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Abstract: In this investigation, the transient electroosmotic flow of multi-layer immiscible viscoelastic
fluids in a slit microchannel is studied. Through an appropriate combination of the momentum
equation with the rheological model for Maxwell fluids, an hyperbolic partial differential equation
is obtained and semi-analytically solved by using the Laplace transform method to describe the
velocity field. In the solution process, different electrostatic conditions and electro-viscous stresses
have to be considered in the liquid-liquid interfaces due to the transported fluids content buffer
solutions based on symmetrical electrolytes. By adopting a dimensionless mathematical model for the
governing and constitutive equations, certain dimensionless parameters that control the start-up of
electroosmotic flow appear, as the viscosity ratios, dielectric permittivity ratios, the density ratios, the
relaxation times, the electrokinetic parameters and the potential differences. In the results, it is shown
that the velocity exhibits an oscillatory behavior in the transient regime as a consequence of the
competition between the viscous and elastic forces; also, the flow field is affected by the electrostatic
conditions at the liquid-liquid interfaces, producing steep velocity gradients, and finally, the time to
reach the steady-state is strongly dependent on the relaxation times, viscosity ratios and the number
of fluid layers.

Keywords: electroosmotic flow; microchannel; immiscible fluids; electrostatic effects; interfacial
phenomena; Maxwell fluids; parallel flows

1. Introduction

Microfluidics is a term that is used in fields of science with miniaturized systems where fluids are
used as key components of control and sensing [1]. The handling of small sample volumes, scalability,
integration of multiple functions and fields, low operating costs, low energy consumption, and so
forth are some of the already known advantages of systems miniaturization; however, an inherent
problem in these small devices is in the manufacture of moving parts for the manipulation of fluids or
samples. That is why techniques based on electrokinetic effects arise that do not need moving parts [2].
The microsystem known as a laboratory on a chip, with size from millimeters to centimeters, facilitates
the implementation of many laboratory tasks, which include sample preparation, mixing, separation,
manipulation, control, detection, and analysis [3]. Applications cover the areas of mechanics, biology,
chemistry, and medicine, seeking to improve technologies to preserve human health and improve the
quality of life [4].

In this context, and to cover the different applications above mentioned, the electroosmotic flow
has emerged as an electrokinetic phenomenon to transport fluids in microsystems. The electroosmosis
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represents the movement, due to an applied electric field, of an electrolyte solution relative to a
stationary charged surface [5]. This transport method has been theoretically studied since many
years ago in small channels with Newtonian fluids, as the early works carried out by Burgreen and
Nakache [6] and Rice and Whitehead [7]. Since then and until now, the scientific community has
continued studies on the electroosmotic flow behavior using Newtonian [8–12] and non-Newtonian
fluids [13–19], addressing emerging issues regarding the rheology of the fluids and ionic concentrations,
channel geometry, wall zeta potentials effects, boundary slip effects, among other topics, and their
implications on the flow characteristics.

Research progress on electroosmotic flows with single-phase fluids is broad, as shown through
the references cited in the previous paragraph and the references contained within them in turn.
However, several microdevices applications use parallel multiphase flows for continuous chemical
processing in analyses and synthesis [20,21], realizing specific operations as mixing and reaction [22],
phase confluence and separation [23], solvent extraction [24,25], liquid-liquid extraction [26],
purification [27] and synthesis of polymer membranes [28]. These parallel flows are a kind of flow
pattern generated by using flow-focusing techniques in microsystems [29,30].

Following this direction, the scientific community exploits the benefit of electrokinetic phenomena
by not including moving parts in microdevices, developing electrokinetic flow-focusing techniques.
Hence, Pan et al. [31] perform an experimental investigation in microfluidic chips for mixing
enhancement through the electrokinetic flow focusing and valveless switching of multiple samples
flows. Meanwhile, Jiang et al. [32] propose a new microfluidic method to transport samples between
sheath streams; here, the sheath streams for flow-focusing are generated by electroosmotic effects.
In another work, Li et al. [33] present a theoretical and experimental investigation on flow-focusing
with valveless switching, using the coupled effect of hydrodynamics and electroosmosis; in this work,
the applied technique for switching a nonconducting sample stream or droplets, use two sheath
streams of conducting fluids in a microchannel under electroosmotic effects. In this sense, Jia et al. [34]
carried out a continuous-flow focusing study for collecting microparticles using induced-charge
electroosmosis in a microfluidic device.

Therefore, for about two decades, the research to understand the physical mechanisms for moving
parallel flows of immiscible fluids under electrokinetic effects has considered the transport of two
layers [35–42] and three layers [43]. In these investigations, the arrangement of fluids considers that
one fluid layer is non-conducting and the other(s) fluid(s) layer(s) if, being the electrolytic fluid(s)
which is(are) under electroosmotic effects. Consequently, interfacial phenomena include the formation
of an electrical double layer both in solid-liquid interfaces and in liquid-liquid interfaces. Regarding the
liquid-liquid interfaces, the hydrodynamic and electrostatic boundary conditions are established in a
relatively simple form with a specified zeta potential and the partially or null employment of Maxwell
electric stress. However, other studies about the flow of two immiscible parallel fluids, consider that
both fluids are conductive (i.e., fluids based in electrolytic solutions), increasing the complexity of the
electrostatic boundary conditions in the liquid-liquid interface through a potential difference and the
Gauss’s law for the electrical displacement, together with the hydrodynamic boundary conditions via
the combination of viscous and electric Maxwell stresses [44–47]. In addition, to cover the different
flow-focusing applications in microdevices, the study of parallel flows under electrokinetic effects also
has been extended to multi-layer systems [48–50].

