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We introduced a compact representation method named Linear Tensor Coding (LTC) for medical volume. With LTC, medical
volumes can be represented by a linear combination of bases which are mutually independent. Furthermore, it is possible to choose
the distinctive basis for classification. Before classification, correlations between category labels and the coefficients of LTC basis are
used to choose the basis. Then we use the selected basis for classification. The classification accuracy can be significantly improved
by the use of selected distinctive basis.

1. Introduction

In the recent years, the research of digital atlases is a popular
and important topic in the medical volume processing [1, 2].
Many problems inmedical volumes interpretation involve the
need of a modeling to understand the volumes with which it
is presented, and thus well representation of medical volumes
is very important part of computer-assisted diagnosis (CAD).
Due to much variability in biological structures, it makes
medical volume interpretation to be a difficult task.

Currently the representation of medical volume can
be mainly categorized as shape-based methods, in which
a deformable model is represented or matched to, and
appearance based methods, in which the model represents
the volume region covered by the structures. Statistical shape
model (SSM) can construct the generic structure (mean
structure) and deformation for a shape ensemble [3]. Due
to the deformation of the organ shape in some special
disease, it is widely utilized in medical image processing,
such as medical image registration and segmentation [4, 5].
Inspired by the work of active shape model (ASM), 3D
ASM was proposed for construction of 3D statistical models
for segmentation of the left ventricle of the heart [6]. The
statistical shape models also show good performance for

distinguishing the abnormal liver from the normal one in
[7]. Because many diseases change the texture (voxel value)
of the organ significantly, we need to capture not only shape
variations, but also texture (voxel value) variations. So the
active appearance model (AAM) is proposed which can
represent both shape and texture information. In [8], 3D
active appearance model is used for segmentation of cardiac
MR and ultrasound images. It is also possible to combine the
two approaches together. For example, Mitchell et al. [9] used
a combination of ASM and AAM to segment cardiac images.
At each iteration, the two models ran independently to
compute new estimates of the pose and shape parameters. For
diagnosis assistance, making an accuracy diagnosis decision
of liver is important for patient. Radiologists are mainly
depending on the intensity variations (texture information)
in livers on medical images to identify modules or tumors
andmake a diagnostic decision.However, there has been little
research on applications of digital atlas to CAD.

Compared to statistical shapemodeling, statistical texture
modeling usually faces overfitting problems, and the statis-
tical texture modeling for medical volumes is a challenging
task because the dimensions of the medical volume are
very high, while the training samples are fewer than the
dimensions of the data. In [10], we have proposed generalized
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Figure 1: Fibers of a 3rd-order tensor.
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Figure 2: Slices of a 3rd-order tensor.

N-dimensional principal component analysis (GND-PCA)
for the modeling of a series of medical volumes. It is able
to achieve good performance on construction of statistical
appearance models for medical volumes with few samples.
The medical volume is treated as a 3rd-order tensor, and the
optimal subspace on each mode is calculated simultaneously
byminimizing the square error between the original volumes
based on the subspace with an iteration algorithm. However,
this method has some disadvantages, such as each basis of
the GNDPCA not being independent and thus making the
core tensor of the final result redundant. Also it is difficult to
choose the distinctive basis for classification.

To resolve the these problems, in our previous work, we
proposed a linear tensor coding (LTC) algorithm, which can
achieve more compact and meaningful tensor bases than
GND-PCA [11, 12]. In this paper, we first apply it to statistical
texture modeling of medical volumes. With LTC, medical
volumes can be represented by a linear combination of bases,
which are mutually independent. Furthermore, it is possible
to choose the distinctive basis for classification.The proposed
method was evaluated using a medical volume database. In
the experiment, we compared both reconstructed results and
classification results of LTC and GND-PCA. As for recon-
struction results, the performance of LTC is superior to that
of GND-PCA. Additionally, in the classification part, we first
choose the distinctive basis based on the correlation between
category labels and the coefficients of LTC basis, and then
we use the selected basis for classification. The classification

accuracy can be significantly improved by the use of selected
distinctive basis.

This paper is organized as follows. In Section 2, a brief
review of basic theory of tensor and GND-PCA is made.
LTC algorithm is introduced in Section 3, and analysis is
given. Section 4 is the experimental part, and it illustrates
the performance of LTC to be better than that of GND-PCA.
Section 5 summarizes the key points of this paper.

