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Abstract

Objective: To investigate the mean impact value (MIV) method for discerning the most efficacious input variables for the
machine learning (ML) model. Subsequently, various ML algorithms are harnessed to formulate a more accurate predictive
model that can forecast both the prognosis and the length of hospital stay for patients suffering from traumatic brain injury
(TBI).

Design: Retrospective cohort study.

Participants: The study retrospectively accrued data from 1128 cases of patients who sought medical intervention at the
Neurosurgery Center of the Second Affiliated Hospital of Anhui Medical University, within the timeframe spanning from
May 2017 to May 2022.

Methods: We performed a retrospective analysis of patient data obtained from the Neurosurgery Center of the Second Hospital
of Anhui Medical University, covering the period from May 2017 to May 2022. Following meticulous data filtration and parti-
tioning, 70% of the data were allocated for model training, while the remaining 30% served for model evaluation. During the
construction phase of the ML models, a gamut of 11 independent variables—including, but not limited to, in-hospital complica-
tions and patient age—were utilized as input variables. Conversely, the length of stay (LOS) and the Glasgow Outcome Scale
(GOS) scores were designated as output variables. The model architecture was initially refined through the MIV methodology
to identify optimal input variables, whereupon five distinct predictive models were constructed, encompassing support vector
regression (SVR), convolutional neural networks (CNN), backpropagation (BP) neural networks, artificial neural networks (ANN)
and logistic regression (LR). Ultimately, SVR emerged as the most proficient predictive model and was further authenticated
through an external dataset obtained from the First Hospital of Anhui Medical University.

Results: Upon incorporating the optimal input variables as ascertained through MIV, it was observed that the SVR model
exhibited remarkable predictive prowess. Specifically, the Mean Absolute Percentage Error (MAPE) of the SVR model in pre-
dicting the GOS score in the test dataset is only 6.30%, and the MAPE in the external validation set is only 7.61%. In terms of
predicting hospitalization time, the accuracy of the test and external validation sets were 9.28% and 7.91%, respectively. This
error indicator is significantly lower than the error of other prediction models, thus proving the excellent efficacy and clinical
reliability of the MIV-optimized SVR model.

Conclusion: This study unequivocally substantiates that the incorporation of MIV for selecting optimal input variables can
substantially augment the predictive accuracy of machine learning models. Among the models examined, the MIV-SVR
model emerged as the most accurate and clinically applicable, thereby rendering it highly conducive for future clinical decision-
making processes.
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Introduction
Traumatic brain injury (TBI) constitutes a critical source of
morbidity and mortality, responsible for substantial adverse
outcomes among various forms of injuries.1,2 Globally, TBI
afflicts over 50 million individuals annually, with epi-
demiological data suggesting that nearly half of the global
populace is predisposed to experiencing one or more such
injuries in their lifetime.3 A seminal study led by
Professor Jiang Jiyao’s research group at Renji Hospital,
affiliated with Shanghai Jiao Tong University School of
Medicine, delineated the foundational characteristics of
Chinese TBI patients.4 Their research illuminated that the
morbidity and mortality rates among TBI patients in inten-
sive care units approximated 11.4%, while the majority of
survivors demonstrated a reasonable timeframe for recov-
ery. Despite these findings, resource constraints and relative
paucity of medical expertise in low- and middle-income
countries exacerbate the burden borne by TBI patients.5

Consequently, the imperative for risk stratification of TBI
patients—contingent on clinical variables and patients’
physiological conditions—and the development of predict-
ive tools for prognostic outcomes and length of stay cannot
be overstated. Such measures are quintessential for achiev-
ing precision medicine, curtailing non-essential medical
expenditure and mitigating societal healthcare burdens.

The contemporary ascendancy of machine learning has
catalyzed the efficacious utilization of hitherto accumulated
voluminous clinical datasets. Predictive models, engen-
dered through machine learning algorithms, have gained
pervasive applicability in the domain of neurocranial
trauma, frequently yielding commendable outcomes.6

However, the extant literature predominantly relies on
past empirical analyses and heuristic experiences for the
selection of input variables, often eschewing further rigor-
ous scrutiny to ascertain the optimality of these predictive
models.7–13 Against this backdrop, the present investigation
employs the mean impact value (MIV) methodology14 as a
novel screening mechanism for input variables. The yard-
stick for this screening is the predictive accuracy of the
model under consideration. Subsequent to this initial filtra-
tion process, the curated input variables are harnessed for
the construction of an assortment of machine learning

models. The final stage involves a comparative evaluation
aimed at identifying the most efficacious predictive model.

Methods

Study design and data source

This investigation is a retrospective cohort study and has
received the requisite ethical clearance from the
Institutional Review Board of the Second Affiliated
Hospital of Anhui Medical University. Informed consent
was diligently procured from the participants or their
authorized representatives within a temporal window of
24 hours post-admission.