To complement the research of Liu et al. [36], Li et al. [48], Afonso et al. [38], Huang et al. [39],
Jian et al. [46], Matías et al. [42], Escandón et al. [49] about parallel flows with non-Newtonian
fluids under electroosmotic effects, and considering that many of handled fluids in microsystems
have complex rheological behavior, the present investigation aims to realize a parametric study on
the start-up of the electroosmotic flow of multi-layer immiscible Maxwell fluids in a microchannel.
The semi-analytical solution for the velocity field that is based on the Laplace transform method,
obtains the description of new liquid-liquid interfacial phenomena as well as combined effects from the
physical, rheological and electrical properties of fluids, over the velocity profiles and on the tracking
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of the velocity magnitude in the time. Hence, this model will be able to analyze many cause-effect
relationships and it should serve as a guide for starting an experimental set-up in microdevices which
require high spatio-temporal precision to carry out different clinical, chemical and biological analyses.

2. Mathematical Modeling

2.1. Physical Model Description

In this work, the transient electroosmotic flow of multi-layer immiscible fluids in a slit
microchannel is analyzed. The physical model of the flow phenomenon studied here is on a Cartesian
coordinate system (x, y), as is shown in Figure 1. The conduit is integrated by two parallel flat plates
separated by a distance of 2H and filled by fluid layers, in which each one is composed of a mixture of
symmetrical electrolytes with solutes that exhibit viscoelastic behavior. In the sketch, each liquid-liquid
interface is placed in a yn position; where, the subscript n = 1, 2, 3, ..., i represents the number of the
fluid layer, and i is the fluid layer in contact with the upper microchannel wall. Due to the fluids are
immiscible and electrically conductive, in addition to the fact that the interfaces between them are
polarizable and impermeable to charged particles, in this region, a double electrical layer appears
presenting electrostatic properties through a potential difference ∆ψn. The microchannel walls are also
polarizable and acquire a surface electric charge represented by the zeta potential ζw, also promoting
the formation of an electric double layer in the solid-liquid interfaces. The fluids movement is due
to the ends of the conduit are subject to an electric potential generated by a pair of electrodes that
gives rise to a uniform electric field Ex inducing electroosmotic effects on the electric double layers
described before.
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Figure 1. Sketch of electroosmotic flow of multi-layer immiscible fluids in a slit microchannel.

2.2. Governing and Constitutive Equations

The flow field of multi-layer immiscible fluids is governed by the Poisson equation for the electric
potential distribution on the microchannel

∇2Φn = −ρe,n

εn
, (1)

where Φn is the electric potential, ρe,n is the volumetric free charge density and εn is the dielectric
permittivity. Also, with the continuity equation for incompressible fluids as

∇ · vn = 0, (2)

where v is the velocity vector. And the Cauchy momentum governing equation

ρn
Dvn

Dt
= −∇p +∇ · τn + ρng + ρe,nE, (3)
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where ρn is the fluid density, t is the time, p is the pressure, τn is the stress tensor, g is the gravitational
acceleration vector and E is the electric field vector. The shear stress tensor is related with the Maxwell
rheological model as [51,52]

τn + λn
∂τn

∂t
= −η0,nγ̇n, (4)

where λn is the relaxation time, η0,n is the zero-shear-rate viscosity and γ̇n = (∇vn) + (∇vn)T is
the rate-of-strain-tensor.

2.3. Simplified Mathematical Model

The general governing equations given in the previous section can be simplified taking into
account the following assumptions:

• Constant physical properties and independent of the local electric field, ion concentration,
and temperature [36,53].

• Fully-developed flow [35].
• Impermeable interfaces between the fluids and ideally polarizable to electric charges [5,54–56].

The electric double layers at the liquid-liquid interfaces are composed of two diffuse charge layers
separated by a central compact layer, characterized by a potential difference drop due to the
orientation of the solvent molecules; also, the continuity of electrical displacements on both sides
of the central inner layer, in absence of ions in the inner layer is considered [5,55–58].

• Flat interfaces between the fluids [44,59–61]. This is assumed when considering that there is:
(i) creeping flow for low Reynolds numbers, being Ren(= ρn HuHS/η0,n)� 1, resulting in parallel
flows with laminar fluid interfaces [43], and (ii) uniform zeta potentials along the microchannel.
Here, the characteristic velocity of flow is the well-known Helmholtz-Smoluchowski velocity
defined by uHS = −εrefζwEx/ηref, where the subscript “ref” indicates physical properties referred
to electrolytes in aqueous solutions at 298.15 K (25 ◦C) [5,62].

• The gravitational forces are neglected [60].
• Long microchannel neglecting any end effects; hence, the electric potential Φn, is the algebraic

sum of the potential due to the electric double layer, ψn, and the potential due to the imposed
electric field, φ, as [5]:

Φn(x, y) = ψn(y) + φ(x), (5)

where φ(x) = φ0− xEx; being φ0 the electric potential at the inlet of the microchannel at x = 0 and
Ex is the external electric field independent of the position and constant along the axial direction.