2. Preliminaries

In this section, we provide a brief overview of tensor andmul-
tilinear algebra. In mathematics, multilinear algebra extends
the methods of linear algebra. Just as linear algebra is built
on the concept of a vector and develops the theory of vector
spaces, multilinear algebra builds on the concepts of a tensor.
A tensor is a multidimensional array. More formally, an𝑁th-
order tensor is an element of the tensor product of𝑁 vector
spaces, each of which has its own coordinate system.

2.1. Tensor Definitions. As mentioned earlier, scalers are
denoted by italic-shape letters, that is, (𝑎, 𝑏, . . .) or (𝐴, 𝐵, . . .).
Bold lower case letters, that is, (a, b, . . .), are used to represent
vectors. Matrices are denoted by bold upper case letters, that
is, (A,B, . . .), and higher-order tensors (more than third-
order tensor) are denoted by calligraphic upper case letters,
that is, (A,B, . . .).
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IN: a series of𝑁th order tensors,A
𝑖
∈ R𝐼1× 𝐼2×⋅⋅⋅×𝐼𝑁 , 𝑖 = 1, 2, . . . ,𝑀.

OUT:𝑁Matrices U(𝑛)opt ∈ R𝐼𝑛×𝐽𝑛 (𝐽
𝑛
= 1, 𝑛 = 1, 2, . . . , 𝑁) with orthogonal column vectors.

(1) Initial values: 𝑘 = 0 and U(𝑛)
0

whose columns are determined as the first
𝐽
𝑛
leading eigenvectors of the matrices ∑𝑀

𝑖=1
(A
𝑖(𝑛)
⋅ A𝑇
𝑖(𝑛)
).

(2) Iterate for 𝑘 until convergence
(i) Maximize 𝑆 = ∑𝑀

𝑖=1


C
𝑖
×
1
U(1)𝑇



2

, C
𝑖
= A
𝑖
×
2
U(2)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(1) whose columns are determined as the first 𝐽
1
leading

eigenvectors of∑𝑀
𝑖=1
(C
𝑖(1)
⋅ C𝑇
𝑖(1)
)

Set U(1)
𝑘+1

= U(1).
(ii) Maximize 𝑆 = ∑𝑀

𝑖=1


C
𝑖
×
2
U(2)𝑇



2

, C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

×
3
U(3)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(2) whose columns are determined as the first 𝐽
2
leading

eigenvectors of ∑𝑀
𝑖=1
(C
𝑖(2)
⋅ C𝑇
𝑖(2)
)

Set U(2)
𝑘+1

= U(2).
. . .

(iii) Maximize 𝑆 = ∑𝑀
𝑖=1


C
𝑖
×
𝑛
U(𝑛)𝑇



2

,

C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

× ⋅ ⋅ ⋅ ×
𝑛−1

U(𝑛−1)
𝑘+1

𝑇

×
𝑛+1

U(𝑛+1)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(𝑛) whose columns are determined as the first 𝐽
𝑛
leading

eigenvectors of ∑𝑀
𝑖=1
(C
𝑖(𝑛)
⋅ C𝑇
𝑖(𝑛)
)

Set U(𝑛)
𝑘+1

= U(𝑛).
. . .

(iv) Maximize 𝑆 = ∑𝑀
𝑖=1


C
𝑖
×
𝑁
U(𝑁)𝑇



2

, C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

× ⋅ ⋅ ⋅ ×
𝑁−1

U(𝑁−1)
𝑘+1

𝑇

Solution: U(𝑁) whose columns are determined as the first 𝐽
𝑁
leading

eigenvectors of ∑𝑀
𝑖=1
(C
𝑖(𝑁)

⋅ C𝑇
𝑖(𝑁)
)

Set U(𝑁)
𝑘+1

= U(𝑁).
𝑘 = 𝑘 + 1

(3) Set U(1)opt = U(1)
𝑘
, U(2)opt = U(2)

𝑘
, . . . ,U(𝑁)opt = U(𝑁)

𝑘
.

Algorithm 1: GND-PCA.

The order of a tensor is the number of dimensions, as
known as ways or modes. An𝑁th-order tensorA is defined
as a multiarray with𝑁 indices, whereA ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 andR
is the real manifold. Elements of the tensorA are denoted as
𝑎
𝑖
1
⋅⋅⋅𝑖
𝑛
⋅⋅⋅𝑖
𝑁

, where 1 ⩽ 𝑖
𝑛
⩽ 𝐼
𝑛
. The space of the𝑁th-order tensor

is comprised by the𝑁mode subspaces. From the perspective
of A, scalars, vectors, and matrices can be seen as zeroth-
order, first-order, and second-order tensors, respectively.

