed MLKDCE-PBiLSTM scheme is general and flexible, which
may have multiple network branches and different convolution depths in each branch.
Specifically, each branch can have a different skip location and different convolution
kernel scales. MLKDCE-PBiLSTM can effectively learn abundant and complementary
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diagnosis information at different time scales by using the skip connection structure in
multiple branches. PBiLSTM can effectively capture abstract fault features by adopting the
hierarchical learning framework in multiple branches.

4. Experimental Setup

In the bearing fault diagnosis, to verify the effectiveness of the MLKDCE-PBiLSTM in
the complex feature extraction, this article conducts several experiments. The experimental
data are the bearings datasets of Paderborn University (PU) and Case Western Reserve
University (CWRU).

4.1. Description of PU Datasets

Lessmeier et al. provided a PU benchmark bearing dataset for bearing condition
monitoring and diagnosis [37] and described the corresponding dataset in detail. A total
of 32 bearings were used in the PU dataset: 12 bearings for artificial damage, 14 bearings
for accelerated lifetime test, and 6 healthy bearings. All bearings were tested under
four different test conditions, as shown in Table 1. The data is perpendicular to axis
and frequency is 64 kHz. There are six main bearing damage modes: fatigue, wear,
corrosion, electrical erosion, plastic deformation, fracture, and cracking. Besides, the
bearing 6203 faults are divided into four damage levels to determine the extent of the
damage. The first level represents the damage length is less than 2 mm, the second level
represents the damage length greater than 2 mm, the third level represents the damage
length greater than 4.5 mm, and N/a represents damage length greater than 13.5 mm.
Finally, all the bearings are installed on a special test bench for data collection. The
experiment collected five parameters: motor current and vibration signals, as well as load
torque, radial force, and oil temperature.

Table 1. Description of four working conditions in PU bearing datasets

Setting Name Rotational Speed
(rpm)

Load Torque
(nm)

M07_N15_ F10 1500 0.7
M07_N09_ F10 900 0.7
M01_N15_ F10 1500 0.1
M07_N15_F04 1500 0.7

All the bearings are stalled in the experiment system. The modular setup in the test
rig is designed to collect the PU datasets in various load conditions. The platform is shown
in Figure 9.

Figure 9. Test rig of experimental system: (1) test motor; (2) measuring shaft; (3) bearing module;
(4) flywheel; (5) load motor.

To simulate the varying working conditions of rolling bearing as much as possible,
in the following case study, this article uses the real damaged datasets to study the fault
diagnosis of the motor bearing. Under the four working conditions described in Table 2,
four bearings with outer ring fault, four bearings with inner ring fault, and six bearings
with mixed outer ring fault and inner ring fault are used. In this article, five bearing datasets
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are employed to validate the proposed model, shown in Table 3. The damage degree is
also classified as four levels. There are 5600 samples for each health condition under each
load (4800 trainings and 800 tests). All samples employ MSWT and data augmentation
technology. Since MSWT is time-consuming, the length of each sample is set to 100.

Table 2. Details of the used PU bearing datasets.

Name Fault Location Fault Description

K001 Healthy
KA04 Outer ring Fatigue: pitting
KA15 Outer ring Plastic deform: indentations
KA22 Outer ring Fatigue: pitting
KA30 Outer ring Plastic deform: Indentations
KI18 Inner ring Fatigue: pitting
KI21 Inner ring Fatigue: pitting
KI16 Inner ring Fatigue: pitting
KI04 Inner + outer Fatigue: pitting;

Plastic deform: indentations
KI14 Inner + outer Fatigue: pitting;

Plastic deform: indentations
KB23 Outer + inner Fatigue: pitting
KB27 Outer + inner Plastic deform: indentations
KA16 Outer +outer Fatigue: pitting
KI17 Inner + inner Fatigue: pitting

Table 3. Configuration details of training and testing load for PU datasets.

Index Loads(nm) of
Training/Testing Speeds Ntrain Ntest Category

A 0.7/0.7 900/900 4800 800 13
B 0.1/0.1 1500/1500 4800 800 13
C (0.1,0.7)/(0.1,0.7) (1500,900)/(1500,900) 4800 800 13
D 0.1/0.7 1500/900 4800 800 13
E 0.7/0.1 900/1500 4800 800 13

4.2. Description of CWRU Datasets

According to the experimental requirements designed in the paper, four datasets
with normal state, rolling element fault, inner raceway fault, and outer raceway fault are
selected. Single point faults with sizes of 0.007, 0.014, and 0.021 are set on the four kinds of
bearing drive-end fault types [38]. All bearing faults are processed by EDM technology.
The vibration results are recorded at 12 kHz frequency under operating conditions of three
sizes and four different horsepower (0, 1, 2, and 3 horsepower). The visualization of the
signal in the time domain and frequency domain is shown in Figure 10. The test motor
model is SKF6205-2RS, and its size parameters are shown in Table 4. In this article, five
bearing datasets are employed to validate the proposed model, shown in Table 5. There
are 5600 samples for each health condition under each load (4800 trainings and 800 tests).
All samples employ MSWT and data augmentation technology before being input to the
MLKDCE-PBiLSTM model. Since MSWT is time-consuming, the length of each sample is
set to 100. A time-frequency image with a size of 100 × 100 will be generated.

