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Carotenoids are biologically active pigments that are well-known to enhance the defense

and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids

in immunity is not clear. Therefore, this study aims to review the scientific evidence for

the role of carotenoids in invertebrate immunization. From the analysis of published

literatures and recent studies from our laboratory, it is obvious that carotenoids are

involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as

antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl

radicals, thereby reducing SOD activity and reducing the cost of immunity. In some

organisms, carotenoids have been shown to promote SOD activity by up-regulating

the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role

in the expression and regulation of many genes involved in invertebrate immunity,

including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs),

ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock

proteins (HSPs), and CuZnSOD gene. The information in this review is very useful

for updating our understanding of the progress of carotenoid research in invertebrate

immunology and to help identify topics for future topics.
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INTRODUCTION

Vertebrates possess both innate and adaptive immune systems, of which the adaptive immune
system has many specialized cells and molecules that interact in a particular way (1). Unlike
vertebrates, the only line of defense for invertebrates is innate immune system (2). The response
of innate immunity to infection or injury is by releasing highly reactive oxygen and nitrogen
species (ROS and RNS) at the focal point, which leads to immune cost and host tissues destruction
(immunopathology) (3, 4). The cost of immunity is the operating cost of the immune response,
which reduces the availability of resources for other physiological functions (5, 6). Being lack
of specific immunity, both enzymes and non-enzymatic antioxidants play a crucial role in
immunity of invertebrates (7). The main enzymes in the innate immune system include catalase
(CAT), superoxide dismutase (SOD), glutaredoxins, thioredoxins (TRX), peroxiredoxins (PRXs),
and GSH-Px (8). Major non-enzymatic antioxidants, including carotenoids, polyunsaturated
fatty acids (PUFA), uric acid, vitamins (vitamins C and E) and GSH, and a tripeptide
(L-g-glutamyl-L-cysteinyl-L-glycine), comprise a thiol (sulfhydryl) group (8, 9).
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Carotenoids, also known as tetraterpenoids, are responsible
for colorless, red, orange, and yellow pigments in plants,
insects, crustaceans, fish, and birds (10–12). Carotenoids are
produced by plants, algae, and certain microbes (10), with
basic structural units of isopentenyl (IPP) and dimethylallyl
diphosphate (DMAPP) (Figure 1). Carotenoids are biologically
active pigments that have beneficial effects on the body
conditions (13), which increase the efficiency of immune
responses and stimulate innate immunity components (14, 15).
Furthermore, as part of the integrated antioxidant system (16,
17), high carotenoid content in an organism enhances immunity
without increasing the associated costs of immunity by aiding
endogenous enzymes (e.g., catalase, superoxide dismutase) and
detoxifying free radicals produced during immune activity (18–
21). In general, animals cannot biosynthesize carotenoids de
novo, so they obtain carotenoids either directly from food or
partially modified through metabolic reactions (22).

On the other hand, Royet et al. (23) revealed a series of
pattern recognition receptors (PRR), especially peptidoglycan
recognition proteins (PGRPs), which are highly conserved
in evolution and can help the innate immune system
recognizing pathogens through their unique cell wall component,
peptidoglycan (PGN). The ability of carotenoids in regulating
the transcription of various PRR genes has been extensively
studied in vertebrates, particularly in humans (24, 25). Moreover,
the immune response of invertebrates to infectious diseases
has received considerable attention because many of them are
important species in fisheries and aquaculture, while others are
critical to the structure and function of ecosystems (26–39).