The study retrospectively accrued data from1128 cases of
patients who sought medical intervention at the
Neurosurgery Center of the Second Affiliated Hospital of
Anhui Medical University, within the timeframe spanning
from May 2017 to May 2022. The criteria delineating
patient inclusion are systematically outlined in Table 1.
Owing to the nature of our model’s predictive focus—
encompassing both patient prognosis and duration of
hospital stay—discharge decisions necessitated interdiscip-
linary consultation involving the treatment team and
rigorous evaluative measures by seasoned neurosurgical
experts. Accordingly, exclusion criteria were judiciously

Table 1. Criteria for patient inclusion.

Inclusion criteria

1 Craniocerebral trauma as a result of external forces

2 Clinical diagnosis of craniocerebral trauma

3 Traumatic brain injury occurred between May 2017 and May
2022

4 Consulted at the Second Affiliated Hospital of Anhui Medical
University

5 Complete clinical information such as cases, course records,
imaging examinations and test reports are available
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implemented to account for the following scenarios: (1)
instances where the family of the patient opts to discontinue
treatment, inclusive of economic constraints, resulting in
self-discharge; (2) cases necessitating further intervention
from specialized departments due to severe injuries in
anatomical regions beyond the cranium; and (3) Patients
with an antecedent history of neurocranial trauma.
Post-application of these exclusion criteria, a refined
dataset comprising 1001 patient records, was retained for
subsequent analysis. In the process of emergency rescue,
patients are often combined with severe trauma in other
parts of the body in addition to TBI, and the specificity of
the human brain also determines the sequence of emergency
surgery. So TBI are dealt with first, and patients are often lost
to follow-up when they need to be transferred to other hospi-
tals or departments for surgery on other parts of the body
after craniocerebral surgery, so this is one of the exclusion
criteria. When patients have minor injuries elsewhere that
do not require surgical treatment, they can be discharged
from the neurosurgical ward with conservative treatment to
heal (e.g. plaster immobilization after fracture), but these
patients often require longer hospitalization for treatment
and recovery, which will have an impact on the results of
the length of hospital stay in this study, and so they are
used as the input dataset for the prediction model, i.e. the
input data (x8) in Table 2.

Additionally, for purposes of external model validation,
clinical data from 111 patients treated at the First Affiliated
Hospital of Anhui Medical University were collected.

Predictor variables

The conceptual framework guiding the initial selection of
both input and output variables for the model was informed
by our antecedent research endeavors.15 The dataset for
model construction incorporated a multifaceted array of
parameters, encapsulating patients’ general condition as
well as their clinical and imaging data post-admission for
craniocerebral trauma. Specifically, we operationalized 11
variable groups, including gender, age, pre-existing
medical history, mechanism underlying the traumatic
brain injury, presence or absence of post-injury loss of con-
sciousness, admission Glasgow Coma Scale (GCS) score,
cranial computed tomography (CT) findings at admission,
surgical interventions pertaining to the brain, concomitant
injuries in anatomical sites other than the cranium, the
administration of intensive care treatment and its associated
duration. These variables constituted the input data for the
machine learning model. The categorical taxonomy and
definitional attributes of the variables employed in model
construction are elaborated upon in Table 2.

The predictive variables in this study are all discrete vari-
ables, and it is necessary to perform one-hot encoding on
the discrete data. One-hot encoding is the representation
of categorical variables as binary vectors. Firstly, the

classification values are mapped to integer values, and
then each integer value is represented as a binary vector,
with zero values except for the index of integers. One-hot
encoding has the advantage of calculating the distance
between features more reasonably, which is conducive to
the establishment and development of the prediction
model in this study, and is suitable for processing discrete
data. Therefore, this study uses one-hot encoding to
process predicted variables, using the processed feature
vectors as inputs to the model.

Outcome indicators

The outcome indicators predicted by the model include
length of stay and Glasgow Outcome Scale (GOS) score.
Length of stay usually refers to the duration of a patient’s
stay from admission to discharge, usually measured in
days. This study directly extracted the length of stay of
patients with traumatic brain injury from the hospital’s elec-
tronic medical record system. GOS is a scoring system used
to evaluate the recovery and functional outcomes after brain
injury. It is mainly used to evaluate the overall functional
recovery of patients with severe brain injury. The GOS
score in this study was obtained at the time of discharge
through detailed assessments of patients with traumatic
brain injury conducted by physicians, nurses or other
medical professionals. It is worth noting that the GOS
score serves as a robust and widely accepted prognostic
instrument for assessing global disability and recovery tra-
jectories following traumatic brain injury.16 The score
employs a categorical scale, where a rating of 1 denotes
mortality, while scores of 4 and 5 are indicative of favorable
recovery outcomes. Conversely, scores of 2 and 3 portend a
more deleterious prognosis.

Research design

Section 2.1 provides a detailed overview of our data collec-
tion methods. This section will describe the broader
research design, highlighting the framework, objectives
and guiding principles of our study. The overall design
can be visualized in Figure 1.