4.3. Data Processing and Augmentation

The intelligent fault diagnosis system is an end-to-end learning method, but the types
of vibration data and the methods of normalization have a great effect on its performance.
The signals we collected are time series, which are the raw signals, and it generally performs
poor results when are employed directly. A reasonable type of input signal is significant to
the performance of the DL model. So MSWT methods and BN normalization methods are
employed in this article to process the raw data, which is detailed in Section 2.1.
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For the CWRU and PU datasets, we adopt a data augmentation method, which allevi-
ates the difficulty of Few-Shot Learning [39]. The data enhancement technology chooses
the overlapping sampling technology. Figure 11 shows the overlap sampling technique.

Figure 10. Visualization of signal from PU and CWRU in time domain and frequency domain under
different loads.

Table 4. CWRU Drive end bearing parameters of SKF62052-RS (diameter size: inches).

Inside Ball Outside Thickness Pitch

0.9843 0.3126 2.0472 0.5906 1.537

Table 5. Configuration details of training and testing load for CWRU datasets.

Index Loads(hp) of Training/Testing Speeds(rmp) Ntrain Ntest

Normal / 1796 4800 800
F 1/1 1772 4800 800
G 3/3 1730 4800 800
H (1,3)/2 (1772,1730)/1750 4800 800
I 1/3 1772/1730 4800 800
J 3/1 1730/1772 4800 800
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Figure 11. Data augmentation with overlap for vibration signal.

5. Performance Verification
5.1. Comparison Settings with Other Methods

The MLKDCE-PBiLSTM algorithm is implemented by the PyTorch library under
Python 3.7. Model training and testing of the network are performed on workstations with
Windows operating system, Intel Core i7-9750H CPU, and GTX 1660Ti GPU. In the whole
process, the network learning rate is 0.001, and the batch size is 32.

We compared the proposed MLKDCE-PBiLSTM with five advanced methods. They
are a DCAE network with five-layer convolutional network [15], BiLSTM network [24],
LSTM with multiple CNN [23], MSCNN [40], LeNet-5 with a new convolutional neural
network proposed by Wen [41]. The six methods adopt the same training strategies in the
overall experiments. All datasets are input into the network in 2D form, the MSWT, −1
to 1 normalization, random data segmentation, and augmentation is performed. In the
comparative experiment.

The neural network based on multiscale learning proposed by Jiang et al. [40] solved
the problem of fault diagnosis of rotating machinery and achieved satisfactory results. Our
proposed method has the following differences from the above structure.

1. Multilocation learning: The MLKDCE-PBiLSTM employs skip connections in the
branch network to perform multilocation feature learning. The MSCNN neural
network employs multiscale coarse-grained operations to down-sample the raw
signal, which is probable to lose some features of the input signals.

2. Multikernal operation: In the MSCNN structure, three branches are copy networks,
and the extraction of information is insufficient. However, MLKDCE-PBiLSTM uses
multiple parallel encoder branches with different convolution kernels and network
parameters to extract multiscale fault features.

3. Multifeature fusion: MSCNN does not adopt any feature fusion method, and directly
puts the learned features into the final classification layer. The MLKDCE-PBiLSTM
uses a multifeature fusion layer to optimize the fusion and optimization of the charac-
teristics learned from multilocation learning and multiscale learning. The network
scheme improves the accuracy of the model.

4. Multifeature integration and protection operation: The MLKDCE-PBiLSTM uses a
multifeature protection layer to extract long-term dependent fault information in the
vibration signal after multifeature integration processing. It is used to maximize the
integrity and accuracy of the fault features. However, other comparison networks
directly perform dropout or classification operations, which will affect the accuracy
or even lose important information.

The fault diagnosis problem studied in this article is essentially a multi-class classifica-
tion task (PU dataset is 13 categories, CWRU dataset is 10 categories). We use the indicator
of accuracy, which is a generally comprehensive indicator metric defined in (25).

Accuracy =
TP + TN

TP + FN + FP + TN
(25)

where TP and TN refer to the numbers of true positive classes and true negative classes
respectively. FP and FN denote the number of and false positive classes, false negative
classes. The indicator ranges from 0 to 1. The larger the value of accuracy, the better the
fault diagnosis performance.
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5.2. Performance Comparison with Other Advanced Methods

Domain adaptation is a significant bearing diagnosis task under variable loads and
speeds. It uses the knowledge gained from the training dataset to improve the performance
of the network in the test dataset, that is, the study is one of the transfer learning. We
cannot obtain the data and distribution of rolling bearing under various working conditions.
Therefore, the model trained under the existing load states should accurately diagnose
the faults under the new working condition. In this case, the training data and test data
should conform to the same characteristic domain and class domain, but the characteristic
distribution is inconsistent. In the real world, both the inconsistency of characteristic
distribution and the inconsistency of characteristic domain and class domain objectively
exist. The above contents are the research content of transfer learning. In this article, two
kinds of datasets are used to verify the network domain adaptability.