The 𝑖th entry of a vector a is denoted by 𝑎
𝑖
, element (𝑖, 𝑗)

of a matrix A is denoted by 𝑎
𝑖𝑗
, and element (𝑖, 𝑗, 𝑘) of a 3rd-

order tensor X is denoted by 𝑥
𝑖𝑗𝑘
. Indices typically range

from 1 to their capital version; for example, 𝑖 = 1, . . . , 𝐼.
The 𝑛th element in a sequence is denoted by a superscript
in parentheses; for example, A𝑛 denotes the 𝑛th matrix in a
sequence.

Subarrays are formedwhen a subset of the indices is fixed.
For matrices, these are the rows and columns. A colon is used
to indicate all elements of a mode. Thus, the 𝑗th column of A
is denoted by a

:𝑗
, and the 𝑖th row of A is denoted by a

𝑖:
.

Fibers are the higher-order analogue of matrix rows and
columns. A fiber is defined by fixing every index but one. A
matrix column is amode-1 fiber and amatrix row is amode-2
fiber. Third-order tensors have column, row, and tube fibers,
denoted as x

:𝑗𝑘
, x
:𝑗𝑘
, and x

:𝑗𝑘
, respectively. Fibers of a Third-

order tensors are shown in Figure 1.

Slices are two-dimensional sections of a tensor, defined
by fixing all but two indices. Figure 2 shows the horizontal,
lateral, and frontal slices of a third-order tensor X, denoted
by X
𝑖::
, X
:𝑗:
, and X

::𝑘
, respectively.

The norm of a tensor X ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the square root
of the sum of the squares of all its element; that is,

‖X‖ = √
𝐼
1

∑

𝑖
1
=1

𝐼
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝐼
𝑁

∑

𝑖
𝑁
=1

𝑥
2

𝑖
1
𝑖
2
...𝑖
𝑁

. (1)

This is analogous to the matrix Frobenius norm, which is
denoted as ‖A‖ for a matrix A.

The inner product of two same-sized tensors X,Y ∈

R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the sum of the products of their entries; that
is,

⟨X,Y⟩ =

𝐼
1

∑

𝑖
1
=1

𝐼
2

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝐼
𝑁

∑

𝑖
𝑁
=1

𝑥
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑁

𝑦
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑁

. (2)

It follows immediately that ⟨X,X⟩ = ‖X‖2.
A𝑁-order tensorX ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is rank one if it can be

written as the outer product of𝑁 vectors; that is,

X = a(1) ∘ a(2) ∘ ⋅ ⋅ ⋅ ∘ a(𝑁). (3)
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IN: a series of𝑁th order tensors,A
𝑖
∈ R𝐼1× 𝐼2×⋅⋅⋅×𝐼𝑁 , 𝑖 = 1, 2, . . . ,𝑀. Define𝑁Matrices

U(𝑛)opt ∈ R𝐼𝑛×𝐽𝑛 (𝐽
𝑛
= 1, 𝑛 = 1, 2, . . . , 𝑁) with orthogonal column vectors.

OUT: 𝑆 Rank-1 basis tensorB
𝑠
, 𝑠 ≤ 𝑆 𝑆 depends on convergence.

Iterate for 𝑠 until convergence
(1) Initial values:A

𝑖
= A
𝑖
−A

Rec𝑠
𝑖

, defineARec𝑠
𝑖

= 0.
(2) (a) Initial values: 𝑘 = 0 and U(𝑛)

0
whose columns are determined as the first 𝐽

𝑛
leading

eigenvectors of the matrices ∑𝑀
𝑖=1
(A
𝑖(𝑛)
⋅ A𝑇
𝑖(𝑛)
).

(b) Iterate for 𝑘 until convergence
(i) Maximize 𝑆 = ∑𝑀

𝑖=1


C
𝑖
×
1
U(1)𝑇



2

, C
𝑖
= A
𝑖
×
2
U(2)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(1) whose columns are determined as the first 𝐽
1
leading eigenvectors

of ∑𝑀
𝑖=1
(C
𝑖(1)
⋅ C𝑇
𝑖(1)
)

Set U(1)
𝑘+1

= U(1).
(ii) Maximize 𝑆 = ∑𝑀

𝑖=1


C
𝑖
×
2
U(2)𝑇



2

, C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

×
3
U(3)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(2) whose columns are determined as the first 𝐽
2
leading eigenvectors

of ∑𝑀
𝑖=1
(C
𝑖(2)
⋅ C𝑇
𝑖(2)
)

Set U(2)
𝑘+1

= U(2).
. . .