• The local distribution of the free charges, that is, ions, is governed by the electrical potential into
the electric double layer, ψn, through the Boltzmann distribution as [5]

ρe,n = −2znen0,n sinh
(

zneψn

kBTn

)
, (6)

where zn is the valence of electrolyte, e is the electron charge, n0,n is the ionic number concentration
in the bulk solution, kB is the Boltzmann constant and Tn is the fluid temperature.

• The Debye-Hückel approximation for small interfacial potentials at the solid-liquid [5,63] and
liquid-liquid interfaces [45,46] is used. This approximation can be valid for values up to
50 mV [5,7,9].

• There is no imposed pressure gradient on microchannel.
• The electric double layers do not overlap.
• Any physical or chemical modification on the wall surfaces to cause hydrophobic interactions at

the solid-liquid interfaces [47,64] is negligible.
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As result, Equations (1)–(4), can be rewritten for a unidirectional flow as follows, leaving the
Poisson-Boltzmann equation

d2ψn(y)
dy2 = κ2

nψn(y), (7)

the momentum equation

ρn
∂un(y, t)

∂t
= −

∂τxy,n(y, t)
∂y

− εnκ2
nExψn(y) (8)

and respectively the Maxwell’s constitutive rheological equation

τxy,n(y, t) + λn
∂τxy,n(y, t)

∂t
= −η0,n

∂un(y, t)
dy

, (9)

where κ2
n = 2z2

ne2n0,n/εnkBTn is the Debye-Hückel parameter related to the Debye length

κ−1
n =

(
εnkBTn/2z2

ne2n0,n
)1/2 [5], un is the velocity on the x−direction and τxy,n is the shear stress.

However, to get a momentum equation only in terms of velocity, Equation (9) is derived with
respect to the transverse coordinate, producing

∂τxy,n(y, t)
∂y

= −λn
∂2τxy,n(y, t)

∂t∂y
− η0,n

∂2un(y, t)
∂y2 , (10)

which is replaced into Equation (8) obtaining

ρn
∂un(y, t)

∂t
= λn

∂2τxy,n(y, t)
∂t∂y

+ η0,n
∂2un(y, t)

∂y2 − εnκ2
nExψn(y). (11)

On the other hand, Equation (8) is derived with respect to time, yielding

ρn
∂2un(y, t)

∂t2 = −
∂2τxy,n(y, t)

∂t∂y
. (12)

The previous result is replaced into Equation (11), obtaining a momentum equation of hyperbolic
type for the n fluids in terms of the axial velocity as follows

ρnλn
∂2un(y, t)

∂t2 + ρn
∂un(y, t)

∂t
= η0,n

∂2un(y, t)
∂y2 − εnκ2

nExψn(y). (13)

To solve the governing equations given in Equations (7) and (13), the following boundary
conditions in t > 0 for the electric potential and velocity are considered. At the bottom wall of
microchannel for the fluid layer n = 1, the boundary conditions at y = 0 are a specified zeta potential
and the no-slip boundary condition respectively as

ψ1(y = 0) = ζw, u1(y = 0, t) = 0. (14)

In the case of each liquid-liquid interface at y = yn=1,2,3,...,i−1, the boundary conditions that
are considered are a potential difference, the Gauss’s law for the electrical displacement, a velocity
continuity, and a stresses balance that include the Maxwell stresses and viscous shear stresses (also
called electro-viscous stresses balance), respectively as follows

ψn+1(y)− ψn(y) = ∆ψn, (15)

εn+1
dψn+1(y)

dy
= εn

dψn(y)
dy

, (16)
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un(y, t) = un+1(y, t) (17)

and
τxy,n(y, t) + τe,n(y) = τxy,n+1(y, t) + τe,n+1(y), (18)

where the Maxwell shear stress is

τe,n(y) = −εnEx
dψn(y)

dy
. (19)

Additionally, at the top wall of microchannel for the fluid layer n = i, the boundary conditions at
y = 2H, are a specified zeta potential and the no-slip boundary condition respectively as

ψi(y = 2H) = ζw, ui(y = 2H, t) = 0. (20)

Finally, the initial conditions to solve the momentum equation, Equation (13), for the entire
geometric domain 0 ≤ y ≤ 2H, that is, for all fluid layers are

un(y, t = 0) = 0, τxy,n(y, t = 0) = 0,
∂un

∂t

∣∣∣∣
y,t=0

= 0. (21)

2.4. Dimensionless Mathematical Model

The mathematical model is normalized with the following dimensionless variables

t̄ =
ηreft

ρrefH2 , ȳ =
y
H

, ψ̄n =
ψn

ζw
, ūn =

un

uHS
, τ̄xy,n =

Hτxy,n

ηrefuHS
. (22)

Therefore, by replacing Equation (22) in Equations (7), (9) and (13), the dimensionless version of
the governing and constitutive equations of Poisson-Boltzmann, momentum and Maxwell is obtained,
respectively as follows

d2ψ̄n(ȳ)
dȳ2 = κ̄2

nψ̄n(ȳ), (23)

ρ̄nλ̄n
∂2ūn(ȳ, t̄)

∂t̄2 + ρ̄n
∂ūn(ȳ, t̄)

∂t̄
= η̄n

∂2ūn(ȳ, t̄)
∂ȳ2 + ε̄nκ̄2

nψ̄n(ȳ) (24)

and

τ̄xy,n(ȳ, t̄) + λ̄n
∂τ̄xy,n(ȳ, t̄)