5.2.1. Comparison Experiment under PU Dataset

We design five experiments, 0.7–0.7 Nm (A), 0.1–0.1 Nm (B), 0.7/0.1–0.1/0.7 Nm (C),
0.1–0.7 Nm (D), and 0.7–0.1 Nm (E) experiments. 0.7–0.1 Nm means that the training
dataset is 0.7 Nm load under the speed of 900 rmp, and the test dataset is 0.1 Nm load
under 1500 rmp speed, others are similar. This experiment setup can not only verify that
the data feature distribution of the training dataset and the test dataset is consistent, but
also verify that the feature distribution is inconsistent.

The testing results repeating three times are shown in Figure 12. Obviously, the
MLKDCE-PBiLSTM has obtained the best average diagnosis results among the five tasks
of the domain adaptivity under varying loads and speeds. The average accuracy reaches
94.57%. The phenomenon indicates that when the working condition changes, the MLKDCE-
PBiLSTM has better domain adaptability of load and speed without using specific domain
adaptation methods.

Figure 12. Generalization ability of six comparison methods in the load and speed adaptation of
PU dataset.

We analyze the accuracy trend of the experimental results from three aspects. (1) The
performance of six models in the prediction experiments of group A and B is better than the
prediction accuracy of group C, D, and E, respectively. This can be explained by using the
consistent distribution of nonlinear data features. (2) The maximum experiment accuracy
appears in groups A and B, the minimum experiment accuracy appears in group C, and
the accuracy of group D and E is between the above-mentioned load accuracy. This can be
explained by the concept of subspace learning. The more the similarity of the subspace,
the higher the accuracy of the prediction. In the test of A and B, the principal component
features distribution of the two data is consistent, and the correlation is extremely high, so
the accuracy of the diagnosis result will be high. In the C group test, the training dataset
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and the test dataset are a mixed distribution of multiple loads features that the complexity
of its subspace is the highest, and the correlation analysis becomes complicated. Therefore,
the experiment accuracy compared with the above same characteristic distribution will
decrease. For the test experiment of D and E group, from the training dataset to the
test dataset is from one feature distribution to another, the accuracy is higher than the
above situation. (3) The accuracy of the test experiment D group is always higher than
the accuracy of the E group. Basing the vibration knowledge of rotating machinery in
dynamics, the smaller the external excitation is, the smaller the rolling bearing vibration
response is, and the corresponding vibration characteristics are weaker too. Especially, the
load and speed represent the external excitation force. Thus, the discriminant vibration
characteristics extracted from a bigger excitation may be weak in a smaller excitation.
Contrarily, the discriminant vibration characteristics extracted from a smaller excitation are
usually retained in a bigger excitation. Therefore, in the bearing fault diagnosis test, the
accuracy of the E group is lower than that of the D group.

The accuracy of the MLKDCE-PBiLSTM in the C group is only 90.97%. Although the
accuracy was not as high as under other working cases, the MLKDCE-PBiLSTM result
is the best compared with the other five calculation models. The result indicates that
our network has a strong generalization ability. Also, MSCNN and LeNeT-5 have better
domain adaptability than the other three comparison models. The accuracy shows that
multiscale learning can efficiently extract abundant and abstract fault features from the
input signals. However, the accuracy of the above two models is 3% and 2% lower than
that of the MLKDCE-PBiLSTM. It again indicates that MLFL and MKFL have stronger
feature learning ability and feature fusion ability. Besides, an interesting phenomenon
can be discovered that BiLSTM also obtains outstanding performance under various load
domain adaptations. Thus, we think it is an available neural network with stronger feature
extraction ability. In summary, the MLKDCE-PBiLSTM shows the best fault diagnosis
performance and generalization capability in the domain adaptation test.

5.2.2. Comparison Experiment under CWRU Dataset

Datasets of F–J contain 10 bearing fault conditions under 1, 2, and 3 hp load. For the
datasets of H, all samples of 1 hp and 3 hp are employed as the training set and 2 hp are
employed as the test set. For datasets of I and J, the training data is obtained under the
load of 1 hp and 3 hp, respectively, and 3 hp and 1 hp are used as the test data.