(iii) Maximize 𝑆 = ∑𝑀
𝑖=1


C
𝑖
×
𝑛
U(𝑛)𝑇



2

,

C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

× ⋅ ⋅ ⋅ ×
𝑛−1

U(𝑛−1)
𝑘+1

𝑇

×
𝑛+1

U(𝑛+1)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

Solution: U(𝑛) whose columns are determined as the first 𝐽
𝑛
leading eigenvectors

of ∑𝑀
𝑖=1
(C
𝑖(𝑛)
⋅ C𝑇
𝑖(𝑛)
)

Set U(𝑛)
𝑘+1

= U(𝑛).
. . .

(iv) Maximize 𝑆 = ∑𝑀
𝑖=1


C
𝑖
×
𝑁
U(𝑁)𝑇



2

, C
𝑖
= A
𝑖
×
1
U(1)
𝑘+1

𝑇

× ⋅ ⋅ ⋅ ×
𝑁−1

U(𝑁−1)
𝑘+1

𝑇

Solution: U(𝑁) whose columns are determined as the first 𝐽
𝑁
leading eigenvectors

of ∑𝑀
𝑖=1
(C
𝑖(𝑁)

⋅ C𝑇
𝑖(𝑁)
)

Set U(𝑁)
𝑘+1

= U(𝑁).
𝑘 = 𝑘 + 1

(c) Set U(1)opt = U(1)
𝑘
, U(2)opt = U(2)

𝑘
, . . . ,U(𝑁)opt = U(𝑁)

𝑘
.

(3) Size of U(𝑖)opt is 𝐼𝑖 × 1, each basisB
𝑠
= U(1)opt ⊗ U(2)opt ⊗ ⋅ ⋅ ⋅ ⊗ U(𝑁)opt .

(4) For each data, coefficient on this basis 𝑐
𝑖,𝑠
= A
𝑖
×
1
U(1)
𝑘

𝑇

×
2
U(2)
𝑘

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑘

𝑇

.
(5) For each dataARec𝑠

𝑖
= 𝑐
𝑖,𝑠
⋅B
𝑠
.

Algorithm 2: Iteration algorithm of LTC.

=

a

b

c

𝒳

Figure 3: Rank-one 3rd-order tensor,X = a ∘ b ∘ c.

The symbol “∘” represents the vector outer product. This
means that each element of the tensor is the product of the
corresponding vector elements: 𝑥

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑁

= 𝑎
(1)

𝑎
(2)

⋅ ⋅ ⋅ 𝑎
(𝑁), for

all 1 ≤ 𝑖
𝑛
≤ I
𝑁
. Figure 3 illustratesX = a ∘ b ∘ c, a third-order

rank-one tensor.

2.2. GND-PCA. GND-PCA was proposed by Xu and Chen
for statistical appearance modeling of medical volumes with
few samples [10].Themedical volume is treated as a 3rd-order
tensor, and the optimal subspace on each mode is calculated
simultaneously by minimizing the square error between the
original volumes and reconstructed ones. In the following
part of this section, we will briefly review the algorithm of
GND-PCA.

Given a series of the N-order tensors with zero-means
A
𝑖
∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 , 𝑖 = 1, 2, . . . ,𝑀,𝑀 is the number of sam-

ples. We aim to get another series of low rank {𝐽
1
, 𝐽
2
. . . 𝐽
𝑁
}

tensors
∧

A
𝑖
which accurately approximate the original tensors,

where 𝐽
𝑛
≤ 𝐼
𝑛
. The new series is decomposed by the matrices

U(𝑛) ∈ R𝐼𝑛×𝐽𝑛 with orthogonal columns according to the
Turker Model [13] which is shown by

∧

A
𝑖
=B
𝑖
×
1
U(1)×
2
U(2) × ⋅ ⋅ ⋅ ×

𝑛
U(𝑛) × ⋅ ⋅ ⋅ ×

𝑁
U(𝑁), (4)
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J2

J2

J3J3

J1

J1 I2

I2

I3

I3 I1
I1

U(3)optU(1)opt

U(2)opt

×1

×2

×3
ℬi

∧

𝒜i

Figure 4: Illustration of reconstructing a third-order tensor by the
principal component B

𝑖
and the three orthogonal bases of mode

subspaces U(1)opt ,U
(2)

opt ,U
(3)

opt.

