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Abstract 

Breast cancer (BC) is still the most diagnosed cancer for females with an increased focus on immunotherapy 
as a promising precise treatment. Selecting appropriate patients and monitoring patient treatments are crucial 
to ensure higher response rates with low adverse events. Various biomarkers were proposed to predict immuno-
therapy response, including tumor mutation burden, immune cell, and tumor microenvironment expression. How-
ever, traditional methods for evaluating immunotherapy are invasive and inaccurate, and their assessments could 
be biased due to the variability in quantification techniques. Artificial intelligence (AI) has emerged as a powerful 
technology that addresses these challenges, handling heterogeneous data to identify complex patterns and offering 
accurate and non-invasive solutions. In this paper, we review emerging AI-based models for immunotherapy predic-
tion in BC using diverse biomarkers. We first discussed the application of AI models for each biomarker, highlighting 
both direct prediction of immunotherapy response and prognosis, as well as indirect approaches via the identifica-
tion of immune subtypes or specific predictive biomarkers. Then, we investigated the integration of all biomark-
ers in multi-modal AI approaches for a precise and personalized prediction of immunotherapy response. We have 
also addressed the implication of integrating AI in the healthcare ecosystem with other new technologies, includ-
ing nanodevices, and wearable technologies. We further elucidated the role of AI and healthcare providers with this 
convergence of personalized medicine and demonstrated its role in enhancing population health management 
and supporting personalized patient care.
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Background
Breast cancer (BC) is the most diagnosed cancer occur-
ring among women, with 2.29 million new cases and 
666,103 deaths in 2022, based on the latest Global Can-
cer Observatory Statistics. With 11.6% of all cancers, new 
cases in BC are estimated to reach 2.42 million by 2025 
(Kim et  al. 2025). BC is identified based on the immu-
nohistochemical measures of estrogen receptor (ER), 
antigen Ki-67 (Ki-67), human epidermal growth fac-
tor receptor 2 (HER2), and progesterone receptor (PR) 
(Cuzick et al. 2011). Luminal A (ER/PR +, HER2 −, Ki67 
+ < 20%) is the most frequent subtype of BC, character-
ized by a lower proliferation rate and a better prognosis 
with high overall and disease-free survival rates. In con-
trast to luminal A, luminal B (ER/PR + < 20%, HER2 −, 
Ki67 + ≥ 20%) is an intermediate/high histologic grade 
representing 15–20% of all BCs. The elevated Ki-67 and 
other molecular mechanisms contribute to this subtype’s 
aggressiveness and poorer prognosis. Triple-negative BC 
(TNBC) is the most challenging subtype, accounting for 
less than 15% of BC subtypes. TNBC is more aggressive 
with high recurrence and mortality rates (Barzaman et al. 
2020; Abubakar et al. 2019; Goldhirsch et al. 2013).

Due to the heterogeneity of BC, treatment options vary 
according to the subtype, stage, grade, and some specific 
molecular markers. Therefore, efforts have been invested 
in developing new treatment strategies that guarantee 
better survival. Surgery is part of the traditional treat-
ments, while chemotherapy and immunotherapy are 
considered personalized treatments. Immunotherapy, 
especially immune checkpoint inhibitors (ICIs), has 
recently shown promising results in cancer treatment. By 
enhancing the body’s natural immune system, it targets 
cancer cells and blocks checkpoint proteins. Programmed 
cell death receptor 1 (PD-1) and programmed cell death 1 
ligand 1 (PD-L1) are the widely approved inhibitors along 
with the cytotoxic T lymphocyte-associated antigen 
(CTLA-4) (Shiravand et  al. 2022; Pardoll 2012). Other 
studies investigate novel inhibitors such as lymphocyte 
activation gene-3 (LAG-3), VISTA, and B7-H3 (Rivoltini 
et al. 2024; Dirix and Triebel 2019; Curigliano et al. 2021; 
Lee et al. 2017).