Similar to the above PU tests, the testing results repeating three times are shown in
Figure 13. Unsurprisingly, the MLKDCE-PBiLSTM achieves the best average diagnostic
results among the five tasks of the domain adaptivity under varying loads and speeds.
The average accuracy reaches 96.02%, which indicates that the proposed fault diagnosis
system has good domain adaptation and generalization ability. (1) Under the datasets
of PU and CWRU, the six models have the same trend of fault diagnosis accuracy under
five load cases. (2) However, it is observed that the accuracy of each model has been
significantly improved under the CWRU dataset compared with the PU dataset, and its
accuracy mostly has reached more than 85%. On the one hand, this situation may be
account for the low frequency of CWRU data collection. The upper and lower peaks of
the signal are missed during low-frequency sampling, which may weaken the coupling
ability of complex signals. On the other hand, compared to the 13 category tasks of the
PU dataset, the CWRU dataset is 10 category tasks. These may be the reason for the high
accuracy of the model when using the CWRU dataset under variable loads and variable
speeds. (3) The experiment accuracy of the MLKDCE-PBiLSTM network is 93.80% under
the most complicated experiment H, and in the tests of I and J, the test accuracy reached
95.36% and 93.97%, respectively. Even in the test of F and G, the accuracy reached 98.99%
and 98.00%. Outstanding performance can verify that MLKDCE-PBiLSTM possesses the
extraction ability of the diverse features.
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5.2.3. Computational Burden of the Networks

The testing time of the six models is shown in Table 6. They are all measured under the
same software and hardware conditions. The test software is Python 3.7, and the hardware
system is Windows operating system, Intel Core i7-9750H CPU, and GTX 1660Ti GPU. The
table records the testing time in an epoch. We can observe that the MLKDCE-PBiLSTM
consumes more time in all models. It is acceptable for the complex framework with MLFL
and MKFL modules.

Figure 13. Generalization ability of six comparison methods in the load and speed adaptation of
CWRU dataset.

Table 6. Testing time of each epoch in six comparison methods.

MLKDCE-PBiLSTM DCAE BiLSTM LeNet-5 MSCNN LSTM

PU 1.8151 1.6007 0.7243 0.7553 0.8365 0.4496
CWRU 2.7327 2.5140 1.1260 1.3548 1.5623 1.1496

5.3. Verify the Necessity of Each Component of the Model

The performance of a rolling bearing fault diagnosis system has close relations with the
quality of network learning outcomes. The core contribution of the MLKDCE-PBiLSTM is
to learn and fusion various discriminative fault features with multilocation and multiscale
learning; finally, the feature is fed into a multifeature protection module. To accurately
evaluate the result of feature learning advantages of each part of the model and the ability
to fuse abundant and complementary features, we will explore the impact of different
scales features on the classification effect from the following three aspects. The domain
adaptation experiments of load and speed are implemented under the data of groups C
and H, and the test accuracy of each epoch is shown in the process.

To facilitate the representation of the network structure in the subsequent research,
four basic modules of the encoder are set up, including DCNN-M0 (only the basic CNN),
MLS-M1 (with skip connection based on the M0), MLS-M2 (only the DCE), and MLS-M3
(with skip connection based on M2). We name the multilocation scale deep convolution
encoder as MLDCE.

5.3.1. Necessity of the Multilocation Scale Learning

To accurately evaluate the performance of MLS learning, four network structure, in-
cluding MLDCE-M0, MLDCE-M1, MLDCE-M2 and MLDCE-M3, are set in this experiment.

The experiment results are shown in Table 7 (average accuracy in the last 10 epochs).
Figure 14a,b are the test results of each epoch under variable load and speed conditions of
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the PU dataset and CWRU dataset, respectively. Obviously, it can be seen from Figure 14a
that the diagnostic performance of MLDCE-M2 is higher than that of MLDCE-M0. The
result indicates that the deep convolution encoder has stronger feature extraction and
compression capabilities. The accuracy of MLDCE-M1 compared to MLDCE -M0 and
the accuracy of MLDCE-M3 compared to MLDCE-M2 are improved by nearly 9% and
13%, respectively. The results indicate that even if feature extraction capabilities of the
basic network structure with M2 and M0 are weak, MLFL can still extract precise and
detailed features (local feature), with invariant robust features (global feature). It effectively
improves the network ability of the discriminative fault features extraction. This further
demonstrates that the MLKDCE-PBiLSTM with MLFL has significant advantages over
traditional encoders. This also proves that the designed MLS module has a better mining
ability of detailed features.

Table 7. Testing result of different MLS module.

Accuracy (%) MLDCE-M0 MLDCE-M1 MLDCE-M2 MLDCE-M3

PU Load 74.277 83.198 77.668 90.522
CWRU Load 77.199 87.468 85.303 91.522

Figure 14. Performance of different MLS modules in each epoch. (a) Load and speed experiments in
PU dataset; (b) Load and speed experiments in CWRU dataset.

According to Figure 14b, compared with the PU experiment, the test result of the
CWRU experiment fluctuates greatly, and it takes a longer time to stabilize. Finally, the test
accuracy of the MLDCE-M0 module is 77.63%, while the test accuracy of the MLDCE-M3
is 91.32%. From the overall test results, the proposed multiple modules are effective in
extracting bearing fault features.

5.3.2. Necessity of the Multikernel Scale Learning

To accurately evaluate the performance of MKS learning, three parallel deep encoder
network structures, including MKDCE-B1(n = 1), MKDCE-B2(n = 2), and MKDCE-B3(n = 3),
are set in this experiment. It is worth noting that the abovementioned three MKS networks
do not include the MLS modules, so we call them multikernel scale deep convolution
encoder (MKDCE).