To start, the raw dataset is filtered using the mean impact
value (MIV) method. This method ensures that we have an
optimal dataset for machine learning applications. In
essence, MIV evaluates the significance of each data
feature by calculating its mean impact value over multiple
iterations.17,18 With MIV’s insights, we can better under-
stand the importance of each feature, simplifying feature
selection and model tuning. The filtered data is then used
to train various machine learning models, focusing on pre-
dicting the GOS scores and the duration of a patient’s hos-
pital stay. We chose to test the following models: support
vector regression machine (SVR), convolutional neural
network (CNN), backpropagation (BP) neural network,
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Table 2. Variables used to construct the model.

Variables
Total
(n= 701)

Age (years)

≤17, n (%) 42 (6.0)

18–44, n (%) 202 (28.8)

45–64, n (%) 289 (41.2)

65–74, n (%) 114 (16.2)

≧75, n (%) 54 (7.7)

Gender

Male, n (%) 493 (70.3)

Female, n (%) 208 (29.7)

Previous medical history

Hypertension, n (%) 127 (18.1)

Diabetes, n (%) 38 (5.4)

Coronary artery disease, n (%) 13 (1.9)

Chronic renal failure, n (%) 5 (0.7)

Cerebral infarction, n (%) 16 (2.3)

Respiratory disorders, n (%) 9 (1.3)

Mechanism of traumatic brain injury

Fall on the same plane, n (%) 197 (28.1)

Fall from high place, n (%) 138 (19.7)

Road accident, n (%) 340 (48.5)

Object striking the head, n (%) 26 (3.7)

Presence or absence of loss of consciousness after injury

Yes, n (%) 323 (46.1)

No, n (%) 378 (53.9)

Glasgow Coma Scale score

13–15, n (%) 416 (59.3)

9–12, n (%) 107 (15.3)

3–8, n (%) 178 (25.4)

Admission cranial CT examination results

Epidural hematoma, n (%) 234 (33.4)

Subdural hematoma, n (%) 418 (59.6)

(continued)

Table 2. Continued.

Variables
Total
(n= 701)

Subarachnoid hemorrhage, n (%) 403 (57.4)

Skull fracture, n (%) 472 (67.3)

Diffuse axonal injury, n (%) 13 (1.9)

Brain herniation, n (%) 18 (2.6)

Whether brain surgery was performed

No, n (%) 171 (24.4)

Yes, n (%) 530 (75.6)

Injury at other sites besides the cranium

Fractures in other areas, n (%) 224 (32.0)

Visceral contusions, n (%) 17 (2.4)

Traumatic wet lung, n (%) 100 (14.3)

Pneumothorax, n (%) 14 (2.0)

Duration of intensive care treatment (days)

≤5, n (%) 97 (16.1)

6–15, n (%) 91 (13.0)

≥16, n (%) 28 (4.0)

Whether intensive care treatment was performed

No, n (%) 485 (69.2)

Yes, n (%) 216 (30.8)

GOS score

1, n (%) 0 (0)

2, n (%) 82 (11.7)

3, n (%) 90 (12.8)

4, n (%) 351 (50.1)

5, n (%) 178 (25.4)

Length of stay in hospital (days)

≤10, n (%) 215 (30.1)

11–20, n (%) 301 (42.9)

21–30, n (%) 130 (18.5)

31–40, n (%) 50 (7.0)

≥41, n (%) 5 (0.7)
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artificial neural network (ANN) and logistic regression
(LR). The choice of these models is grounded in their
proven effectiveness for diverse data types. Here’s a brief
overview of each: CNNs are adept at processing data like
images and speech. They extract data features using convo-
lutional and pooling layers. Tools like TensorFlow and
PyTorch offer modules for CNNs, with models like
ResNet, VGG, and AlexNet being popular choices for
image tasks. ANNs are versatile neural networks suitable
for tasks ranging from classification to regression. They
don’t adhere to a fixed structure, allowing flexibility in
application. Frameworks such as TensorFlow, PyTorch,
and Keras support ANN development. BP networks are
feedforward networks that include hidden layers to handle
complex data relations. They leverage backpropagation
algorithms for training. LR is a straightforward linear
model used for classification and regression. It efficiently
combines linear equations and logistic functions without
demanding intricate computations or hyperparameter
tuning. SVR is a novel small-sample learning method
underpinned by a solid theoretical foundation. At its core,
it doesn’t rely on probabilistic measures or the law of
large numbers, setting it apart from conventional statistical
approaches. Essentially, SVR sidesteps the traditional
process of moving from induction to deduction, enabling
efficient ‘transductive inference’ from training samples to
prediction samples. This approach considerably streamlines
typical regression prediction challenges.

Our objective in using these models is to comprehen-
sively evaluate their performance in our specific context.
This comparative approach strengthens the validity of our
findings. All computations for this research were conducted
using Python 3.9.

Lastly, the top-performing model underwent further
testing using external datasets sourced from various health-
care facilities. This external validation tests the model’s
broader applicability, its resilience to overfitting and its per-
formance across different scenarios. By this comprehensive
approach, we aim to enrich the existing literature, offering
deeper insights into risk stratification for traumatic brain
injuries and enhancing the accuracy of predictions.