To date, Maoka (22), Liaaen-Jensen (40, 41), Matsuno (42, 43),
and Matsuno and Hirao (44) have reviewed carotenoid species
in invertebrates. All of these published reviews have focused on
the emergence of specific carotenoid groups in invertebrates,
but the links between carotenoids and invertebrate immunity
have received relatively little attention. Recently, there have
been more and more reports on the roles of carotenoids in
invertebrate immunity in time-series observations and laboratory
experiments (26, 35–38, 45–51), but the information is not
well-collated. Therefore, in this review, we summarized the
currently available data on the effects of carotenoids on
invertebrate immunity. In particular, we reviewed the role
of carotenoids in antioxidant system, immune system, and

FIGURE 1 | Basic blocks of carotenoids.

unfavorable environmental tolerance of invertebrates. To the
best of our knowledge, this paper represents the first review
reviewing the role of carotenoids in invertebrate immunity. This
information is very useful for updating our understanding of the
progress of the carotenoid research in invertebrate immunology
and for identifying future research topics.

INVERTEBRATE IMMUNE SYSTEM

Invertebrates account for 97% of animal diversity and can
actually be found in any environment. In general, a range
of cellular and humoral defenses are involved in protecting
invertebrates from pathogens that manage to penetrate their
exoskeleton/cuticle or alimentary canal to internal tissues. Cells
associated with innate immunity include hemocytes (circulating
and sessile blood cells) and various other cell types, including
fat body, coelomocytes, hepatopancreas, and gills in insects,
earthworm, molluscs, and crustaceans, respectively (52–55). If
the pathogens manage to penetrate its external barrier, the blood
cells present in the body cavity can destroy the tiny invaders such
as bacteria, fungi, protozoans, and viruses by phagocytosis, and
encapsulate the multicellular parasites by encapsulation, thereby
isolating invaders from the host (54–56).

In the humoral defense of invertebrates, invaders such as
bacteria and fungi are eliminated by antimicrobial peptides
(AMPs). In insects (Drosophila) and shrimps, several distinct
AMP forms are synthesized by the fat body and hemocytes,
respectively (57). The prophenoloxidase (proPO) enzyme
cascade based on phenoloxidase (PO) enzyme activity is one
of the effective effectors of humoral responses. After a stepwise
proteolytic activation, the PO enzyme is responsible for the
production of melanin, as well as the release of quinone-
derived metabolites and reactive oxygen species. These chemicals
are not only destructive to pathogens, but also have cytotoxic
oxidative effects on the basic host cell components (58, 59).
Matova and Anderson (60) reassessed the importance of cellular
(phagocytosis) and humoral (AMP) defense in Drosophila. The
results indicated that the double mutants of Drosophila larvae
contain negligible circulating hemocytes, but high levels of
AMPs did not survive from opportunistic bacterial or fungal
infection (60).

Invertebrates are a very heterogeneous group of animals
(about 1.3 million species). This wide distribution indicates that
innate immune defensemechanisms of invertebrates enable them
to adapt and survive in diverse environments. In fact, in the same
host, different bacterial strains or species may trigger different
immune effectors, leading to different immune responses (61).
It is worth noting that recent studies in sea urchin have shown
that titanium dioxide nanoparticles can temporarily suppress
the inflammatory-related gene transcription and boost metabolic
activity of antioxidants (62–64). The innate immune memory in
invertebrates such as bivalves (65), gastropods (66), insect (67),
and crustaceans (68) is established by re-programming of innate
immune functions after being induced by a stimulus, which
will result either in decreased reactivity (tolerance) or increased
responsiveness (potentiation) to a subsequent challenge. In both
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cases, the main purpose of establishing innate immune memory
is to better defend and regulate its functional immune phenotype
in response to subsequent stimuli.

CAROTENOIDS

Carotenoids have received considerable attention for their
beneficial effects on human health and their wide range of
biotechnological applications (11, 69). Carotenoids have been
reported to enhance the immune system (70), repair DNA
damage (51), and prevent in vitro auto-oxidative damage of
human lymphocytes (71), thereby reducing the risk of various
diseases (72, 73).