+ · · · · · ·≈ ci,1 ∗ + ci,2 ∗
ℬ1 ℬ2𝒜i

Figure 5: Example of representing the third-order tensor using a
series of bases.

where B
𝑖
∈ R𝐽1×𝐽2×⋅⋅⋅×𝐽𝑁 are the core tensors. The product

operator in (4) is matrix product. Tensor B
𝑖
will unfold to

matrix in each mode and then products with orthogonal
matrix in each mode. The orthogonal matrices U(𝑛) can be
determined by minimizing the cost function as

𝑆 =

𝑀

∑

𝑖=1


A
𝑖
−B
𝑖
×
1
U(1)×
2
U(2) × ⋅ ⋅ ⋅ ×

𝑁
U(𝑁)

2

. (5)

The tensorB
𝑖
is chosen as

B
𝑖
= A
𝑖
×
1
U(1)
𝑇

×
2
U(2)
𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑇

. (6)

Minimization of (5) is equal to the maximization of the
following equation:

𝑆


=

𝑀

∑

𝑖=1


A
𝑖
×
1
U(1)
𝑇

×
2
U(2)
𝑇

× ⋅ ⋅ ⋅ ×
𝑁
U(𝑁)
𝑇


2

. (7)

There is no close-form solution to simultaneously resolve
the matrices for (4); however, the explicit solution for one
matrix can be obtained if the other matrices are fixed. This
is expressed by Lemma 1 and is explained later.

Lemma 1. Given the fixed matrices, U(1),U(2), . . . ,
U(𝑛−1),U(𝑛+1), . . . ,U(𝑁), if the columns of the matrix U(𝑛)
are selected as the first 𝐽

𝑁
leading eigenvectors of matrix

∑
𝑀

𝑖=1
(𝐶
𝑖(𝑛)

⋅ 𝐶
𝑖(𝑛)

𝑇

), where 𝐶
𝑖(𝑛)

is the mode-n matrix of the
tensor C

𝑖
= A
𝑖
×
1
U(1)×
2
U(2) × ⋅ ⋅ ⋅ ×

𝑛−1
U(𝑛−1)×

𝑛+1
U(𝑛+1) ×

⋅ ⋅ ⋅ ×
𝑁
U(𝑁), the cost function 𝑆 can be maximized.

The proof of Lemma 1 is given in [10], so here it will not
be given again. According to Lemma 1 we can use an iteration
algorithm to get theN optimal matrices,U(1)opt,U

(2)

opt, . . . ,U
(𝑁)

opt ,
which are able to maximize the cost function 𝑆

. This
algorithm is summarized by Algorithm 1.

Medical volume

Normalized volume

Texture information

Statistical texture model

Segmentation
and

registration

Feature extraction

Figure 6: The flow chart of our experiment.

Using the calculated matrices U(𝑛)opt, 𝑛 = 1, 2, . . . , 𝑁,

each of the volume A
𝑖
are represented with least errors

∧

A
𝑖
,

where
∧

A
𝑖
= B
𝑖
×
1
U(1)×
2
U(2) × ⋅ ⋅ ⋅ ×

𝑛
U(𝑛) × ⋅ ⋅ ⋅ ×

𝑁
U(𝑁). The

approximation can be illustrated by Figure 4 for the 3D case.
The core tensorsB

𝑖
are the principle components.

3. Linear Tensor Coding

Although GND-PCA can achieve good performance on
construction of statistical appearance models for medical
volumes with few samples, it still has some disadvantages.
Each basis of GND-PCA is not independent, so the core
tensor of the final result is still redundant. And it is difficult to
understand the meaning of each basis.Thus for given a series
of the 𝑁-order tensors with zero-means A

𝑖
∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 ,

𝑖 = 1, 2, . . . ,𝑀, we want to find another series of bases which
have mutual independence and greater discrimination to
represent the original tensors. Each tensor A

𝑖
is represented

by basis: A
𝑖
= ∑
𝑗=1
𝑐
𝑖,𝑗
⋅ B
𝑗
. Here the tensor B

𝑗
is basis

which has the same size as the input tensor, and the scalar
𝑐
𝑖,𝑗
is the coefficient of the tensor A

𝑖
. Figure 5 illustrates the

representation of one original tensor using a series of bases.
In mathematics, the problem of getting the compact rep-

resentation can be formulated as the optimization equation

(B
1
,B
2
, . . .) = arg min

𝑀

∑

𝑖=1



A
𝑖
− ∑

𝑗=1

𝑐
𝑖,𝑗
⋅B
𝑗



. (8)

Since the objective function is multiquadratic, there is no
closed-form solution for this optimization. In addition, the
number of bases is unfixed; hence, the optimization proce-
dure is sensitive to initial estimation and easy to converge to
local minima.