∂t̄
= −η̄n

∂ūn(ȳ, t̄)
∂ȳ

. (25)

The Equation (22) is also replaced in all boundary conditions for t̄ > 0. From Equation (14) for the
bottom wall of microchannel at ȳ = 0, yields

ψ̄1(ȳ = 0) = 1, ū1(ȳ = 0, t̄) = 0, (26)

respectively, from Equations (15)–(19) for each liquid-liquid interface at ȳ = ȳn=1,2,3,...,i−1, leaves the
following set of dimensionless equations

ψ̄n+1(ȳ)− ψ̄n(ȳ) = ∆ψ̄n, (27)

ε̄n+1
dψ̄n+1(ȳ)

dȳ
= ε̄n

dψ̄n(ȳ)
dȳ

, (28)

ūn+1(ȳ, t̄) = ūn(ȳ, t̄) (29)

and

τ̄xy,n+1(ȳ, t̄) + ε̄n+1
dψ̄n+1(ȳ)

dȳ
= τ̄xy,n(ȳ, t̄) + ε̄n

dψ̄n(ȳ)
dȳ

=, (30)
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also, from Equation (20) for the top wall of microchannel at ȳ = 2, yields

ψ̄i(ȳ = 2) = 1, ūi(ȳ = 2, t̄) = 0. (31)

In the case of the initial conditions given in Equation (21), and by using Equation (22), these can
be rewritten as

ūn(ȳ, t̄ = 0) = 0, τ̄xy,n(ȳ, t̄ = 0) = 0,
∂ūn

∂t̄

∣∣∣∣
ȳ,t̄=0

= 0, (32)

for 0 ≤ ȳ ≤ 2.
The dimensionless parameters in this section are defined as

κ̄n =
H

κ−1 , ρ̄n =
ρn

ρref
, ε̄n =

εn

εref
, η̄n =

η0,n

ηref
,

λ̄n =
ηrefλn

ρrefH2 , ȳn =
yn

H
, ∆ψ̄n =

∆ψn

ζw
, (33)

where κ̄n are the ratios between the microchannel height to the Debye lengths or also known as
electrokinetic parameters, ρ̄n are the densities ratios, ε̄n are the dielectric permittivities ratios, η̄n are the
viscosity ratios and λ̄n are the dimensionless relaxation times. On the other hand, ȳn are the interface
positions and ∆ψ̄n are the potential differences; these two dimensionless parameters ranging from
n = 1 to n = i− 1.

3. Solution Methodology

3.1. Electric Potential Distribution

The Poisson-Boltzmann equation for the electric potential, Equation (23), has a well-known
solution that, in terms of n-layers of fluid is given by

ψ̄n(ȳ) = C2n−1eκ̄n ȳ + C2ne−κ̄n ȳ, (34)

where C2n−1 and C2n are integration constants that are determined by applying the
corresponding boundary conditions at solid-liquid and liquid-liquid interfaces given in
Equations (26)–(28) and (31)–(34). As result, the following equation system is obtained

C1 + C2 = 1,

C3eκ̄2 ȳ1 + C4e−κ̄2 ȳ1 − C1eκ̄1 ȳ1 − C2e−κ̄1 ȳ1 = ∆ψ̄1,

ε̄2
[
C3κ̄2eκ̄2 ȳ1 − C4κ̄2e−κ̄2 ȳ1

]
− ε̄1

[
C1κ̄1eκ̄1 ȳ1 − C2κ̄1e−κ̄1 ȳ1

]
= 0,

C5eκ̄3 ȳ2 + C6e−κ̄3 ȳ2 − C3eκ̄2 ȳ2 − C4e−κ̄2 ȳ2 = ∆ψ̄2,

ε̄3
[
C5κ̄3eκ̄3 ȳ2 − C6κ̄3e−κ̄3 ȳ2

]
− ε̄2

[
C3κ̄2eκ̄2 ȳ2 − C4κ̄2e−κ̄2 ȳ2

]
= 0, (35)

...

C2i−1eκ̄i ȳi−1 + C2ie−κ̄i ȳi−1 − C2(i−1)−1eκ̄i−1 ȳi−1 − C2(i−1)e
−κ̄i−1 ȳi−1 = ∆ψ̄i−1,

ε̄i

[
C2(i)−1κ̄ieκ̄i ȳi−1 − C2(i)κ̄ie−κ̄i ȳi−1

]
− ε̄i−1

[
C2(i−1)−1κ̄i−1eκ̄i−1 ȳi−1 − C2(i−1)κ̄i−1e−κ̄i−1 ȳi−1

]
= 0,

C2i−1e2κ̄i + C2ie−2κ̄i = 1.