The test results are shown in Table 8 (average accuracy in the last 10 epochs).
Figure 15a,b are the test results of each epoch under variable loads and speeds condi-
tions of the PU dataset and CWRU dataset, respectively. It is obvious that in Figure 15a,
the MKLF module performs stable load adaptation in PU dataset. The module can learn
more domain invariant features related to bearing faults from the different kernel sizes of
multiple branches. The accuracy of MKDCE-B2 is nearly 6% higher than that of MKDCE-B1,
and that of MKDCE-B3 is nearly 10% higher than that of MKDE-B2. Similarly, according
to Figure 15b, the accuracy of MKDCE-B2 is nearly 6% higher than that of MKDCE -B1,
and that of MKDCE -B3 is nearly 8% higher than that of MKDCE-B2 in the CWRU dataset.
It can be seen that the diagnostic accuracy of the network does not increase linearly with
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the increase of the number of network branches, which indicates that the accuracy of the
model can be nonlinearly improved with the use of more parallel MKS branches.

Table 8. Testing result of different MKS module.

Accuracy (%) MKDCE-B1 MKDCE-B2 MKDCE-B3

PU Load 72.039 78.009 88.702
CWRU Load 77.668 83.509 91.360

Figure 15. Performance of different MKS modules in each epoch. (a) Load and speed experiments in
PU dataset; (b) Load and speed experiments in CWRU dataset.

It can be seen that the performance of network mapping is enhancing along with the
network width. That is, this advantage will be accumulated in the whole model by more
network branches. In practical applications, we can select an appropriate number of MKLF
branches for testing according to our own needs and hardware configuration.

5.3.3. Necessity of the Fault Multifeature Fusion

To accurately evaluate the performance of the multifeature fusion, the MLKDCE,
MLKDCE-NLF (no multilocation fusion layer in the MLS), the MLKDCE-NBF (no mul-
tikernel feature fusion layer in the MKS), and the MLKDCE-NLF-BF (no multilocation
and multikernel feature fusion layer) are set in this experiment. The GMSL structure is
designed in the four networks.

The test results are shown in Table 9 (average accuracy in the last 10 epochs).
Figure 16a,b are the test results under varying load and speed conditions of the PU dataset
and CWRU dataset, respectively. In Figure 16a, there are multiple feature distributions
of 0.1 Nm and 0.7 Nm in the PU training dataset, so the encoder needs to mining more
discriminative features to adapt to the variable load fault diagnosis task. Obviously, al-
though the structure of sample data is complex, the model can better diagnose the bearing
fault features. Therefore, the feature fusion layer of the proposed can fuse and optimize the
rolling bearing fault features learned from different network locations and different kernel
sizes. The MLKDCE-PBiLSTM can extract rich discriminative features from a large amount
of bearing data. It indicates that the fusion layer of the composite network has a stronger
ability of the robust feature representation strategy in fault pattern classification. Under the
variable load and speed of test C in PU, the accuracy of MLKDCE is improved by nearly
13.6% than that of MLKDCE-NLF-KF. Similarly, according to Figure 16b, under the test of
group H in CWRU, the accuracy of MLKDCE is improved by nearly 15% compared with
MLKDCE-NLF-KF. This fully demonstrates that the MLFL module and MKFL module play
a crucial part in the network structure.

Table 9. Testing result of four fault feature fusion cases.

Accuracy (%) MLKDCE-NLF MLKDCE-NKF MLKDCE-NLF-KF MLKDCE

PU Load 88.702 82.492 79.911 93.522
CWRU Load 91.360 88.114 81.492 96.512
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5.3.4. Necessity of the Multifeature Protection

To accurately evaluate the performance of multifeature protection, the MLKDCE-
PBiLSTM and MLKDCE (no multifeature protection layer before the classification layer)
are set in this section.

The test results are shown in Table 10 (average accuracy in the last 10 epochs).
Figure 17a,b are the test results of each epoch under variable load and speed conditions of
the PU dataset and CWRU dataset, respectively. An effective multifeature protection and
integration mechanism is necessary for the bearing fault diagnosis system. It can prevent
the feature information from being directly fed into the classification layer and losing the
integrity of some features. Obviously, the accuracy of MLKDCE-PBiLSTM is nearly 3.3%
better than that of MLKDCE in Figure 17a and nearly 2% better than that of MLKDCE
in Figure 17b. The accuracy indicates that the multifeature protection layer can deeply
extract and integrate unexcavated fault features from the multifeature fusion layer that are
more sensitive and dependent signal features. MLKDCE-PBiLSTM performs more stability
than MLKDCE under varying operating conditions. It indicates that the PBiLSTM network
deals with the abnormal points in the sequence image signal reasonably, and improves the
classification effectiveness.

Figure 16. Performance of multifeature fusion modules with respect to epoch. (a) Load and speed
experiments in PU dataset; (b) Load and speed experiments in CWRU dataset.