To address such problems, we have developed an algo-
rithm: linear tensor coding algorithm (LTC) in our previous
work [11, 12]. There are two important components in our
algorithms; one is a local convergence to find optimized basis
B
𝑗
and the other is a global convergence to find the number

of bases.
In the local parts, the GND-PCA method is applied for

calculation of each basis. Inspired by (3), if we get N vectors,
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Normal data

Abnormal data

Original data

(a)

Registration result

(b)

Figure 7: Original data and morphed data, respectively. The first column is original data and the second column is morphed data.
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Basis 5
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Figure 8: The slices of novel ensembles described by the first five
bases, respectively. It changes the value of coefficients from −1.5𝜆

1

to 1.5𝜆
1
of each basis.

we can generate an N-order tensor. Thus when we calculate
the eigenspace on each mode, we only need the first vector
u(𝑖)
1

of each U(𝑖) which is the eigenvector with the largest
eigenvalue in the corresponding mode. We choose u(𝑖)

1
, 1 ⩽

𝑖 ⩽ 𝑁 as a set of initial estimations and the first tensor-formed
base is calculated by

B
1
= u(1)
1
∘ u(2)
1
∘ ⋅ ⋅ ⋅ ∘ u(𝑁)

1
. (9)

For each training tensor, the parameters corresponding to
the first base are calculated by

𝑐
𝑖,1
= A
𝑖
×
1
u(1)
1

𝑇

×
2
u(2)
1

𝑇

× ⋅ ⋅ ⋅ ×
𝑁
u(𝑁)
1

𝑇

. (10)
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(20)
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Figure 9: The first twenty bases. It illustrates that each basis can
represent a local feature.

After getting the first base, we calculate the residual parts of
each training tensor:A

𝑖
= A
𝑖
−𝑐
𝑖,1
⋅B
1
.The residual partsA

𝑖

are used instead of A
𝑖
. Then the previous step was repeated,

to calculate the basis one by one. The process to find a series
of bases is a greedy approach to approximate the original
tensors.

A global convergence is worked to find a number of bases.
Recalling (8), we assign a threshold 𝑟. The process ends after
finding the 𝐽 basis, when the sum of norms of the residual
tensors is below 𝑟, as shown in (11). Then each tensor data is
representedwith a group of coefficients with the benefit of the
obtained basis. Consider

norm(

𝑀

∑

𝑖=1



A
𝑖
−

𝐽

∑

𝑗=1

𝑐
𝑖,𝑗
∗B
𝑗



) ≤ 𝑟. (11)
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The global process converges to a local minima, and thus
there is no guarantee that there will be a global one. As this
is a greedy approach, it suffers from the shortcoming that
previous decisions are not reevaluated as the process unfolds.
However, this specific greedy rule has a critical feature which
makes it useful for tensor coding. Note that the optimization
approach converges to a local minima in general, but in the
case we just choose one base in LTC, one obtains GND-PCA
for representing the data with a core tensor of which the rank
of each mode is 1. So LTC can be considered as an extension
of GND-PCA. The algorithm is shown in Algorithm 2.

4. Experimental Results

The proposed method is evaluated by using a liver database.
In this database, there are 10 normal healthy ones and 10
abnormal ones. The size of each sample is 256 × 256 × 79.
The flow chart of our experiment is shown in Figure 6.

In order to remove shape variations, we apply a nonrigid
transformation based on mathematical forms for morphing
all the datasets to a same shape. Any nonrigid registration
technique can be described by three components: a transfor-
mation which relates the target and source images, a simi-
larity measure which measures the similarity between target
and source image, and an optimization which determines the
optimal transformation parameters as a function of the sim-
ilarity. Additionally, we do not need to assume the physical
parameters, which are difficult to guess in practice. Hence,
we adopted themathematical nonrigid transformation in our
research. For the detailed process, please refer to [14].

The pretreated database is assigned as original database,
and shape-normalized samples are assigned as morphed
database. Figure 7 shows some original data and morphed
data, respectively. The first column is original data and the
second column is morphed data. The first row is one sample
of the normal ones, and the second row is one sample of
the abnormal ones. This illustrates that all the samples have
familiar shapes, so the shape information does not effect
experimental results.