Filtering of predictor variables

The veracity of any predictive model is fundamentally
anchored to the salient attributes represented by its input
variables. In the extant literature, an uncritical direct inclu-
sion of original input variables into predictive models has
been the norm, with scant consideration for the potential
diminution of predictive accuracy as a result thereof. This
study, therefore, aims to institute a robust filtration protocol
for input variables with a view to enhancing both computa-
tional efficiency and empirical accuracy.

The mean impact value (MIV) method was elected for
this purpose, predicated on its ubiquity in the field and its
computationally unencumbered principles. Given the

Figure 1. Research design.
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absence of a predetermined framework for variable selec-
tion specific to this research context, the MIV methodology
stands as a logical choice. In the context of a given sample
S, this method modulates a single input variable by a factor
of± 10%, while maintaining the remainder of the variables
at their original values. This manipulation yields two
derivative samples, S1 and S2, which are then subjected
to predictive modeling to obtain the corresponding regres-
sion output sets R1 and R2. The magnitude of the deviation
between R1 and R2, averaged over numerous experimental
iterations, serves as the MIV metric that quantifies the influ-
ence of individual input variables on the predictive model
(Figure 2).

Conforming to the procedural framework delineated in
Figure 2, the MIV algorithm is synergistically integrated
with the machine learning model to compute MIV magni-
tudes for each of the scrutinized input variables, as demon-
strated in Figure 3.

The absolute magnitudes of the mean impact value
(MIV) serve as the determinative metrics for assessing the
relative significance of various input variables in influen-
cing the predictive accuracy of the model. In descending
order of their importance, these variables are classified as
follows: time to intensive care treatment (x1), admission
Glasgow Coma Scale (GCS) score (x2), the mechanism
underlying traumatic brain injury (x3), the administration

of intensive care treatment (x4), initial cranial computed
tomography (CT) evaluation (x5), the execution of brain
surgery (x6), the incidence of post-traumatic loss of con-
sciousness (x7), injuries to anatomical locales extraneous
to the cranial cavity (x8), patient age (x9), antecedent
medical history (x10) and gender (x11).

To discern the optimal configuration of input variables
for this model, a process of methodical elimination was
implemented, based on the ascending values of MIV.
Concurrently, the fluctuation in predictive error rates
across various combinations of input variables was rigor-
ously studied. The most favorable configuration was identi-
fied as the one corresponding to the minimum predictive
error. As an evaluative criterion, the root-mean-square
error (RMSE) was enlisted, as articulated in Equation (1),
where ya signifies the actual value and yp designates the pre-
dicted value:

RMSE =
�����������������
1
n

∑n
i=1

(ya − yp)
2

√
(1)

The RMSE under different input variable regimes is shown
in Table 3.

According to the data elucidated in Table 2, a consistent
decline in RMSE was observed across the four variable
systems, denoted as F1 to F4. This decline was correlated
with the sequential exclusion of variables such as gender,
antecedent medical history, age and non-cranial injuries,
thereby revealing an ongoing enhancement in model preci-
sion. However, additional excisions performed within vari-
able systems F5 to F11—which included non-cranial
injuries, post-traumatic consciousness status, surgical inter-
ventions, cranial CT findings, intensive care treatment, the
mechanism of traumatic brain injury and GCS score—
induced an increment in the RMSE values, thereby indicat-
ing a deterioration in predictive accuracy. The empirical
evidence unequivocally corroborates that the model
achieves its minimal RMSE when configured with the
input variable system F4. Consequently, this study ascer-
tains the optimal set of input variables to include injuries
extraneous to the cranial region, post-traumatic conscious-
ness status, whether surgical intervention was conducted,
initial cranial CT evaluations, the administration of inten-
sive care, the mechanism of traumatic brain injury, GCS
scores upon admission and the duration of intensive care
treatment.

Establishment and evaluation of the prediction
model

There is no missing data in the dataset of this study. After
applying the exclusion criteria, a sample set containing
1001 patient records was retained for model training.
A cohort of 1001 patients was partitioned in a stochastic
manner into two distinct subsets: 70% were allocated toFigure 2. Flow chart of MIV method.
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the training set, and the remaining 30% comprised the test
set. Obtain the prediction effect of the model through
cross-validation method. A quintet of machine learning
paradigms—namely, SVR, CNN, BP neural network,
ANN and LR—were instantiated. These models were cali-
brated utilizing the empirically determined optimal vectors
of input and output variables, specifically the GOS scores

Figure 3. Size of MIV values for different input variables.

Table 3. RMSE values under different input variable systems.

System Input variable system RMSE

F1 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11 0.484

F2 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 0.413

F3 x1, x2, x3, x4, x5, x6, x7, x8, x9 0.375

F4 x1, x2, x3, x4, x5, x6, x7, x8 0.331

F5 x1, x2, x3, x4, x5, x6, x7 0.489

F6 x1, x2, x3, x4, x5, x6 0.517

F7 x1, x2, x3, x4, x5 0.574

F8 x1, x2, x3, x4 0.588

F9 x1, x2, x3 0.612

F10 x1, x2 0.627

F11 x1 0.656

Table 4. The architecture of convolutional neural networks.