Although ICIs have breakthroughs and promising 
results in cancer treatment, ongoing research is still 
needed to overcome its limitations such as immune-
related adverse effects (irAEs), resistance, tolerance 
of therapy, upregulation of inhibitory pathways, and 
inconsistency in treatment response. An estimated rate 
of 43.6% of cancer patients in the USA were eligible for 
ICI and only 12.5% responded to it (Haslam et al. 2020). 
This variability in response is mainly due to the patient’s 
clinical and tumor heterogeneity. TNBC is known for its 
immunogenic and heterogenic tumor microenvironment, 

which regulates the proliferation and metastasis of can-
cerous cells. The expression of multiple components of 
the TME has a prognostic role, including tumor-infil-
trating lymphocytes (TILs), CD8 + T cells, activated 
NK cells, and the CD8 +/Treg ratio (Dieci et  al. 2021; 
Tavares et  al. 2021). Furthermore, the high cost of ICI 
drugs/agents, the low response rate to ICI, and severe 
irAEs highlight the need for reliable biomarkers to strat-
ify patients before receiving ICIs as well as facilitate the 
identification of optimal alternate treatment protocols 
for non-responsive patients. PD-L1 expression, such as 
combined positive score or circulating tumor cells, is the 
primary and common method to identify patients for ICI 
(Zhou et al. 2023; Gruosso et al. 2019). However, differ-
ent clinical trials have been approved to assess PD-L1 
levels which can impact patient selection (Qi et al. 2022).

Given those challenges, suitable biomarkers represent 
a powerful tool for identifying patients eligible for ICIs. 
PD-L1 expression, tumor mutation burden (TMB), TILs, 
and microsatellite instability (MSI) or mismatch repair 
deficiency are some of the biomarkers used to predict 
response to immunotherapy in BC (Qi et  al. 2022; Cui 
et al. 2023; Presti et al. 2022; Carlino et al. 2022).

However, these conventional biomarkers offer limited 
predictive power due to unstandardized quantification, 
the complexity of the tumor immune microenvironment, 
and its variability. Besides, these biomarkers are often 
manually assessed and vary depending on the tumor 
regions, affecting their overall predictive potential.

To address these limitations and further unravel the 
complexity of cancer immunotherapy, AI has emerged as 
a powerful tool offering novel strategies to improve bio-
marker discovery and predict immunotherapy response. 
AI techniques can compute and integrate high-dimen-
sional data such as genomics, hematology, and tran-
scriptomics to generate immune signatures or discover 
novel immune subtypes associated with immunotherapy 
response. Furthermore, as immunotherapy biomarkers 
like TMB or TILs fail at predicting response across BC 
subtypes, incorporating AI approaches as multimodal 
allows the integration of different data types (genomic 
mutations, clinical data, and imagery) to stratify patients 
with higher accuracy. Another key advantage of the AI 
approach is the possibility to model temporal data and 
longitudinal data, offering a better prediction of resist-
ance mechanisms and simulating their pathways. In the 
present review, we aim to explore the recent advance-
ments in artificial intelligence (AI) applications in BC 
immunotherapy, highlighting research across various 
omics fields.

We conducted a structured literature search across 
several databases, such as PubMed, Scopus, WOS, and 
Google Scholar. The search included relevant research 
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articles, conference papers, and reviews published 
between January 2020 and February 2025. We consid-
ered the following inclusion criteria: (1) Any type of 
immunotherapy or combined with other treatments; 
(2) Neoadjuvant immunotherapy; (3) Pan-cancer stud-
ies that included a breast cancer dataset representing at 
least 10% of the total samples; and (4) Articles written in 
English. We used combinations of the relevant keywords 
and medical subject headings (MeSH) terms for artificial 
intelligence, immunotherapy, breast cancer, nanotechnol-
ogy, and computational modeling.

Selected articles were categorized based on their 
approach into single-omics studies, analyzing single bio-
logical data types, and multi-omics studies integrating 
two or more omics types. The present review is struc-
tured as follows: Firstly, we presented AI-based applica-
tions in single-omics analyses, including transcriptomic, 
microbiomic, genomic, epigenomic, proteomic, radiomic, 
and histopathological data. Multi-omics studies followed, 
where we discussed how integrative approaches lever-
age the prediction of immunotherapy response. Subse-
quently, we explored computational modeling strategies 
and the application of nanotherapy in BC immunother-
apy prediction. Finally, we discussed the limitations and 
future directions of AI and nanotechnologies.