Some invertebrates, including insects, polyplacophora,
echinoderms, gastropods, bivalves, and cephalopods, are rich in
carotenoids (35, 48, 49, 74). The accumulation of carotenoids in
invertebrates is tissue specific, and the highest total carotenoids
content (TCC) is usually observed in the gonads, as carotenoids
are essential for invertebrate reproduction (74). Zheng et al.
(74) have shown that the accumulation of TCC in invertebrates,
particularly bivalve, noble scallops Chlamys nobilis, is affected
by genetic factors, which are controlled by genes associated
with carotenoid absorption, such as SRB-like-3 (75) and
StAR-like-3 (76).

Chemically, the polyene backbone consists of a series of
conjugated C=C bonds. This particular feature is responsible
for the main biological functions of carotenoids associated
with antioxidant properties, where dietary carotenoids provide
a degree of antioxidant protection for cells, tissues, and other
structures (24, 51, 77), thereby reducing self-harming caused
by cytotoxic chemicals released by immunological activity

(78, 79). Moreover, carotenoids can enhance the defense
capability and immune competence of various animal systems
by up-regulating the expression levels of immune-related
genes (35–38, 80).

ROLES OF CAROTENOIDS IN
INVERTEBRATE ANTIOXIDANT SYSTEM

During the inflammatory response, the release of excessive
cytotoxic chemicals [highly reactive oxygen species (ROS)
and nitrogen species (RNS)] not only destroys pathogens
and parasites, but also damages the tissues and organs of
the host itself (immunopathology) (3). These biochemical
and physiological damages may eventually lead to disease
by impairing metabolism, causing oxidative damage to lipids,
proteins, and nucleic acids (4, 81–83) (Figure 2). In addition, if
the damaged tissues are not fully recovered and that homeostasis
is not restored, it will further develop into a chronic condition,
such as an increase in rates of morbidity and mortality in the
elderly (84–86). Antioxidant defense systems in invertebrates
play a vital role in controlling the amount of circulating
cytotoxic ROS and RNS. This system comprises three key
antioxidant enzymes, including superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GP), which in
turn participate in the detoxification of superoxide radicals:
SOD converts superoxide into hydrogen peroxide, which is
then detoxified into water and oxygen by CAT and GP (17,
87). It has been reported that the structure and function
of SOD are well-conserved in diverse organisms including
marine invertebrates (88).

FIGURE 2 | Inflammatory response in innate immunity.
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FIGURE 3 | Roles of carotenoids in invertebrate antioxidant system.

In invertebrates, carotenoids are involved in the antioxidant
defense system in two ways (Figure 3). On the one hand,

carotenoids may reduce the relative activity of antioxidant
enzymes by taking over their actions, thereby reducing the
cost of immunity (20, 21). Carotenoids are effective in
scavenging singlet oxygen (1O2) (89), superoxide anion radicals

(SOAR), and hydroxyl radicals (OH•) (90). Tsushima et al.
(91) reported that the β-carotene supplementation in cultured
sea urchin significantly increased carotenoids levels in the

gonads, thereby enhancing the immunological activity of sea
urchins and was associated with higher reproduction and
survival of sea urchin larvae (92). Invertebrates that store large
amounts of carotenoids in tissues have a higher competitive

relationship with the cellular enzymatic antioxidant (AO)
complexes for the corresponding substrates. Dhinaut et al. (48)
used the mealworm beetle Tenebrio molitor as a biological
model of invertebrates, demonstrating that lifetime food
supplementation with carotenoids (particularly astaxanthin)
can prevent immunopathology through immunosuppression.
Moreover, Babin et al. (49) revealed that the presence

of considerable concentration of carotenoids in amphipod
crustacean Gammarus pulex reduced SOD activity, in which
carotenoids take over the role of SOD, first acting on the
detoxification chain of superoxide radicals and producing
hydrogen peroxide. Then, a high concentration of hydrogen
peroxide promotes CAT activity, acting in second in the

detoxification chain. A similar observation has been reported
in the blood cockles, Anadara inaequivalvis, in which 1.7

to 2.9 times lower SOD activity and an elevated content
of reduced glutathione were recorded in tissues with high
carotenoid content (50). In addition, carotenoids can reduce the
susceptibility of single-stranded nucleic acid breaks in cell lines
to oxidative damage (100 µmol H2O2/L, 5min, 4◦C), either by
scavenging DNA-damage free radicals or regulating DNA repair
mechanisms (51).