Network layer Model parameter setting

Input layer 700× 11 spectral data matrix

Convolution layer 1 64 1× 1 convolution kernels;
kernel_size= 5

Convolution layer 2 128 1× 1 convolution kernels;
kernel_size= 5

Pool layer 1 MaxPool; kernel_size= 1;
stride= 2

Convolution layer 3 128 1× 1 convolution kernels;
kernel_size= 5

Pool layer 2 MaxPool; kernel_size= 1;
stride= 2

Convolution layer 4 256 1× 1 convolution kernels;
kernel_size= 5

Pool layer 3 MaxPool; kernel_size= 1;
stride= 2

Convolution layer 5 512 1× 1 convolution kernels;
kernel_size= 5

Pool layer 4 (adaptive
pooling layer)

Output one-dimensional vector

Full connection layer Result
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and length of hospital stay. Subsequently, the efficacy of
each model in prognosticating these outcome variables
was rigorously assessed to facilitate the selection of the
most efficacious machine learning model for the ultimate
predictive schema.

The evaluative metrics enlisted for this analytical
endeavor included the Mean Absolute Percentage Error
(MAPE), which was employed to quantify the prediction
discrepancies concerning GOS scores and length of stay,
as articulated in Equation (2). Additionally, the coefficient
of determination (R2) served as an ancillary measure to
gauge the congruence between the true and predicted
values emanating from the model:

MAPE = 1
n

∑N
i=1

ya − yp
yp

∣∣∣∣
∣∣∣∣ × 100% (2)

With respect to hyperparameter optimization for each
model, the settings were delineated as follows. For SVR,
a Radial Basis Function (RBF) kernel was utilized, with a
penalty factor (p) of 100 and a kernel parameter (γ) set to
0.01. In the case of CNN, the corresponding network archi-
tectures and hyperparameter configurations are elaborated
in Tables 4 and 5. For ANN, a triad of hidden layers was
incorporated, with the learning epochs stipulated at 1,000,
a learning rate of 0.01 and a batch size parameterized at
64. In the BP model, the architecture encompassed quintu-
ple hidden layers with 2000 learning epochs and a learning
rate of 0.005. Lastly, the logistic regression model incorpo-
rated an L2 regularization term, with the convergence
threshold definitively fixed at 0.001.

Validation

In order to better evaluate the generalization ability of the
model, the risk of overfitting has been reduced, ensuring
the practicality of the prediction model and improving the
credibility of the model. This study used the clinical data
of 111 patients from the First Affiliated Hospital of Anhui
Medical University throughout 2022 as the external

Table 5. Setting hyperparameters for convolutional neural
networks.

Hyperparameter Setting

Activation function ReLu

Optimizer Adam

Learning rate 0.001

Batch size 64

Dropout 0.5

Table 6. Variables used to validate the model.

Variables
Total
(n= 111)

Age (years)

≤17, n (%) 4 (3.6)

18–44, n (%) 34 (30.7)

45–64, n (%) 43 (38.7)

65–74, n (%) 20 (18.0)

≧75, n (%) 10 (9.0)

Gender

Male, n (%) 72 (64.9)

Female, n (%) 39 (35.1)

Previous medical history

Hypertension, n (%) 15 (13.5)

Diabetes, n (%) 7 (6.3)

Coronary artery disease, n (%) 2 (1.8)

Chronic renal failure, n (%) 3 (2.7)

Cerebral infarction, n (%) 2 (1.8)

Respiratory disorders, n (%) 2 (1.8)

Mechanism of traumatic brain injury

Fall on the same plane, n (%) 33 (29.7)

Fall from high place, n (%) 9 (8.1)

Road accident, n (%) 61 (55.0)

Object striking the head, n (%) 8 (7.2)

Presence or absence of loss of consciousness after
injury

Yes, n (%) 47 (42.3)

No, n (%) 64 (57.7)

Glasgow Coma Scale score

13–15, n (%) 67 (59.3)

9–12, n (%) 17 (15.3)

(continued)
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dataset for this study. The inclusion criteria, outcome indi-
cators and predictive indicators are identical to those in the
modeling dataset. The dataset used for model validation has
no missing data. Table 6 provides a detailed explanation of
the classification and definition attributes of variables used
in model validation. Comparing the data in Tables 1 and 6,
there are differences in the distribution of important vari-
ables between the model validation dataset and the model
development dataset.

Results

Prediction of GOS scores

In an endeavor to ascertain the most efficacious predictive
model for craniocerebral trauma outcomes, a comparative
evaluation was executed across five distinct machine

Table 6. Continued.