Because we want to build a statistical texture model, each
data can be represented by

A
𝑖
=M +

𝐾

∑

𝑘=1

𝑐
𝑖,𝑘
∗B
𝑘
. (12)

Here M is the mean texture and 𝑐
𝑖,𝑘

are the coefficients.
Supposing the coefficients 𝑐

𝑖,𝑘
to followGaussian distribution,

we can estimate the mean𝑚
𝑘
and derivation 𝜆2

𝑘
.

By adjusting the parameter, we can construct a novel
ensemble by

Ã =M + 𝑐
𝑘
∗B
𝑘
. (13)

Here 𝑐
𝑘
is adjusted coefficient, −2𝜆

𝑘
⩽ 𝑐
𝑘
⩽ 2𝜆

𝑘
.

Figure 8 illustrates the slices of novel ensembles described
by the first five bases, respectively. They demonstrate that
while changing the value of first coefficients from −1.5𝜆

1
to

1.5𝜆
1
, the intensity of left part has obviously changed, and

the second basis mainly has effect on the right corner of
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Figure 10: The coefficient of each basis for LTC.
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Figure 11: Reconstruction accuracy versus number of basis.

the slice. Furthermore, Figure 9 shows the first twenty bases;
it illustrates that different bases can have effect on different
parts. Thus we can change the local intensity of slice through
change the coefficient of basis.

Figure 10 shows the values of coefficientwhen the number
of bases is different for LTC. It illustrates that the first several
values are obviously larger than the other ones. Because of
this, the volume can be reconstructed by less bases than
GND-PCA.

Figure 11 shows the graph of normalized correlation
between original volume and reconstructed volume for dif-
ferent number of bases.The value of normalized correlation is
between 0 and 1. The more similar the two volumes are, the
larger its value is. The result in Figure 11 illustrates that the
original volume can be better reconstructed by LTCwhen the
number of bases is the same as GND-PCA.

For classification, the coefficients are used as the feature;
SVM and KNN are utilized as classifiers, respectively. For
LTC, we trained 1200 bases, and for GND-PCA, the size of
core-tensor is 20× 20× 3. And we used leave one out method
to do the classification. Figure 12 shows the distribution of
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Figure 12: The distribution of coefficients of the first four bases. The blue one represents the normal liver and the red one represents the
abnormal liver. The number in the brackets is the correlation coefficients.

coefficients of the first four bases of LTC. The blue ones are
the normal livers, and the red ones are abnormal livers. The
number in the brackets is the correlation coefficient which is
calculated by

correlation =
∑
𝑛

𝑖
(𝑐
𝑖
− 𝑐) (𝑙

𝑖
− 𝑙)

√∑
𝑛

𝑖
(𝑐
𝑖
− 𝑐)
2

(𝑙
𝑖
− 𝑙)
2

. (14)

Here, 𝑛 is the number of samples, 𝑐
𝑖
is the coefficient of

one fixed basis of LTC, and 𝑙
𝑖
∈ {−1, 1}, 1 ≤ 𝑖 ≤ 𝑛, is the

label of the samples. In our experiments,−1 represents normal
liver, and 1 represents abnormal liver. For each basis, we can
get a correlation coefficient. From the correlation coefficients
in Figure 12, it illustrates that it is difficult for classification if
using these basis because the correlation coefficients are so
small. Thus, we firstly chose the basis using the correlation
coefficients. But GND-PCA cannot choose basis because
the core tensor is directly used for classification. Figure 13
shows the coefficients of the first four bases chosen through
correlation coefficients. The blue ones are the normal livers,
and the red ones are abnormal livers. The first number in the
bracket is the position of basis in the original basis set and the

second number in the bracket is the correlation coefficient of
corresponding basis.

Table 1 is the classification accuracy using different clas-
sifiers. Before choosing bases, we used all the basis for
classification. We can see that the classification accuracies of
LTC and GND-PCA are both bad. Then we choose the first
one hundred bases which have greater correlation coefficients
for classification. The classification accuracy is obviously
improved.

5. Conclusion

In this paper, we describe a statistical texture modeling
method for medical volumes which is known as LTC. LTC
is an extension of GND-PCA. The medical volume such as
the volume of the liver is represented by a linear combination
of bases which have the same size as the tensor. Each
basis is mutual independence and more discriminate than
that of GND-PCA. In our experiments, we compared both
reconstructed results and classification results of LTC and
GND-PCA. As for reconstruction results, the performance
of LTC is superior to that of GND-PCA. Additionally, in
the classification part, we firstly chose the distinctive basis
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Figure 13: The distribution of coefficients of the first four basis chosen through correlation coefficients. The blue ones are the normal livers,
and the red ones are abnormal livers. The first number in the bracket is the position of basis in the original basis set and the second number
in the bracket is the correlation coefficient.