The above system of linear algebraic equations contains the same number of variables as the equations.
Hence, the integration constants C2n−1 and C2n are solved by the matrix inverse method [65].
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3.2. Velocity Distribution

To obtain the dimensionless velocity distribution, the Laplace transforms are defined as

Un(ȳ, s) = L {ūn(ȳ, t̄)} =
∫ ∞

0
ūn(ȳ, t̄)e−st̄dt̄ (36)

and for the shear stress the following relationship is also used

τ̃xy,n(ȳ, s) = L {τ̄xy,n(ȳ, t̄)} =
∫ ∞

0
τ̄xy,n(ȳ, t̄)e−st̄dt̄. (37)

Equations (36) and (37) were applied to the momentum and constitutive equations,
Equation (24) and (25), yielding

λ̄nρ̄n

[
s2Un(ȳ, s)− sūn(ȳ, t̄ = 0)− ∂ūn

∂t̄

∣∣∣∣
ȳ,t̄=0

]

+ ρ̄n

[
s2Un(ȳ, s)− sūn(ȳ, t̄ = 0)

]
= η̄n

∂2Un(ȳ, s)
∂ȳ2 +

ε̄nκ̄2
n

η̄ns
ψ̄n(ȳ) (38)

and respectively

τ̃xy,n(ȳ, s) + λ̄n
[
sτ̃xy,n(ȳ, s)− τ̄xy,n(ȳ, t̄ = 0)

]
= −η̄n

∂Un

∂ȳ
. (39)

Satisfying the initial conditions given in Equations (32), (38) and (39) can be rewritten as

∂2Un(ȳ, s)
∂ȳ2 − α2

nUn(ȳ, s) = βnψ̄n(ȳ) (40)

and

τ̃xy,n(ȳ, s) = −γn
∂Un(ȳ, s)

∂ȳ
, (41)

where α2
n = (ρ̄ns/η̄n)(λ̄ns + 1), βn = −ε̄nκ̄2

n/η̄ns, and γn = η̄n/(1 + λ̄ns). To obtain the
corresponding boundary conditions to solve the momentum Equation (40), the Laplace transforms
in Equations (36) and (37) are applied in Equations (26), (29)–(31), yielding for the bottom wall of
microchannel at ȳ = 0

U1(ȳ = 0, s) = 0, (42)

in each liquid-liquid interface at ȳ = ȳn=1,2,3,...,i−1 and in addition with aid of Equation (41), yields

Un(ȳ = ȳn, s) = Un+1(ȳ = ȳn, s), (43)

− γn
∂Un

∂ȳ
+

ε̄n

s
dψ̄n

dȳ
= −γn+1

∂Un+1

∂ȳ
+

ε̄n+1

s
dψ̄n+1

dȳ
, (44)

and finally, for the boundary condition for the top wall of microchannel at ȳ = 2 is obtained that

Ui(ȳ = 2, s) = 0. (45)

Therefore, the mathematical model for electroosmotic flow of multi-layer immiscible
Maxwell fluids in the space of the Laplace transform is composed by Equations (40), (42)–(45).
Being Equation (40) an nonhomogeneous ordinary differential equation, its solution is the superposition
of a homogeneous solution Uh,n(ȳ, s) and a particular solution Up,n(ȳ, s) as follows

Un(ȳ, s) = Uh,n(ȳ, s) + Up,n(ȳ, s). (46)
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The homogeneous solution and the particular one, are the following equations, respectively

Uh,n(ȳ, s) = Aneαn ȳ + Bne−αn ȳ (47)

and
Up,n(ȳ, s) = Dneκ̄n ȳ + Ene−κ̄n ȳ (48)

where An, Bn, Dn, and En are constant to be determined.
The constants Dn and En are obtained by the substitution of Equation (48) into the Equation (40),

yielding

Dn =
βnCn

κ̄2
n − α2

n
, En =

βnCn+1

κ̄2
n − α2

n
. (49)

Considering the constant values of the previous equation and Equation (46), the dimensionless
velocity distribution of each fluid layer of electroosmotic flow is

Un(ȳ, s) = Aneαn ȳ + Bne−αn ȳ + Dneκ̄n ȳ + Ene−κ̄n ȳ. (50)

To find the constants An and Bn, it is necessary to apply the boundary conditions given from
Equations (42)–(45) to Equation (50), and with aid of Equation (34), the following system of linear
algebraic equations is obtained

A1 + B1 + D1 + E1 = 0,

A1eα1 ȳ1 + B1e−α1 ȳ1 + D1eκ̄1 ȳ1 + E1eκ̄1 ȳ1 = A2eα2 ȳ1 + B2e−α2 ȳ1 + D2eκ̄2 ȳ1 + E2eκ̄2 ȳ1 ,

γ1
[
A1α1eα1 ȳ1 − B1α1e−α1 ȳ1+ D1κ̄neκ̄1 ȳ1 − E1κ̄1e−κ̄1 ȳ1

]
+

ε̄1

s
[
C1κ̄1eκ̄1 ȳ1 − C2κ̄1e−κ̄1 ȳ1

]
=

γ2
[
A2α2eα2 ȳ1 − B2α2e−α2 ȳ1+ D2κ̄2eκ̄2 ȳ1 − E2κ̄2e−κ̄2 ȳ1

]
+

ε̄2

s
[
C3κ̄2eκ̄2 ȳ1 − C4κ̄2e−κ̄2 ȳ1

]
,

A2eα2 ȳ2 + B2e−α2 ȳ2 + D2eκ̄2 ȳ2 + E2eκ̄2 ȳ2 = A3eα3 ȳ2 + B3e−α3 ȳ2 + D3eκ̄3 ȳ2 + E3eκ̄3 ȳ2 ,

γ2
[
A2α2eα2 ȳ2 − B2α2e−α2 ȳ2+ D2κ̄2eκ̄2 ȳ2 − E2κ̄2e−κ̄2 ȳ2

]
+

ε̄2

s
[
C3κ̄2eκ̄2 ȳ2 − C4κ̄2e−κ̄2 ȳ2

]
=

γ3
[
A3α3eα3 ȳ2 − B3α3e−α3 ȳ2+ D3κ̄3eκ̄3 ȳ2 − E3κ̄3e−κ̄3 ȳ2

]
+

ε̄3

s
[
C5κ̄3eκ̄3 ȳ2 − C6κ̄3e−κ̄3 ȳ2

]
, (51)

...