Variables
Total
(n= 111)

3–8, n (%) 27 (25.4)

Admission cranial CT examination results

Epidural hematoma, n (%) 41 (36.9)

Subdural hematoma, n (%) 53 (47.7)

Subarachnoid hemorrhage, n (%) 57 (51.4)

Skull fracture, n (%) 77 (69.4)

Diffuse axonal injury, n (%) 3 (2.7)

Brain herniation, n (%) 2 (1.8)

Whether brain surgery was performed

No, n (%) 80 (72.1)

Yes, n (%) 31 (27.9)

Injury at other sites besides the cranium

Fractures in other areas, n (%) 15 (13.5)

Visceral contusions, n (%) 5 (4.5)

Traumatic wet lung, n (%) 3 (2.7)

Pneumothorax, n (%) 2 (1.8)

Duration of intensive care treatment (days)

≤5, n (%) 17 (15.3)

6–15, n (%) 12 (10.8)

≥16, n (%) 2 (1.8)

Whether intensive care treatment was performed

No, n (%) 80 (72.1)

Yes, n (%) 31 (27.9)

GOS score

1, n (%) 0 (0)

2, n (%) 8 (7.2)

3, n (%) 21 (18.9)

(continued)

Table 6. Continued.

Variables
Total
(n= 111)

4, n (%) 60 (54.1)

5, n (%) 22 (19.8)

Length of stay in hospital (days)

≤10, n (%) 35 (31.5)

11–20, n (%) 52 (46.8)

21–30, n (%) 20 (18.0)

31–40, n (%) 3 (2.8)

≥41, n (%) 1 (0.9)

Table 7. MAPE under four prediction models.

Model

MAPE (%)

Training error Test error

SVR 5.89 6.30

BP 21.17 23.51

CNN 10.78 12.59

ANN 17.41 22.05

LR 24.23 29.93

Pan et al. 9



learning frameworks: SVR, CNN, BP neural network,
ANN and LR. Empirical observations drawn from the
MAPE of these models, as delineated in Table 7, reveal
that the SVR model manifests the most diminutive predict-
ive error. Specifically, its MAPE is 17.21%, 6.29%, 23.63%
and 15.75% inferior relative to the BP, CNN, LR and ANN
paradigms, respectively.

Further quantitative substantiation is provided by the
coefficients of determination (R2) between the predicted
and the actual GOS scores across both the training and
test datasets. As elucidated in Table 8, the SVR model
attains a preeminent R2 value, measuring 93.2% in the train-
ing set and 91.7% in the test set. This lends compelling evi-
dence to assert that the SVR model exhibits superior
predictive fidelity compared to its counterparts.

Predicting length of stay

A parallel analytical exercise was conducted to discern the
optimal predictive model for the length of hospital stay.
Once again, a competitive analysis was undertaken across
the aforementioned quintet of machine learning algorithms.
The MAPE values, enumerated in Table 9, evince that the
SVR model outperforms its peers by registering the least
predictive error. Specifically, the MAPE values for the
SVR model are 7.29%, 11.62%, 18.25% and 16.34%
lower than those exhibited by the BP, CNN, logistic regres-
sion and ANN models, respectively.

Augmenting these findings, the R2 values, encapsulated
in Table 10, reinforce the preeminence of the SVR model in
terms of predictive accuracy. The SVR model boasts R2

values of 91.8% and 90.6% for the training and test sets,
respectively, thereby outclassing the alternative models in
capturing the nuances of hospital length of stay.

Validation set results

To further bolster the empirical validation of the SVR
model’s efficacy in predicting the length of hospital stay
among patients with craniocerebral trauma, we utilized an

external validation set of 111 patients sourced from the
First Affiliated Hospital of Anhui Medical University.

The octet of input variables, meticulously sieved through
the mean impact value (MIV) methodology, was incorpo-
rated into the five comparative models to generate predict-
ive GOS scores for these cases. The resultant outputs are
delineated in Figure 4. The predictive acumen of the SVR
model exhibited closer congruence to the actual GOS
scores when juxtaposed against logistic regression, which
demonstrated the most pronounced disparity from the ver-
idical values. Upon computational scrutiny, the error rates
for these five models (SVR, CNN, ANN, BP and LR) in
the external dataset were ascertained to be 7.61%,
15.08%, 18.86%, 24.27% and 28.56%, respectively.

A refined set of eight input variables, meticulously
selected via the mean impact value (MIV) methodology,
were incorporated into each of the five comparative
models to generate prognostications for the duration of hos-
pital stay for this patient cohort. The outcomes of this inves-
tigation are graphically represented in Figure 5. The SVR
model demonstrated a higher degree of accuracy, closely
approximating the true lengths of stay, while the logistic
regression model manifested the most considerable devi-
ation from the actual values. Subsequent to computational
analysis, the error rates associated with these five models
(SVR, CNN, ANN, BP and LR) in the external validation
dataset were quantified as 7.91%, 15.07%, 22.55%,
10.94% and 26.84%, respectively. These metrics compel-
lingly indicate that the SVR model possesses the lowest
error rate among the models examined.