Table 1 compiles all the referenced studies mentioned 
in this review, categorized according to their respective 
omics fields.

AI‑based transcriptomic analysis
AI models have been employed to predict immunother-
apy response by leveraging different transcriptomic bio-
markers such as immune-related gene signatures, tumor 
microenvironment (TME) profiles, and subtype-specific 
gene expression. Transcriptomic data obtained from 
bulk, single-cell RNA sequencing, or spatial transcrip-
tomics enables AI models to identify predictive genes and 
understand the cellular dynamics that regulate response 
or resistance to immunotherapy treatments.

Studies have integrated AI models with transcriptomic 
data to complete different tasks, from signature predic-
tion to predictive modeling of immunotherapy outcomes. 
A detailed summary of these studies is presented in 
Table 1. Some studies have focused on immune infiltra-
tion and subtype classification. They used unsupervised 
clustering and kmers to stratify BC samples into immune 
subtypes, identify differentially expressed genes (DEGs), 
and employ models such as random forest (RF) and mul-
tilayer perceptron (MLP) to create the predictive model. 
Other studies developed tumor microenvironment 
(TME)-associated gene signatures to predict immune 
checkpoint therapy response by capturing immune cells, 
tumor cells, stromal cells, and the extracellular matrix. 

Researchers widely use LASSO, Cox regression, and 
random survival forests (RSF) for feature selection and 
prognosis model construction. Gene signatures linked 
to pathological complete response (pCR) and residual 
disease (RD) status were also employed to predict ICI 
responses in BC patients. Another major focus has been 
on metabolism-related gene signatures, particularly those 
linked to redox balance, anoikis resistance, glutamine 
metabolism, palmitoylation, and lactate-hypoxia inter-
actions. Multiple models were applied and compared to 
create the predictive scores, followed by TIDE or ESTI-
MATE analysis and correlation with drug sensitivity for 
validation.

A noticeable remark in these studies is the gene sig-
nature formula used, which varies depending on the 
prediction task. While the majority of studies adopted 
linear models (LASSO, SVM, and Elastic Net) to com-
pute the signature score using the expression of the genes 
with their respective coefficients, other studies applied 
PCA on the genes to construct continuous scores. For 
instance, Gou et  al. constructed a tumor microenviron-
ment-related gene score by summing PC1 and PC2 val-
ues derived from PCA on the TME-related genes. This 
approach allowed the authors to capture multiple dimen-
sions of tumor microenvironment activity, including 
immune and stromal signals, thereby producing a more 
comprehensive and biologically informed score to strat-
ify patients (Gou et  al. 2022). A different approach was 
adopted by Lu et al., where they constructed a principal 
component-based gene score to distinguish patients who 
can benefit from ICI by identifying the PC1 of the pCR-
associated genes (up in responders) and subtracting the 
PC1 of the RD-associated genes (up in non-responders). 
By computing both types of expression genes indepen-
dently, they provided a precise scoring method to better 
represent the relationship between immune activation 
and resistance mechanisms and stratify patients who are 
likely to benefit from immunotherapy (Lu et al. 2024).