Ai−1eαi−1 ȳi−1 + Bi−1e−αi−1 ȳi−1 + Di−1eκ̄i−1 ȳi−1 + Ei−1eκ̄i−1 ȳi−1 =

Aieαi ȳi−1 + Bie−αi ȳi−1 + Dieκ̄i ȳi−1 + Eieκ̄i ȳi−1 ,

γi−1
[
Ai−1αi−1eαi−1 ȳi−1 − Bi−1αi−1e−αi−1 ȳi−1+ Di−1κ̄i−1eκ̄i−1 ȳi−1 − Ei−1κ̄i−1e−κ̄i−1 ȳi−1

]
+

ε̄i−1

s

[
C2(i−1)−1κ̄i−1eκ̄i−1 ȳi−1− C2(i−1)κ̄i−1e−κ̄i−1 ȳi−1

]
= γi

[
Aiαieαi ȳi−1 − Biαie−αi ȳi−1

+ Diκ̄ieκ̄i ȳi−1 − Eiκ̄ie−κ̄i ȳi−1
]
+

ε̄i
s

[
C2(i)−1κ̄ieκ̄i ȳi−1 − C2(i)κ̄ie−κ̄i ȳi−1

]
,

Aie2αi + Bie−2αi + Die2κ̄i + Eie−2κ̄i = 0,

which has been solved using the inverse matrix method in a process analogous to that of the electric
potential distribution. Therefore, the constants Dn and En in Equation (49), and the constants An and
Bn found through Equation (51), are replaced into Equation (50), where the inverse Laplace transform
is numerically applied to solve the velocity distribution in this electroosmotic flow. To this, the method
based on concentrated matrix exponential (CME) distributions is used [66]; in this framework, a finite
linear combination of the transform values approximates ū, via

ūn(ȳ, t̄) ≈ ūn(ȳ, t̄, M) =
1
t̄

M

∑
k=1

ωkUn

(
ȳ,

θk
t̄

)
, (52)
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where ω1 and θ1 are real coefficients, and from ω2 to ωM, and from θ2 to θM are (M− 1)/2 complex
conjugate pairs that the authors in Horváth et al. [66] provide. Here, M = 50.

4. Results and Discussion

The dimensionless parameters used in the results are estimated with an appropriate combination
of the following geometric dimensions, physical properties, and electrostatic interfacial conditions
in the range of: 0.1 ≤ 2H ≤ 10 µm, 1 ≤ κ−1

n ≤ 200 nm, ρn ≈ 1000 kg m−3,
10−4 ≤ η0,n ≤ 10−2 kg m−1s−1, Ex ≤ 104 Vm−1, 10−11 ≤ εn ≤ 10−9 C V−1 m−1, zn ∼ O(1),
0 ≤ λn ≤ 0.01 s, −50 ≤ ζw ≤ 50 mV, −12.5 ≤ ∆ψn ≤ 12.5 mV; also, the values of the constants
kB = 1.381× 1023 J K−1 and e = 1.602× 10−19 C, are considered.

4.1. Solution Validation

To validate the performance of the semi-analytical solution found in this work for the transient
velocity distribution, a comparison was made with two investigations reported by the scientific
community, considering the transport of Newtonian and Maxwell fluids, respectively. In the first
case, in the research carried out by Yang et al. [10], they model an electroosmotic flow of an aqueous
1:1 electrolyte (NaCl) in a slit microchannel with the following physical properties: a density of
ρ = 998 kg m−3, a viscosity of η=0.90×10−3 kg m −1 s−1, a relative electrical permittivity of εr = 80,
and a concentration of 10−4 M, at a temperature of T = 298 K; additionally, the microchannel size
and the wall zeta potential were set at 2H = 10 µm and 50 mV, respectively. With that set of values,
the following electrokinetic parameter is obtained, κ̄n=164.5, and the dimensionless times to evaluate
the velocity profiles are t̄ = 0.0036, 0.036, 0.36 and 3.6 (=0.1, 1, 10 and 100 µs). Therefore, by comparing
the work of Yang et al. [10] with the present investigation for three immiscible fluid layers, in Figure 2,
an excellent convergence between their results is shown.

0.0 0.5 1.0 1.5 2.0

0.0
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0.4

0.6

0.8

1.0

1.2

 3.6  

1.00.50.0-0.5

t =0.36
0.036

 Analytical solution from Yang et al. 2002, one single fluid
 Semi-analytical solution from present work, three fluids layers

u

0.0036 _

-1.0

y

_

y

Figure 2. Dimensionless velocity profiles of an electroosmotic flow obtained by Yang et al. [10] with
n = 1, against the results of the present investigation with three fluid layers, n = 3 (ȳ1 =2/3 and
ȳ2 =4/3). The other parameters are ρ̄n = η̄n = ε̄n =1, and ∆ψ̄n =0.