On the other hand, besides a free radical scavenger,
carotenoids have also been shown to stimulate the activity of
antioxidant enzymes in invertebrates (38), thereby enhancing
the detoxification efficacy of immunological activity. It has been
reported that in noble scallops, C. nobilis, CuZnSOD gene is up-
regulated by carotenoid to enhance detoxification (38). However,
due to the continuous contact of gills with water, the up-
regulation of CuZnSOD transcript is tissue-specific, with the
highest expression levels in gills (93). In addition, it is evident
from clinical studies that a high-fat diet with high carotenoid
content is associated with an increase in CuZnSOD, thereby
increasing the expression of CuZnSOD and protecting tissue
cells from oxidative damage (94). In both cases, carotenoids can
improve the detoxification of free radicals and reduce the costs
associated with oxidative stress.

ROLE OF CAROTENOIDS AS
IMMUNOSTIMULANT IN INVERTEBRATES

Carotenoids enhance the defense and immunity of various
animal systems (18, 95). For instance, dietary trials in amphipod
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TABLE 1 | Gene expression regulations by carotenoids under different stressors.

Gene Up-regulated gene

expression (times)

Stressors References

Thioredoxins (TRX) 1.18–1.76 Vibrio parahaemolyticus (35)

PGRP gene 1.60–1.80 V. parahaemolyticus and polyinosinic polycytidylic acid (Poly I: C) Unpublished data

Ferritins 1.20–1.90 V. parahaemolyticus (47)

Prophenoloxidase

(ProPO)

1.07–1.21 Bacterial infection (18, 39)

Vitellogenin (Vg) 1.60–2.78 NiL (36)

Toll-like Receptor

(TLRs)

1.10–4.00 V. parahemolyticus and lipopolysaccharide and Poly I:C (37)

Heat shock

proteins (HSPs)

1.20–2.00 Heat shock challenge at 32◦C (26, 45)

CuZnSOD gene 1.20–2.20 lower temperature stress (38)

crustacean G. pulex demonstrated that supplementation of
astaxanthin resulted in broad stimulation of innate immunity
to gammarid and increase resistance to microbial infection (18).
Similarly, Kumar et al. (95) revealed that dietary supplementation
of astaxanthin was associated with an increase in phenoloxidase
activity and total hemocyte count in the giant freshwater prawn
Macrobrachium rosenbergii. In the same species, the injection
of astaxanthin also increased the total hemocyte count and
survival rate under the challenge of the pathogenic bacterium
Lactococcus garvieae (96). The higher immunity of invertebrates
containing significant amounts of carotenoids can be partly
explained by the fact that carotenoids regulate gene expression
of several immune-related genes, in particular thioredoxin-like
protein (TRX) gene (35), peptidoglycan recognition receptor
proteins (PGRPs) gene (Unpublished data), ferritin genes (47),
prophenoloxidase (ProPO) gene (18, 39), vitellogenin (Vg)
gene (36), toll-like receptor (TLRs) gene (37), Heat shock
proteins (HSP70 and HSP 90) (26, 45, 97), and CuZnSOD
gene (38) (Table 1).

Thioredoxins (TRXs) contain a dithiol/disulfide active site
(CGPC) and are the major cellular protein disulfide reductase
in the thioredoxin system (98). TRXs have been shown to be
involved in the immunity of marine invertebrates, including
Apostichopus japonicas (99), Ruditapes philippinarum (100),
Litopenaeus vannamei (101), and Haliotis discus discus (102).
Up-regulation of TRX gene expression in bivalves has been
demonstrated under bacteria stress (35, 103). Recent studies
on the effects of Vibrio parahaemolyticus challenge on two
polymorphic scallops with different total carotenoid content
(golden and brown scallops; the total carotenoid content of
golden scallops is significantly higher than that of brown scallops)
reveal that the expression level of TRX is up-regulated in the
golden scallops by 1.18 to 1.76 times relative to the brown
scallops, indicating that carotenoids up-regulated the expression
of TRX gene under bacterial challenge (35).