 Regarding the model architectures, LASSO, Cox 
regression, and RF are widely used in clinical gene sig-
natures and for survival prediction, mostly due to their 
transparency, simplicity, and suitability for high-dimen-
sional data. Model performances range around 0.70 
(Zhang et  al. 2024; Zhu et  al. 2024a; Shen et  al. 2023). 
While these algorithms offer a strong ranking method 
and a large validation technique, such as cross-valida-
tion and C-index, something they lack is non-linear 
effects, thereby not being able to model complex bio-
logical relationships necessitating heavy validation 
techniques. In contrast to these traditional models, sev-
eral risk scores were constructed using more advanced 
or hybrid approaches. AIARS (Wang et  al. 2024) and 
AIDAS (Guo et  al. 2024) were computed following an 
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extensive workflow composed of a combination of mul-
tiple machine learning algorithms like Random Survival 
Forest (RSF), LASSO, Ridge, and CoxBoost compared 
using the mean C-index across multiple cohorts. This 
demonstrated the utility of ensemble and compara-
tive ML designs in the selection of representative genes 
while maintaining good generalizability. scCURE, on 
the other hand, combined Gaussian mixture models and 
mutual nearest-neighbor criteria to analyze changed and 
unchanged immune-related cells during immunotherapy 
in BC patients (Zou et  al. 2023). A neural network was 
constructed to predict immunotherapy based on the 
expression of signature genes, achieving a 100% area 
under the curve (AUC) when evaluated in an independ-
ent validation set (Bao et  al. 2020). These models high-
light how AI frameworks can efficiently uncover complex 
patterns from high-dimensional transcriptomic data but 
at the same time could overfit. Besides this, the majority 
of DL models require large sample sizes, and their pre-
dictions are harder to explain.

Using the bulk and single-cell transcriptomic data 
allows for a wide biomarker discovery. Over 12 different 
biomarkers were identified in this review as predictive of 
immunotherapy using computational approaches. Some 
biomarkers are well-established and previously validated 
in BC, while others remain novel and require further vali-
dation. This highlights the growing interest in integrating 
mechanistic insights such as redox, anoikis, and palmi-
toylation to go beyond classical immune signatures.

However, the high number of biomarker signatures 
identified through AI approaches raises several concerns. 
Several studies relied on computational validation by 
statistical metrics, cross-validation, or train/validation 
techniques, which could be biased due to the models 
capturing dataset-specific patterns. Compared to these, 
Shen, Zhang, and Guo supported their models with 
immunohistochemistry (IHC) to confirm gene expres-
sion. Meanwhile, besides the IHC, Liu further added 
in vivo testing on a 4 T1 mouse model. With this num-
ber of biomarker signatures in the literature, researchers 
should compare their predictive models against existing 
clinically validated biomarkers to underline the value of 
their new signature within the clinical standards. A sub-
set of researchers, including Shen, Ensenyat-Mendez, and 
Liu, validated their models/genes against PD-1/PD-L, 
TMB, or other known biomarkers. Notably, Guo vali-
dated the stability and accuracy of its predictive model 
across 83 published signatures in 9 independent BC 
cohorts.

The integration of transcriptomic biomarkers with 
AI models offers a promising path toward personalized 
immunotherapy in breast cancer. However, as the field 
evolves, several critical gaps remain to be addressed to 

guide more effective and clinically relevant research. 
TNBC is widely analyzed for its immunogenicity, while 
HER2-positive and luminal A/B subtypes are under-
represented. Future work should expand transcriptomic 
modeling to non-TNBC subtypes, including immune-low 
HER2 + and ER + breast cancers, where new therapies 
are emerging. Incorporating spatial transcriptomics and 
cell–cell communication analysis will offer a wider and 
more complete understanding of immunotherapy char-
acteristics to refine immune subtype stratification and 
response prediction. Researchers should also validate 
their novel biological biomarkers and benchmark them 
against other immunotherapy biomarkers. Besides this, 
prioritizing public ICI-treated cohorts allows for main-
taining validation consistency and enables real-world 
implementation, especially in the absence of experimen-
tal validation.

AI‑based proteomic analysis
Proteomic-based AI biomarkers have been explored to 
enhance BC prognosis and immunotherapy response 
prediction. PDL1 expression is an important prognostic 
biomarker for immunotherapy response in BC. However, 
many studies have demonstrated that clinical assessment 
by pathologists has shown a low inter-observer agree-
ment in assessing PD-L1 expression (Reisenbichler et al. 
2020; Widmaier et  al. 2020). To ensure the repeatabil-
ity and accuracy of the quantification of this biomarker, 
researchers have integrated AI technologies for PD-L1 
scoring. Beyond PD-L1 prediction, several studies have 
explored proteomic biomarkers related to plasma for 
their potential to predict immunotherapy response. 
Table 1 summarizes the different AI/ML studies applied 
to proteomics in BC immunotherapy.