Table 10. Testing result of the multifeature protection network.

Accuracy (%) MLKDCE MLKDCE-PBiLSTM

PU Load 93.522 96.795
CWRU Load 96.522 97.946

Figure 17. Performance of the multifeature protection module with respect to epoch. (a) Load and
speed experiments in PU dataset; (b) Load and speed experiments in CWRU dataset.

6. Conclusions

To extract the multiscale and sensitive feature from the complicated vibration signals,
this article proposes a novel MLKDCE-PBiLSTM scheme suitable for the rolling bearing
intelligent fault diagnosis under varying conditions of load and speed.
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Unlike the traditional multiscale structure, MLKDCE-PBiLSTM combines the skip
layer and the last layer of the encoder in each branch, which uses MKS and MLS modules
in all GMSL branches. In this way, the multiscale features have stronger invariance and
robustness (global features) with precise details (local features). Then, the former network
of MLKDCE-PBiLSTM is fed into the feature protection layer for further mining sensitive
and complementary features. The multifeature protection layer can deeply mine and protect
weak and sensitive fault feature information from the high-purity feature representation
of multiple signal components (not directly from the original data). Thus, the MLKDCE-
PBiLSTM architecture can effectively diagnose the fault states of the rolling bearings.
Compared with the five latest networks with respect to the load and speed adaptability, our
method is more accurate and robust. Experimental results prove that multilocation scale
module, multikernel scale module, multifeature fusion, and multifeature protection layer
can significantly improve the performance of traditional encoders. Therefore, the MLKDCE-
PBiLSTM architecture is convinced to be effective applied in the field of intelligent fault
diagnosis on the rolling bearings.

In future work, we intend to optimize the network structure for reducing the number
of parameters and improve the model stability. In addition, in recent years, deep learning
methods have been increasingly applied in the fault diagnosis field. Embedded learning
is booming, which is a combination of software and hardware. However, the application
of deep learning in embedded systems is less. We want to integrate deep learning into
embedded learning for the bearing fault diagnosis in the future. The robustness and
effectiveness of the proposed method make it promising and possible for fault diagnosis.

Author Contributions: Conceptualization, H.B. and S.W.; Methodology, H.B.; Software, H.B.; Valida-
tion, H.B., S.W., and Z.L.; Formal analysis, H.B.; Investigation, H.B.; Resources, H.B.; Data curation,
H.B.; Writing—original draft preparation, H.B.; Writing—review and editing, H.B.; Supervision,
D.W.; Funding acquisition, D.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (no. 52077027)
and Liaoning Province Science and Technology Major Project (no. 2020020304-JH1/101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Case Western
Reserve University and Universität Paderborn databases.

Acknowledgments: In this article, we are grateful for the contributions of Bingxue Liang and Yufei
Qi. In the process of article writing, Bingxue Liang is in charge of the visualization, and Yufei Qi in
charge of the project administration.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, H.; Wang, Y.; Wang, B.; Sun, J.; Li, Y. The application of a general mathematical morphological particle as a novel indicator for

the performance degradation assessment of a bearing. Mech. Syst. Signal Process. 2017, 82, 490–502. [CrossRef]
2. Wang, L.; Liu, Z. An improved local characteristic-scale decomposition to restrict end effects, mode mixing and its application to

extract incipient bearing fault signal. Mech. Syst. Signal Process. 2021, 156. [CrossRef]
3. Li, X.; Ma, J.; Wang, X.; Wu, J.; Li, Z. An improved local mean decomposition method based on improved composite interpolation

envelope and its application in bearing fault feature extraction. Isa Trans. 2020, 97, 365–383. [CrossRef]
4. Tao, X.; Ren, C.; Wu, Y.; Li, Q.; Guo, W.; Liu, R.; He, Q.; Zou, J. Bearings fault detection using wavelet transform and generalized

Gaussian density modeling. Measurement 2020, 155. [CrossRef]
5. Elbouchikhi, E.; Choqueuse, V.; Amirat, Y.; Benbouzid, M.E.H.; Turri, S. An Efficient Hilbert–Huang Transform-Based Bearing

Faults Detection in Induction Machines. IEEE Trans. Energy Convers. 2017, 32, 401–413. [CrossRef]
6. Goyal, D.; Choudhary, A.; Pabla, B.S.; Dhami, S.S. Support vector machines based non-contact fault diagnosis system for bearings.