In the second case, the analytical solution for the dimensionless velocity profiles obtained by
Escandón et al. [16] on the transient electroosmotic flow with Maxwell fluids, are compared with the
present study, as shown in Figure 3. Here, the electrokinetic parameter takes a value of κ̄n = 20 and
the viscoelastic behavior of fluids is presented trough the two dimensionless relaxations time values of
λ̄n = 0.12 and λ̄n = 2.5 in Figure 3a,b, respectively, finding a very good match between the results.
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Figure 3. Dimensionless velocity profiles of an electroosmotic flow obtained by Escandón et al. [16]
with n = 1, against the results of the present investigation with four fluid layers, n = 4 (ȳ1 =1/2,
ȳ2 =1.0, and ȳ3 =3/2). The other parameters are ρ̄n = η̄n = ε̄n =1, and ∆ψ̄n =0, for: (a) λ̄n = 0.12 and
(b) λ̄n = 2.5.

4.2. Velocity Profiles

Figure 4 shows the dimensionless electric potential profile, ψ̄n, and the start-up of the
electroosmotic flow velocity, ūn, of three layers (n = 3) of immiscible Maxwell fluids in a slit
microchannel, both variables as a function of the transverse coordinate ȳ and for three different
values of the potential difference ∆ψ̄n(= 0.5, 0,−0.5). The interfaces between fluids have been placed
in ȳ1 = 2/3 and ȳ2 = 4/3, respectively, and the other dimensionless parameters are specified in
the caption of the figure. Because of the high ionic concentration in the diffuse layers within the
electric double layers formed in the solid-liquid interfaces in the system, there is a higher magnitude
of the electric potential in these zones. On the other hand, in Figure 4a with ∆ψ̄n = 0.5 and Figure 4c
with ∆ψ̄n = −0.5, can be appreciated an electric slip at liquid-liquid interfaces due to counterions
concentrations in each side of interfaces, while for Figure 4b with ∆ψ̄n = 0, the classical null distribution
of electrical potential is recovered outside of the electrical double layers on the walls. Here, the potential
difference or electric slip between immiscible layers is proportional to the difference in the magnitude
of ∆ψ̄n given by Equation (27) at each interface, and the sign gives the orientation of the counterions
and electric potential distribution. Regarding the velocity, in each Figure 4a–c, are shown the evolution
of the velocity profiles since an early time of t̄ = 0.05 to the steady-state when t̄ → ∞. As can be
seen, for the early times, the fluids movement beginning from the Debye length in the solid-liquid
and liquid-liquid interfaces due to electroosmotic effects, transmitting the movement by viscous forces
to the rest of the fluid layers as time progresses. The influence of the potential difference on velocity
development is clear when comparing Figure 4a,c with Figure 4b, producing great disturbances and
steep velocity gradients in the flow velocity.

Figure 5 shows the elastic behavior of the Maxwell fluids via the dimensionless relaxation time
on the flow dynamics. In this figure are presented three cases for the velocity profiles evolution,
in Figure 5a–c, the selected dimensionless relaxation times values are λ̄n = 0.1, λ̄n = 2 and
λ̄n = 10, respectively. In these figures, it is noticeable that the start-up of fluids is more slowly
as the dimensionless relaxation time increases, due to the memory effects of the viscoelastic fluids also
increase, delaying the start of movement of fluids. Hence, in the case of Figure 5a the time to reach the
steady-state when t̄→ ∞ is much shorter than Figure 5c; in this context, the velocity magnitude and
oscillatory behavior are greater for the case with λ̄n = 10 than for λ̄n = 0.1, because there is a more
severe competition between the viscous and the elastic forces in the first case, that is, with λ̄n = 10.
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For all cases in Figure 5a–c, reverse flow is produced in early times due to the potential difference at
liquid-liquid interfaces.

In Figure 6 is represented the evolution of the velocity profiles of three fluid layers as a function of
the transverse coordinate, and three combinations of the viscosities ratios η̄n(= 0.7, 2, 6). It is evident
that in Figure 6a, being the case with the lower viscosity fluid layers with η̄n = 0.7, the flow has the
highest magnitude of velocity profiles; this can be corroborated if it is compared with the case of
Figure 6c with a viscosity of η̄n = 6 where the fluids have a greater resistance to flow and a lower
magnitude of velocity. In all Figure 6a–c, the oscillatory behavior from elastic effects of Maxwell fluids
is maintained.