Deep learning models were often applied in these 
studies. CNN architecture was adopted by two differ-
ent studies; Wang et  al. used LinkNet, a CNN-based 
encoder-decoder architecture designed for pixel-wise 
segmentation, to score PD-L1 expression using IHC 
WSIs (Chaurasia and Culurciello 2017). The model seg-
mented the cell, epithelium, and necrotic regions, remov-
ing strained regions overlapping with tumor and necrotic 
areas, and its predictions allowed for PD-L1 scoring and 
quantification (Wang et  al. 2021). An end-to-end CNN 
model was adopted by Shamai et  al. to predict PD-L1 
expression using hematoxylin and eosin (H&E) images. 
The model was built with four residual blocks that 
encoded input images into a 256-dimensional embed-
ding vector and a SoftMax linear layer for label classifica-
tion. Its performance was validated using two methods; 
the prediction scores were compared to the ground truth 
annotation of a pathologist, and a validation based on an 
independent external cohort that achieved a remarkably 
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high AUC (0.854) (Lu et  al. 2020). Lastly, a model was 
constructed using ResNet-50-based feature extraction 
and integrated with an attention-based multiple instance 
learning (MIL) model for sample-level prediction (Ligero 
et  al. 2024). This approach effectively captured and 
aggregated meaningful tile-level features, highlighting 
the potential of the DL-based PD-L1 scoring method to 
stratify patient response to immunotherapy.

In contrast, traditional ML studies were mostly used for 
the investigation of proteomic datasets with RF applied 
for plasma-related gene classification, while Lasso-Cox 
regression was used for the prediction of overall survival 
based on protein expression (Yu et  al. 2023a; Li et  al. 
2024). While the models didn’t use complex DL methods, 
they were the most interpretable models with an easy 
clinical application.

AI‑based histopathological analysis
H&E-stained images offer a detailed representation of 
the immune environment, highlighting cell morphology, 
tumor color, and size. These captured features make them 
valuable tools for AI-based prognostic models. (Figure 1) 
As summarized in Table  1, multiple studies have used 
histopathology images to extract representative features 
and employed AI-based models to predict immunother-
apy response.

CNN models are widely used for image classification 
due to their convolutional backbone layers. Zhao et  al. 
trained a dual-CNN framework for tissue classifica-
tion and then predicted molecular biomarkers (somatic 
mutations, copy number alterations, biological pathway 
activities, and immunotherapy biomarkers) with AUCs 
ranging from 0.70 to 0.87 (Zhao et  al. 2022). Another 
CNN-based AI model was designed to predict long non-
coding RNA (lncRNA) metabolism subtypes using a bag-
of-patches approach, ResNet50-based feature extraction, 
and an attention mechanism (Yu et al. 2024). While these 
DL models offer technical advantages, their clinical vali-
dation remains limited primarily due to the lack of inter-
operability. To address this, authors employed various 
bioinformatics and validation techniques to ensure the 
reliability and robustness of their predictions.

Despite the complexity of the CNN, we explored, in a 
retrospective study, the use of traditional machine learn-
ing approaches to predict immunotherapy outcomes 
based on TNBC WSIs. Our findings demonstrated the 
efficiency and reliability of RF as a non-invasive alter-
native to expensive TMB quantification (Bendani et  al. 
2025). Machine learning models, such as LR and SVM, 
are simple, interpretable, and highly compatible with 
numeric features but are often limited to the quality 
and relevance of the features and have limited perfor-
mance. An application of tissue-based prediction used a 

regularized LR model trained on cell phenotype densi-
ties, cell interactions, and proliferative fractions extracted 
from H&E images to predict pCR. Tissue features were 
analyzed at distinct moments (baseline, early on treat-
ment, and post-treatment) and reduced using Spearman 
correlation and Louvain clustering. The study empha-
sized that integrating a simple ML model with spatial 
features enhances immunotherapy response prediction 
(Wang et al. 2023a).