In the concluding phase of our empirical assessment, we
sought to rigorously ascertain the extent to which the MIV
methodology enhances the predictive capabilities of the
established models. Accordingly, we introduced all 11 vari-
able types from the external validation dataset, sans any
MIV-mediated filtering, directly into the quintet of
models under study (SVR, CNN, ANN, BP and LR). The
consequent outcomes are tabulated in Table 11. The data

Table 8. R2 under four prediction models.

Model R2 (modeling set) R2 (testing set)

SVR 93.2% 91.7%

BP 84.5% 82.7%

CNN 89.6% 85.4%

ANN 79.3% 76.5%

LR 72.1% 70.4%

Table 9. MAPE under four prediction models.

Model

MAPE (%)

Training error Test error

SVR 7.83 9.28

BP 13.46 16.57

CNN 16.38 20.90

ANN 21.71 25.62

LR 21.36 27.53
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reveals that the error rates for each of these five models
exhibited varying degrees of amelioration in their predictive
performance for both GOS scores and lengths of stay when
devoid of MIV screening.

Discussion

Principal findings

Subsequent to the meticulous employment of the mean
impact value (MIV) methodology for discerning the most
salient input variables from an extensive corpus of clinical
data, five machine learning models (SVR, CNN, ANN, BP,
LR) were instantiated for evaluation. Comparative analysis
of these algorithms revealed variances in their predictive
capacities. The SVR model showed significant superiority,
with a MAPE of 5.89% in the training dataset, 6.30% in the
testing set and 7.61% in external validation, especially in
predicting the GOS score. In the predictive hospitalization
time model, the SVR model also demonstrated commend-
able fidelity, recording 7.83% of MAPE in the training
set, 9.28% in the testing set and 7.91% in the external val-
idation set. These empirical metrics unequivocally establish
the SVR model as the most efficacious predictive algorithm
for this study, attesting both to its robust reliability and its
clinical applicability.

Moreover, to empirically ascertain the contributive impact
of theMIVmethod on the predictive accuracy of the machine
learning algorithms, we engaged in a secondary experiment
wherein unscreened variables from external datasets were dir-
ectly integrated into the five models. The outcomes compel-
lingly revealed that the algorithms which incorporated
MIV-screened variables exhibited varying but consistently
positive enhancements in predictive accuracy for both GOS
scores and lengths of hospital stay. These observations
serve to underscore the augmentative role of MIV in optimiz-
ing input variables for predictive modeling.

To the best of our scholarly awareness, this investigation
represents a pioneering effort in the amalgamation of MIV
and machine learning techniques to enhance predictive
accuracy, specifically within the domain of TBI.

Comparison with prior work

In antecedent investigations, the modus operandi for the
identification of pertinent clinical data for algorithmic mod-
eling predominantly emanated from a synthesis of extant
scholarly publications and empirical clinical wisdom.6 In
a marked departure from this conventional methodology,
the current study leveraged the mean impact value (MIV)
approach for a priori filtration of an initial pool of 11 data
categories. This selection protocol was designed to
augment the model’s predictive fidelity. The implementa-
tion of MIV offered a transparent and granular elucidation
of the relative salience and inadequacy of diverse input vari-
ables. Employing RMSE as the evaluative metric, we opted
for the assemblage of input data with the most diminutive
RMSE value as the quintessential input variable set for
our machine learning model. Upon rigorous analysis, vari-
ables such as the presence of injuries outside of cranial
regions, the occurrence or absence of post-injury loss of
consciousness, the undertaking of surgical brain interven-
tion, age, administration of intensive care treatment, the
underlying mechanism of the TBI, initial GCS scores
upon admission and the duration of intensive care were
adjudicated as the most propitious input variables for the
model. Crucially, specific factors like the length of inten-
sive care, the admission GCS scores, the mechanistic eti-
ology of the TBI and cranial CT scans upon admission
wielded a disproportionate influence on the model’s pre-
dictive accuracy. This alignment with extant clinical con-
texts and neurosurgical experiences further underscores
the pragmatic utility and clinical viability of the adopted
methodological framework.

Presently, a diverse array of machine learning (ML)
algorithms have been deployed in the realm of medical
prognosis, among which ANN have gained prominence
as the de facto standard for disease prediction.19–25 The
ascendancy of ANNs is largely attributed to their superior
capability to model intricate nonlinear relationships
between input and output variables in high-dimensional
data spaces, coupled with their facility for optimal model
selection based on accuracy metrics.26 However, despite
these advantages, ANNs are not without limitations. For
instance, they necessitate the configuration of an extensive
array of hyperparameters prior to model training, the selec-
tion of which is predominantly reliant on the subjective
expertise of the researcher.27,28 Furthermore, ANNs are
often criticized for their protracted learning cycles and
their susceptibility to local minima, which could potentially
undermine the model’s predictive accuracy.29 In juxtapos-
ition, SVR models proffer distinct advantages, most
notably their capacity to converge towards a global
optimum, thereby obviating the challenges associated
with local minima inherent in ANN models.30 SVR
achieves this by projecting the data into a high-dimensional
feature space through nonlinear transformations and

Table 10. R2 under four prediction models.