J. Intell. Manuf. 2019, 31, 1275–1289. [CrossRef]
7. Shevchik, S.A.; Saeidi, F.; Meylan, B.; Wasmer, K. Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency

Features and Random Forest Algorithm. IEEE Trans. Ind. Inform. 2017, 13, 1541–1553. [CrossRef]

http://doi.org/10.1016/j.ymssp.2016.05.038
http://doi.org/10.1016/j.ymssp.2021.107657
http://doi.org/10.1016/j.isatra.2019.07.027
http://doi.org/10.1016/j.measurement.2020.107557
http://doi.org/10.1109/TEC.2017.2661541
http://doi.org/10.1007/s10845-019-01511-x
http://doi.org/10.1109/TII.2016.2635082


Sensors 2021, 21, 3226 25 of 26

8. Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance
benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [CrossRef]

9. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A Deep Cascade of Convolutional Neural Networks for Dynamic
MR Image Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [CrossRef]

10. Li, Y.; Wang, G.; Nie, L.; Wang, Q.; Tan, W. Distance metric optimization driven convolutional neural network for age invariant
face recognition. Pattern Recognit. 2018, 75, 51–62. [CrossRef]

11. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
12. Gan, M.; Wang, C.; Zhu, C.A. Construction of hierarchical diagnosis network based on deep learning and its application in the

fault pattern recognition of rolling element bearings. Mech. Syst. Signal Process. 2016, 72–73, 92–104. [CrossRef]
13. Fuan, W.; Hongkai, J.; Haidong, S.; Wenjing, D.; Shuaipeng, W. An adaptive deep convolutional neural network for rolling

bearing fault diagnosis. Meas. Sci. Technol. 2017, 28. [CrossRef]
14. Cabrera, D.; Guamán, A.; Zhang, S.; Cerrada, M.; Sánchez, R.-V.; Cevallos, J.; Long, J.; Li, C. Bayesian approach and time series

dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing 2020,
380, 51–66. [CrossRef]

15. Zhao, K.; Jiang, H.; Li, X.; Wang, R. An optimal deep sparse autoencoder with gated recurrent unit for rolling bearing fault
diagnosis. Meas. Sci. Technol. 2020, 31. [CrossRef]

16. Guo, X.; Shen, C.; Chen, L. Deep Fault Recognizer: An Integrated Model to Denoise and Extract Features for Fault Diagnosis in
Rotating Machinery. Appl. Sci. 2016, 7, 41. [CrossRef]

17. Guo, S.; Yang, T.; Gao, W.; Zhang, C. A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural
Network. Sensors 2018, 18, 1429. [CrossRef] [PubMed]

18. Zhang, M.; Jiang, Z.; Feng, K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage
centrifugal pump. Mech. Syst. Signal Process. 2017, 93, 460–493. [CrossRef]

19. Tang, S.; Yuan, S.; Zhu, Y. Data Preprocessing Techniques in Convolutional Neural Network Based on Fault Diagnosis Towards
Rotating Machinery. IEEE Access 2020, 8, 149487–149496. [CrossRef]

20. Shao, H.; Jiang, H.; Zhang, H.; Liang, T. Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief
Network. IEEE Trans. Ind. Electron. 2018, 65, 2727–2736. [CrossRef]

21. Xia, M.; Li, T.; Xu, L.; Liu, L.; de Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional
Neural Networks. IEEE/ASME Trans. Mechatron. 2018, 23, 101–110. [CrossRef]

22. Liu, H.; Zhang, J.; Cheng, Y.; Lu, C. Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended
cross-correlation analysis. J. Sound Vib. 2016, 385, 350–371. [CrossRef]

23. An, Z.; Li, S.; Wang, J.; Jiang, X. A novel bearing intelligent fault diagnosis framework under time-varying working conditions
using recurrent neural network. Isa Trans. 2020, 100, 155–170. [CrossRef] [PubMed]

24. Rao, M.; Li, Q.; Wei, D.; Zuo, M.J. A deep bi-directional long short-term memory model for automatic rotating speed extraction
from raw vibration signals. Measurement 2020, 158. [CrossRef]

25. Zhang, S.; Ye, F.; Wang, B.; Habetler, T.G. Semi-Supervised Bearing Fault Diagnosis and Classification Using Variational
Autoencoder-Based Deep Generative Models. IEEE Sens. J. 2021, 21, 6476–6486. [CrossRef]

26. Shi, B.; Bai, X.; Yao, C. An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to
Scene Text Recognition. IEEE Trans. Pattern Anal Mach. Intell. 2017, 39, 2298–2304. [CrossRef] [PubMed]

27. Yan, X.; Liu, Y.; Jia, M. Multiscale cascading deep belief network for fault identification of rotating machinery under various
working conditions. Knowl. Based Syst. 2020, 193. [CrossRef]

28. Ding, X.; He, Q.; Luo, N. A fusion feature and its improvement based on locality preserving projections for rolling element
bearing fault classification. J. Sound Vib. 2015, 335, 367–383. [CrossRef]

29. Wang, L.; Liu, Z.; Cao, H.; Zhang, X. Subband averaging kurtogram with dual-tree complex wavelet packet transform for rotating
machinery fault diagnosis. Mech. Syst. Signal Process. 2020, 142. [CrossRef]

30. Ramachandran, P.; Zoph, B.; Le, Q.V. Swish a Self-Gated Activation Function. arXiv 2017, arXiv:1710.05941.
31. Deng, X.; Cai, P.; Cao, Y.; Wang, P. Two-Step Localized Kernel Principal Component Analysis Based Incipient Fault Diagnosis for

Nonlinear Industrial Processes. Ind. Eng. Chem. Res. 2020, 59, 5956–5968. [CrossRef]
32. Wang, J.; Li, S.; An, Z.; Jiang, X.; Qian, W.; Ji, S. Batch-normalized deep neural networks for achieving fast intelligent fault

diagnosis of machines. Neurocomputing 2019, 329, 53–65. [CrossRef]
33. Yildirim, O. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput.