Due to the large size of the WSIs and the computational 
cost of processing them, researchers adopt substantially 
various approaches. Classical techniques extract the 
morphological and texture features (for example, nuclear 
shape, texture, and color gradients) using different anno-
tation tools such as CellProfiler and Pyradiomics, and 
while this captures biologically interpretable features and 
is computationally efficient, the quality of the features 
and the requirement of manual curation are still a chal-
lenge. Chen et  al.  proposed a patch-based CNN model 
to predict TMB, a genomic biomarker associated with 
immunotherapy, in TNBC patients using nuclear scores 
extracted from WSIs (Chen et. al 2022). They overcome 
the patch-level limitation by keeping only representa-
tive patches with sufficient nuclear cell composition to 
achieve better performance using a pre-trained CNN 
architecture.

Modern approaches primarily utilized patch-level clas-
sification or MIL techniques. In patch-level classifica-
tion, WSIs are divided into tiles/patches of a specific size, 
and then each patch is labeled, classified, and aggregated 
at the image level. These approaches focus on the local 
regions, capture small variations of images and detailed 
ones, and give high performance when integrated with 
attention mechanisms. This is highlighted in the ANSAC 
model study, where authors combined spatial pri-
ors, patch-level extraction, and attention mechanisms 
to predict TILs, demonstrating higher interpretabil-
ity and scalability across different datasets (Perera et  al. 
2024). Moreover, adopting histology-specific pretrain-
ing improved feature quality compared to models pre-
trained on natural images. Despite this, the patch-level 
classification models are limited due to the necessity of 
region-of-interest annotation and could miss global tis-
sue patterns.

MIL is useful when patch-level labels aren’t available 
or manual classification is costly and time-consuming. 
It relies on the WSI labeling and treating the images as 
a “bag” of instances without labels. The model is then 
used to learn and identify images that are important for 
predicting the bag label. An example of this is the BBMIL 
model constructed to predict classical biomarkers and 
immunotherapy-related gene signatures directly from 
histopathology images. The model utilized the ResNet-18 
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classifier to select a region of interest in cancer regions, 
generate pseudo-bags, and perform instance-level feature 
extraction; then it applies a transformer and attention 
MIL networks for the bag-level feature representation 
and finally predicts biomarker status. The model out-
performed other MIL approaches in predicting immune 

signatures such as dendritic cell, interferon-gamma, and 
B cell signatures (Zhang et  al. 2025). The MIL models, 
while powerful, often suffer from poor interpretability, 
and thus integrating attention mechanisms highlights tis-
sue parts that drive the prediction, making results easier 
to validate by pathologists.

Fig. 1 Imagery-based AI models for breast cancer immunotherapy prediction. Histopathology (WSI) and radiomic (MRI, CT/PET) images 
are analyzed and fed to deep learning model or other computational feature extractor to capture representative features. The model is then 
constructed and validated for its performance in assessing immunotherapy prognosis, identifying relevant TME characterization, and quantification 
of specific biomarkers. magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), whole slide imaging (WSI), 
region of interest (ROI), pathological complete response (pCR), tumor-infiltrating lymphocytes (TIL), tumor microenvironment (TME), tumor mutation burden 
(TMB) 
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Despite this wide number of studies and promising 
advances, several limitations persist, with low interpret-
ability a key challenge. Clinical validation on immuno-
therapy-treated cohorts and the integration of MIL, or 
self-supervised learning with attention mechanisms, 
could compensate for the limited interpretability of DL 
and the need for heavy data annotation while benefiting 
from its powerful prediction. Besides, models such as 
graph-based and transformer-based could offer an alter-
native solution for capturing both global and local tissue 
biomarkers (cell–cell interactions and spatial relation-
ships). Additionally, adopting the alternative formats of 
images, such as tissue microarrays (TMA) and multiplex 
immunohistochemistry (mIHC), could provide a richer, 
biologically grounded, and clinically relevant prediction.

AI‑based radiomic analysis
As a non-invasive approach, radiomics has become 
broadly used by healthcare providers, allowing disease 
diagnosis and prognosis. Following this trend, it becomes 
a fundamental approach in precision oncology, enabling 
cancer identification, monitoring, and real-time treat-
ment adaptation. Recent studies outlined in Table 1 have 
demonstrated the integration of AI computational mod-
els with medical imaging techniques such as magnetic 
resonance imaging (MRI), computed tomography (CT), 
and positron emission tomography (PET/CT) (Fig. 1).