Model R2 (modeling set) R2 (testing set)

SVR 91.8% 90.6%

BP 87.2% 84.3%

CNN 83.4% 81.2%

ANN 75.2% 73.7%

LR 70.3% 68.5%
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Figure 4. Error of five models in predicting GOS scores in external datasets.

Figure 5. Error of five models in predicting length of stay in external datasets.
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subsequently constructing a linear decision boundary in this
augmented space, thereby realizing a nonlinear decision
function in the original data space.31 One of the most
salient attributes of this algorithmic approach is its inherent
complexity being independent of the dimensionality of the
sample space. This ensures both high predictive accuracy
and robust generalization capabilities, virtues that are
often conspicuously absent in ANN models.32 The import-
ance of a machine learning model’s generalizability cannot
be overstated, particularly in its translational applicability to
clinical settings. Empirical evidence demonstrates that the
predictive outcomes of the SVR model, as validated on
an external dataset from the First Affiliated Hospital of
Anhui Medical University, were superior to those of other
comparative models. Notably, these results were congruent
with the initial dataset sourced from the Second Affiliated
Hospital of Anhui Medical University, further corroborat-
ing the robust generalizability and predictive efficacy of
the SVR model across disparate clinical environments.

Future deployments of this model have the potential to
contribute significantly to targeted interventions for patients
with TBI who exhibit poor prognostic indicators. Utilizing
hypothetical datasets, healthcare providers could anticipate
future trajectories of TBI patients in terms of GOS scores
and duration of hospital stay. Additionally, the SVR
model offers clinicians a data-driven decision support tool
for making evidence-based prognostic assessments. For
example, if a patient’s high GOS score and short projected
length of stay align with established discharge criteria, clin-
icians could elect to discharge the patient, thus mitigating
the economic burden and the deleterious impacts associated
with prolonged hospitalization.

Limitations

While our investigation pioneers a novel paradigm in the
utilization of ML methodologies within the context of
TBI, it is not devoid of certain limitations that warrant
explicit mention. Firstly, the adoption of ML techniques

remains a relatively unfamiliar territory for the majority
of practicing clinicians, potentially rendering these
approaches susceptible to dismissal as esoteric or empiric-
ally unvalidated modalities, particularly in high-stakes
domains such as diagnostic and surgical procedures.
However, it is critical to note that the present study circum-
scribes the application of ML solely to the prediction of
patients’ GOS scores and length of hospital stay. This judi-
cious scope mitigates attendant risks while preserving pre-
dictive accuracy, serving principally to furnish clinicians
with actionable insights and to enable healthcare institu-
tions to allocate resources with enhanced precision.

Secondly, in the variable selection phase employing the
MIV methodology, we observed that age exerted a signifi-
cant influence on predictive outcomes. Pediatric TBI consti-
tutes a focal point of our ongoing inquiry. Given the
presence of specialized pediatric facilities within our geo-
graphical jurisdiction, the dataset concerning severe pediat-
ric TBI may lack adequate representation. Future efforts
may necessitate collaborative endeavors with pediatric
medical centers to amass a more comprehensive dataset,
thereby refining the model’s applicability to this
demographic.

Lastly, our model construction was predominantly based
on epidemiological factors, encompassing demographic
attributes, clinical manifestations and radiological indices,
but did not integrate pertinent laboratory metrics, such as
electroencephalogram (EEG) readings. This omission may
introduce a degree of bias, particularly when viewed
through the lens of retrospective study designs.
Additional variables from external studies, such as the psy-
chiatric status of patients, were also not accounted for.
These enumerated caveats will form the nucleus of our
forthcoming research initiatives.

Conclusions
In summary, the present study represents an inaugural effort
to amalgamate MIV methodologies with ML algorithms to
enhance predictive accuracy within the domain of TBI
research. Our findings corroborate the hypothesis that the
MIV-SVR model demonstrates superior accuracy in com-
parison to traditional statistical approaches. Consequently,
the MIV-SVR algorithm holds substantial promise in ascer-
taining patient prognosis and length of stay, with potential
for impactful integration into clinical workflows. Our con-
clusion is based on adherence to the TRIPOD standard, as
detailed in the Appendix Table.

Abbreviations
BPNN Backpropagation neural networks
CNN Convolutional neural network
SVR Support vector regression
CT Computed tomography

Table 11. Error of the five models not screened by MIV in predicting
GOS scores and length of stay.

Model
MAPE for predicting GOS
scores (%)

MAPE for predicting length
of stay (%)

SVR 11.27 12.74

CNN 18.64 20.17

ANN 25.18 24.26

BP 28.79 15.41

LR 33.05 34.63
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MAPE Mean absolute percentage error
ML Machine learning
MSE Mean square error
TBI Traumatic brain injury
ANN Artificial neural network
LR Logistic regression
MIV Mean impact value
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