Table 1: The classification accuracy of GND-PCA and LTC.

SVM KNN
GND-PCA 7/20 10/20
LTC with all 1200 bases 7/20 9/20
LTC with 100 selected bases 19/20 19/20

through the correlation between category labels and the
coefficients of basis of LTC.And thenwe use the selected basis
for classification.The classification accuracy was significantly
improved by the use of selected distinctive basis. Future
work will involve testing our method with more data sets for
classification and using our method in practical applications.

Acknowledgments

This work is supported in part by the Grant-in-Aid for
Scientific Research from the JapaneseMinistry for Education,
Science, Culture and Sports under the Grant nos. 24300076,

24103710 and 24700179, as well as in part by the R-GIRO
Research Fund from Ritsumeikan University.

References

[1] F. H. Netterem, Atlas of Human Anatomy, WB Saunders,
Philadelphia, Pa, USA, 2006.

[2] K. H. Hohne, B. Pflesser, A. Pommert et al., “A new representa-
tion of knowledge concerning human anatomy and function,”
Nature Medicine, vol. 1, no. 6, pp. 506–511, 1995.

[3] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models-their training and application,” Computer Vision
and Image Understanding, vol. 61, no. 1, pp. 38–59, 1995.

[4] H. Huang, F. Makedon, and R. McColl, “High dimensional sta-
tistical shape model for medical image analysis,” in Proceedings
of the 5th IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (ISBI ’08), pp. 1541–1544, Paris, France,
May 2008.

[5] H.C. vanAssen,M.G.Danilouchkine, F. Behloul et al., “Cardiac
LV segmentation using a 3D active shapemodel driven by fuzzy
inference,” in Proceedings of the 6th International Conference on



10 Computational and Mathematical Methods in Medicine

Medical Image Computing and Computer-Assisted Intervention
(MICCAI ’03), vol. 2878, pp. 533–540, 2003.

[6] M. R. Kaus, J. von Berg, J. Weese, W. Niessen, and V. Pekar,
“Automated segmentation of the left ventricle in cardiac MRI,”
Medical Image Analysis, vol. 8, no. 3, pp. 245–254, 2004.

[7] S. Kohara, T. Tateyama, A. H. Foruzan et al., “Preliminary study
on statistical shapemodel applied to diagnosis of liver cirrhosis,”
in Proceedings of the 18th IEEE International Conference on
Image Processing (ICIP ’11), pp. 2921–2924, Brussels, Belgium,
September 2011.

[8] T. F. Cooles, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 681–685, 2001.

[9] S. C.Mitchell, B. P. F. Lelieveldt, R. van der Geest, J. Schaap, J. H.
C. Reiber, and M. Sonka, “Segmentation of cardiac MR images:
an active appearance model approach,” in Medical Imaging
2000: Image Processing, vol. 3979 of Proceedings of SPIE, San
Diego, Calif, USA, February 2000.

[10] R. Xu and Y. Chen, “Generalized N-dimensional principal
component analysis (GND-PCA) and its application on con-
struction of statistical appearance models for medical volumes
with fewer samples,” Neurocomputing, vol. 72, no. 10–12, pp.
2276–2287, 2009.

[11] X. Qiao, T. Lgarashi, K. Nakao, and Y. W. Chen, “Linear tensor
coding for efficient representation of multi-dimensional data,”
in Proceedings of the MIRU 2010, 2010.

[12] X. Qiao, X. T. Su, X. H. Han, and Y. W. Chen, “A new
linear coding algorithm for efficient multi-dimensional data
representation without data expansion,” in Proceedings of the
International Conference on New Trends in Information Science,
Service Science and Data Mining (ISSDM ’12), pp. 475–478,
Taiwan, China, 2012.

[13] L. de Lathauwer, B. de Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM Journal on Matrix Analy-
sis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[14] X. Qiao and Y. W. Chen, “A statistical texture model of the
liver based on generalized N-dimensional principal component
analysis (GND-PCA) and 3D shape normalization,” Interna-
tional Journal of Biomedical Imaging, vol. 2011, Article ID
601672, 8 pages, 2011.