The majority of the studies relied on classical ML 
approaches or basic DL models for the classification of 
the radiomic features extracted using traditional tools 
such as Pyradiomics or Analysis-Kit. Among the models, 
LR and LASSO were most used in the pCR and immuno-
therapy response prediction. This highlights the reliance 
on interpretable models that work efficiently with lim-
ited data. Huang and Lin, on the other hand, compared 
six ML models, including RF, SVM, MLP, and Gaussian 
Bayes, with leave-one-out cross-validation to predict 
TIL levels using 11 DCE-MRI features (Huang and Lin 
2022). Interestingly, the MLP model achieved the highest 
predictive score, highlighting the power of the basic DL 
model against the ML models. Zhao et al. also achieved 
the highest performance with the MLP (AUC = 96%), 
driven by robust training data (n = 240) and clinical vali-
dation. They used CE-CT images to extract features and 
constructed the predictive model with 3 hidden layers of 
MLP (Zhao et  al. 2023). Despite the simplicity of MLP 
over CNN or transformers, it’s a computationally lighter 
model, robust in analyzing non-linear and numerical 
data as radiomic features. The most innovative approach 
was used by Cook et al. in their study incorporating bio-
physics-based computational modeling. They introduced 
the tumorIO prognostic score to predict immunother-
apy response based on DCE-MRI and single-cell RNA 

sequencing data. A simul-omics 4D engine segmented 
MRI scans with a CNN, simulated blood flow, nutrient 
delivery, and metabolic activity, and integrated them with 
the transcriptomic features related to PD-L1 expression 
to produce spatial probability maps of PD-L1 expres-
sion. Then, a linear regression model generated the score 
to predict pCR following ICI therapy (Cook et al. 2023). 
These approaches offered several advantages, including 
biological interpretability and spatial modeling, which 
achieved high performance (ACC = 88.2%) despite the 
limited size of the dataset.

Radiomics data presented in the reviewed studies 
encompass the features extracted from CT, MRI, and 
PET-CT, with MRI being the common imaging modal-
ity used. Models constructed using the MRI features 
achieved a mean AUC higher than 80%, highlighting the 
ability of the MRI to capture biological features associ-
ated with immunotherapy response, such as perfusion, 
vascularity, and microenvironmental heterogeneity. 
Other than MRI, contrast-enhanced CT was used by 
Zhao  et al. to extract texture, wavelet, and Laplacian of 
Gaussian features, while Seban et al. combined CT with 
PET, which measured metabolic features (SUVmax, 
TMTV) rather than classical radiomic patterns (Zhao 
et  al. 2023; Seban et  al. 2023) As these imaging tech-
niques offer a high dimensionality of radiomic features, 
feature selection is crucial to accurately extract repre-
sentative ones and avoid feeding noise or overfitting the 
predictive models. Statistical techniques such as LASSO, 
Boruta, and univariate correlation analysis are common 
feature selection techniques and well-suited for selecting 
clinically significant features due to their interpretability, 
computational efficiency, and regularization techniques, 
while deep learning models such as autoencoders and 
MLPs can capture complex, non-linear patterns associ-
ated with class prediction, although at the cost of reduced 
interpretability. Biological filtering was also applied by 
other studies to extract only features associated with bio-
logical signals such as TME or PD-L1.

In summary, most radiomic studies on breast cancer 
immunotherapy have leaned toward traditional meth-
ods with relatively simple ML models. Deep learning 
has mostly been limited to MLPs, CNNs and attention-
based architectures mainly due to the dataset sizes and 
the focus on more interpretable models. However, future 
studies should integrate DL architectures in feature 
extraction and selection and balance between interpreta-
bility and model complexity to construct models capable 
of the analysis of the heterogeneous immune system in 
BC. Researchers should also use other imaging modali-
ties, such as ultrasound, which offer real-time monitoring 
and are low-cost and accessible. Additionally, integrating 
raw images with basic radiomic features can enhance the 
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model’s performance, offering a way to learn high levels 
of abstractions while keeping the interpretability.