Vg is a precursor of vitellin (Vn) in egg yolk, a major source
of energy in embryonic development (104). Vg is expressed in
females of nearly all oviparous species, including amphibians,
fish, birds, reptiles, most invertebrates, and monotremes (105,

106). Moreover, Vg is a non-polar molecule carrier that transfers
lipids and carotenoids to oocytes (107). The role of Vg in
host immune defense against bacteria and viruses has been
extensively studied in many oviparous animals, including marine
bivalve Patinopecten yessoensis, in which Vg has antibacterial
activity (108). Zhang et al. (36) demonstrate that the Vg
transcription level in the ovary of noble scallop C. nobilis is
directly proportional to the total carotenoid content, indicating
that Vg expression is up-regulated by carotenoids.

PGRPs are a group of pattern recognition receptors (PRRs)
that are conserved from invertebrates to vertebrates. However,
PGRPs function differently in innate immunity of invertebrates
and vertebrates. In most invertebrates, PGRPs not only
participate in multiple host defense processes, including
hydrolysis of PGN and cell phagocytosis, but also play an
important role in bacterial pathogen sensing (109, 110). For
example, in bay scallops, PGRP is involved in the scallop
immune response against gram-positive bacterial infections,
primarily induced by bacterial PGN (109). In Solen grandis,
both PGRP-S1 and PGRP-S2 are induced by pathogen-associated
molecular patterns (PAMPs) and PGN (110), whereas in C.
nobilis, theCnPGRP gene can be induced byV. parahaemolyticus,
LPS, and Poly I:C. Interestingly, the presence of high total
carotenoids content was associated with up-regulation of
CnPGRP expression, particularly in the gills (1.8 times) and
hepatopancreas (1.6 times) of C. nobilis under immunostimulant
stress (unpublished data).

Ferritins are important iron-chelating proteins that play
crucial roles in the iron-withholding defense system (111). These
proteins are ubiquitous in a variety of organisms, including
fungi, bacteria, invertebrates, plants, and vertebrates, and show
several conserved features (112). High expression of cytosolic
and secreted ferritin in invertebrates has been demonstrated to
improve innate immune defense in invertebrates (113). Under
bacterial challenge, the expression level of ferritins gene (up-
regulated by 1.20–1.90 times) was positively correlated with total
carotenoids content in C. nobilis, indicating that carotenoids
up-regulated the expression of ferritins gene under bacterial
stress (47).
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Pattern recognition receptors (PRRs) are a group of
recognition proteins of the innate immune system associated
with the detection of pathogen-associated molecular patterns
(PAMPs) (114, 115). One type of PRR, TLRs, is an important
transmembrane protein that connects innate immunity
and adaptive immunity (116). TLRs detect microorganisms
based on conserved PAMPs such as lipoproteins, PGNs,
lipopolysaccharides (LPS), double-strand viral RNA,
unmethylated bacterial CpG DNA, and many more (117).
In non-mammalian vertebrates to invertebrates, many species
have also been shown to have numerous TLRs (118). Invertebrate
TLRs are mainly studied in bivalves such as Chlamys farreri
(119), Mytilus galloprovincialis (120), Crassostrea gigas (121),
Mya arenaria (122), the cephalopod Sepia officinalis (123),
and Euprymna scolopes (124). Laboratory challenge tests on
polymorphic scallops with V. parahemolyticus and LPS and
Poly I:C showed that under the influence of carotenoids,
CnTLR-1 transcripts were significantly up-regulated in the
hemolymph (37).