Biol. Med. 2018, 96, 189–202. [CrossRef]
34. Ghosh, L.; Saha, S.; Konar, A. Bi-directional Long Short-Term Memory model to analyze psychological effects on gamers. Appl.

Soft Comput. 2020, 95. [CrossRef]
35. Liang, T.; Meng, Z.; Xie, G.; Fan, S. Multi-Running State Health Assessment of Wind Turbines Drive System Based on BiLSTM

and GMM. IEEE Access 2020, 8, 143042–143054. [CrossRef]
36. Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Gao, H. A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC

Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image. IEEE Access
2020, 8, 73677–73697. [CrossRef]

http://doi.org/10.1016/j.jclinepi.2019.02.004
http://doi.org/10.1109/TMI.2017.2760978
http://doi.org/10.1016/j.patcog.2017.10.015
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.ymssp.2015.11.014
http://doi.org/10.1088/1361-6501/aa6e22
http://doi.org/10.1016/j.neucom.2019.11.006
http://doi.org/10.1088/1361-6501/ab3a59
http://doi.org/10.3390/app7010041
http://doi.org/10.3390/s18051429
http://www.ncbi.nlm.nih.gov/pubmed/29734704
http://doi.org/10.1016/j.ymssp.2017.02.013
http://doi.org/10.1109/ACCESS.2020.3012182
http://doi.org/10.1109/TIE.2017.2745473
http://doi.org/10.1109/TMECH.2017.2728371
http://doi.org/10.1016/j.jsv.2016.09.005
http://doi.org/10.1016/j.isatra.2019.11.010
http://www.ncbi.nlm.nih.gov/pubmed/31732140
http://doi.org/10.1016/j.measurement.2020.107719
http://doi.org/10.1109/JSEN.2020.3040696
http://doi.org/10.1109/TPAMI.2016.2646371
http://www.ncbi.nlm.nih.gov/pubmed/28055850
http://doi.org/10.1016/j.knosys.2020.105484
http://doi.org/10.1016/j.jsv.2014.09.026
http://doi.org/10.1016/j.ymssp.2020.106755
http://doi.org/10.1021/acs.iecr.9b06826
http://doi.org/10.1016/j.neucom.2018.10.049
http://doi.org/10.1016/j.compbiomed.2018.03.016
http://doi.org/10.1016/j.asoc.2020.106573
http://doi.org/10.1109/ACCESS.2020.3014371
http://doi.org/10.1109/ACCESS.2020.2988323


Sensors 2021, 21, 3226 26 of 26

37. Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive 941
Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. In Proceedings
of the European Conference of the Prognostics and Health Management Society, Bilbao, Spain, 5–8 July 2016; p. 17.

38. Seyfioglu, M.S.; Ozbayoglu, A.M.; Gurbuz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided
and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [CrossRef]

39. Wang, S.; Wang, D.; Kong, D.; Wang, J.; Li, W.; Zhou, S. Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta
Learning. Sensors 2020, 20, 6437. [CrossRef] [PubMed]

40. Jiang, G.; He, H.; Yan, J.; Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE
Trans. Ind. Electron. 2019, 66, 3196–3207. [CrossRef]

41. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.
Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

http://doi.org/10.1109/TAES.2018.2799758
http://doi.org/10.3390/s20226437
http://www.ncbi.nlm.nih.gov/pubmed/33187173
http://doi.org/10.1109/TIE.2018.2844805
http://doi.org/10.1109/TIE.2017.2774777

	Introduction 
	Theoretical Background 
	Multiscale Wavelet Transform (MSWT) 
	Activation Function 
	Deep Convolutional Autoencoder (DCAE) 
	Bidirectional Long Short-Term Memory Network 

	Comprehensive Feature Learning Method 
	Generalized Multiscale Learning (GMSL) 
	Multilocation Scale Module (MLS) 
	Multikernel Scale Module (MKS) 

	Multifeature Fusion 
	Multifeature Protection Layer 
	Fault Classification 

	Experimental Setup 
	Description of PU Datasets 
	Description of CWRU Datasets 
	Data Processing and Augmentation 

	Performance Verification 
	Comparison Settings with Other Methods 
	Performance Comparison with Other Advanced Methods 
	Comparison Experiment under PU Dataset 
	Comparison Experiment under CWRU Dataset 
	Computational Burden of the Networks 

	Verify the Necessity of Each Component of the Model 
	Necessity of the Multilocation Scale Learning 
	Necessity of the Multikernel Scale Learning 
	Necessity of the Fault Multifeature Fusion 
	Necessity of the Multifeature Protection 


	Conclusions 
	References