Figure 7 shows a wide combination of all dimensionless parameters studied in the present work.
Here is observed the response of the dimensionless electric potential and velocity profiles for the
electroosmotic flow of four layers (n = 4) of immiscible Maxwell fluids, under different values of
electrokinetic parameters (κ̄n=1,2,3,4 = 10, 20, 30, 40) and relaxation times (λ̄n=1,2,3,4 = 0.1, 2, 1, 10).
The velocity evolution goes from the time t̄ = 0.1 to the steady-state when t̄ → ∞. It can be seen a
constant and gradual velocity evolution for the fluid 1, due to the small value of the relaxation time
while for a higher relaxation time value the velocity profile oscillates continuously until reaching the
steady-state resulting in stronger memory effects from the viscoelastic fluid such is the case of the fluid
4. Regarding the electrokinetic parameter effect, a value of κ̄1 = 10 in fluid 1 yields a parabolic shape
of the velocity profiles due to the low ionic concentration of the buffer solution, producing a thick
electric double layer; contrary the aforementioned, as the electrokinetic parameter grows in fluid 4 to
take the value of κ̄4 = 40, the electric double layer becomes thinner and results in more slanted and
straighter velocity profiles.
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Figure 4. Dimensionless electric potential and velocity profiles of an electroosmotic flow with n = 3,
(ȳ1 = 2/3, ȳ2 = 4/3), κ̄n = 20, ρ̄n = η̄n = ε̄n = λ̄n =1, for: (a) ∆ψ̄n = 0.5, (b) ∆ψ̄n = 0, and (c)
∆ψ̄n = −0.5.
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Figure 5. Dimensionless velocity profiles of an electroosmotic flow with n = 3, (ȳ1 = 2/3, ȳ2 = 4/3),
κ̄n = 20, ρ̄n = η̄n = ε̄n =1, and ∆ψ̄n = 0.25 for: (a) λ̄n = 0.1, (b) λ̄n = 2, and (c) λ̄n = 10.
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Figure 6. Dimensionless velocity profiles of an electroosmotic flow with n = 3, (ȳ1 = 2/3, ȳ2 = 4/3),
κ̄n = 20, ρ̄n = ε̄n = λ̄n =1, and ∆ψ̄n = 0.25 for: (a) η̄n = 0.7, (b) η̄n = 2, and (c) η̄n = 6.
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Figure 7. Dimensionless electric potential and velocity profiles of an electroosmotic flow with n = 4,
(ȳ1 = 2/3, ȳ2 = 1, ȳ3 = 3/2 ), κ̄1 = 10, κ̄2 = 20, κ̄3 = 30, κ̄4 = 40, ρ̄n = ε̄n =1, λ̄1 =0.1, λ̄2 =2, λ̄3 =1,
λ̄4 =10, ∆ψ̄1 = 0.25, ∆ψ̄2 = −0.35, ∆ψ̄3 = −0.25, and η̄n = 2 .

5. Tracking of the Velocity

In Figure 8 the tracking of the dimensionless velocity on the transverse coordinate ȳ = 1 as a
function of the dimensionless time is presented. In all cases of the sub-figures contained in Figure 8,
the start-up of movement of fluid(s) in the center of the microchannel is delayed by memory effects
due to its viscoelastic properties. In general, after overcoming these memory effects, a sudden and
severe increase in velocity occurs, beginning a continuous oscillatory movement of increasing and
decreasing velocity until steady-state is reached. The results presented in Figure 8a–c are taken from
Figures 4–6, respectively. It is clear from Figure 8a,d,f, that the time it will take for the fluids to reach
the steady-state is independent of the dimensionless parameters ∆ψ̄n, ρ̄n and κ̄n, respectively. However,
from Figure 8b, the time to reach the steady-state in the multi-layer electroosmotic flow is strongly
dependent of the relaxation time, where for λ̄n = 0.1, λ̄n = 2 and λ̄n = 10 the dimensionless times
to reach the steady-state are t̄ss ≈ 2.27, t̄ss ≈ 36.36 and t̄ss ≈ 181.82, respectively, these time results
are due to the increases of fluid elasticity via the parameter λ̄n. In this context, from Figure 8c the
time to reach the steady-state in the flow is also dependent of the viscosity ratios η̄n, being the less
viscous fluids those that take longer to reach that regime with η̄n = 0.7 in a time of t̄ss ≈ 20, while on
the contrary case, with η̄n = 6, the steady-state is reached in a shorter time with t̄ss ≈ 12.73, due to
the increase of the viscous forces and the corresponding faster braking of the flow. Furthermore, it
can be seen in Figure 8e that multi-layer flows with three or more fluids take less time to reach the
permanent regime due to the combined effects at the liquid-liquid interfaces. Finally, the time to reach
the steady-state regime is established for the present work as the time in which the absolute value of
the velocity difference between two immediate times at the same position is less than 10−3.
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Figure 8. Tracking of the velocity in the multi-layer flow as a function of the dimensionless time
evaluated in the center of the microchannel at ȳ = 1 and with ε̄n = 1, for: (a) effect of ∆ψ̄n

(from Figure 4), (b) effect of λ̄n (from Figure 5), (c) effect of η̄n (from Figure 6), (d) effect of ρ̄n,
(e) effect of number of layers n, and (f) effect of κ̄n.

6. Conclusions

In this investigation, a semi-analytical solution of the start-up of the electroosmotic flow of
multi-layer immiscible Maxwell fluids in a slit microchannel was obtained. In the parametric study,
different fluid properties, geometric characteristics of the number and thickness of fluid layers,
and electrostatic boundary conditions at liquid-liquid interfaces were considered. The electrostatic
conditions from the electric double layers between the fluids via the potential differences and
electro-viscous shear stresses, break the continuity of the electric potential distribution and produce
significant changes in the velocity profiles in these zones. Regarding the dimensionless relaxation time
effects on the velocity profiles, as this parameter increases a longer oscillatory behavior is caused by
the memory effects of Maxwell fluids. Likewise, the magnitude of the flow velocity will significantly
reduce with layers of more viscous fluids due to greater resistance to flow. In other results on the fluid
dynamics of the multilayer electroosmotic flow, the time to reach the steady-state regime is strongly
controlled by some dimensionless parameters reported here, like the relaxation times, the viscosity
ratios, and the number of fluid layers.
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