Prophenoloxidase (ProPO) activation system plays an
important role in initiating melanin synthesis by detecting
microbial cell surface molecules such as PGNs or LPS in
bacteria and β-1,3-glucans in fungi (125–127). Cornet et al.
(39) found that both PO and total activity were positively
correlated with carotenoid concentrations in the hemolymph
of G. pulex population, highlighting the potential importance
of dietary carotenoids in the evolution of investments in
immune defense and their short-term up-regulation in G. pulex.
Consistent with this up-regulation, dietary supplementation
with carotenoids is associated with increased resistance to
bacterial infections, further supporting the idea of stimulating
the effects of carotenoids on immunity. Babin et al. (18) propose
that this immunostimulation either requires the carotenoids
in the hemolymph to reach a threshold level or that it needs
to increase the level of carotenoids for a sufficiently long time.
Unexpectedly, despite the enhanced immunological activity,
gammarids fed on carotenoids did not suffer from additional
immunity cost compared to control gammarids (18). Raising PO
activity is likely beneficial in fighting pathogen attacks, but it is
also known to be costly through autoreactivity (4). Therefore,
this observation might indicate that dietary carotenoids help
to reduce this cost, enabling individuals to raise their immune
activity and resist infections more effectively.

ROLE OF CAROTENOIDS IN
INVERTEBRATE ENVIRONMENTAL
TOLERANCE

Immunity is strongly influenced by environmental conditions.
Altered environmental conditions can directly affect immunity
by changing the concentration and efficiency of cytokine
receptors, cytokines, and cells of the immune response,
or indirectly affecting immunity by inducing general stress
responses (128). Carotenoids have increased the resistance of
invertebrates to environmental stress factors such as low salinity
(46) and heat stress (26, 38, 45, 97). Under low salinity

stress, the SOD content and expression level of scallop serine
protease inhibitor (SPI) gene were positively correlated with total
carotenoids, indicating that carotenoids enhanced the resistance
of C. nobilis to low salinity (46).

Heat shock proteins (HSPs) are composed of a group of highly
conserved proteins that are widely found in prokaryotes and
eukaryotes. They increase the resistance of organisms to stressors
and maintain cellular homeostasis (129). HSP expression is
rapidly up-regulated when organisms are exposed to hypoxia,
high temperatures, heavy metals, pathogen invasions, starvation,
or trauma (130, 131). The HSP90 synthesis has been shown to
induce by external stress in various mollusks, such as C. farreri
(132), Argopecten irradians (133), C. gigas (134), Haliotis discus
hannai (135), R. philippinarum (136), and Hyriopsis cumingii
(129). Recent studies have demonstrated that in a heat shock
challenge at 32◦C for 36 h, HSP90 expression levels are higher
(1.2 to 2.0 times) in C. nobilis with higher total carotenoids
content (60 to 120µg/g) compared with common brown noble
scallops with lower TCC (40 to 52µg/g) (97). In the same species,
carotenoids can also up-regulate the expression of HSP70 by 2.0
to 12.0 times after 36 h of acute cold stress challenge in 8◦C (26)
and acute heat stress challenge in 32◦C (45).

Carotenoids also have shown to up-regulate the expression
of CuZnSOD gene in mollusc under low temperature stress, and
there was a strong positive correlation between total carotenoid
content and the expression level of CuZnSOD gene in C.
nobilis (38). Moreover, carotenoids can also enhance defense by
participating inmaintenance ofmembranes in a fluid state during
low-temperature stress (137).

CONCLUSION

Evidence from analytical, biochemical, and molecular studies
demonstrated that carotenoids play an important role in
invertebrate immunity. Carotenoids not only actively scavenge
singlet oxygen, superoxide anion radicals, and hydroxyl radicals,
thereby reducing the cost of immunity, but also regulate the
expression of immune-related genes. In this context, there are
still some issues that need to be resolved. The exact mechanism by
which carotenoids may reduce the cost of self-harm in immune
responses remains to be tested. Moreover, the exact role of
carotenoids in more invertebrate species remains to be studied.
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