AI‑based microbiomic analysis
The microbiome influences cancer diagnosis, treatment, 
and progression (Tzeng et al. 2021; Vitorino et al. 2022; 
Clear et  al. 2024). Despite the increasing interest in the 
tumor microbiome, we identified only two studies, sum-
marized in Table 1, employing AI-based models to iden-
tify microbiome signatures related to BC immunotherapy 
and predict patient outcomes.

Mao et  al. identified a set of 15 microbes using Cox 
regression and constructed a prognostic marker based 
on their abundance. These signatures were identified 
after univariate Cox regression as a first step to reduce 
dimension, followed by a second reduction using mul-
tivariate Cox regression. This two-step reduction is well 
established in survival analysis, especially with highly 
dimensional data. Univariate Cox is faster in screening 
individual features associated with survival, while mul-
tivariate Cox controls for confounding and identifies 
the most robust predictors. The predictive score gener-
ated was significantly associated with overall survival 
(OS) and progression-free survival (PFS) with a p-value 
of 1.70E-19 and 5.27E-06, respectively. They also created 
a nomogram to compute a risk score by integrating the 
microbe signatures, clinical factors, and molecular sub-
types with an AUC of 0.80 in the 5-year OS prediction 
(Mao et al. 2022).

Li et  al. adopted a similar approach for selecting 
immune-related intratumor microbiome biomarkers for 
BC patients’ OS prediction. He used LASSO and mul-
tivariate Cox regression to build a prognostic signature 
score consisting of the expression of four genera, such as 
acidibacillus, and pseudogulbenkiania, which were asso-
ciated with antigen processing and anti-tumor immunity 
by regulating the immune-related genes. Based on the 
immunophenotype scores and tumor immune dysfunc-
tion and exclusion analysis, patients with low-risk scores 
could benefit more from immunotherapy than the high-
risk patients (Li et al. 2024).

Both studies focused on first-level microbiome fea-
tures such as microbial abundance and relied entirely 
on the TCGA dataset. Statistical ML techniques, mainly 
Cox regression, were solely used without integrating 
DL or complex approaches. While one study demon-
strated the biological relevance of these signatures using 
bioinformatic analysis, none of them validated their 
findings experimentally. Cross-disciplinary efforts are 
needed to unlock the full potential of microbiome data 
in the prediction of immunotherapy. Future research 
should expand feature diversity and integrate deep 
learning models to uncover complex microbe-immune 

associations without neglecting the preprocessing and 
contamination control to allow for reproducibility and 
clinical application.

AI‑based genomic analysis
Genomic biomarkers include copy number alterations 
(CNA), neoantigen load, and genetic variation. These 
biomarkers can be used to describe immunogenicity and 
thus predict response to immunotherapy. Various studies 
have been investigating the integration of AI models with 
genomic biomarkers, as presented in Table 1.

Across these studies, distinct ML and DL models were 
created, ranging from interpretable classical ML like 
Cox regression to complex neural networks. A pan-can-
cer study trained different machine learning classifiers 
to predict immunogenic mutations and neo-peptides. 
Among the models tested, LR performed the best, 
especially with increasing data, adding quantile nor-
malization, and Bayesian optimization. XGBoost, while 
ranking second, identified different and complex pat-
terns, and when combined with LR in a voting classifier, 
achieved consistently higher performance (Müller et  al. 
2023). Jin et  al. created a prognostic risk model to pre-
dict genomic variation-related subtypes by feeding DEG 
genes to LASSO-penalized multivariate regression with 
1,000 iterations (Jin et al. 2021). Similarly, Jiao et al. per-
formed multivariate Cox regression on lncRNA genes to 
stratify patients as genomically unstable or stable (Jiao 
et al. 2022). Both models achieved similar performance, 
with the LASSO-personalized multivariate model slightly 
higher. This is primarily due to the regularization tech-
nique and penalty used by LASSO during model training, 
which automatically deals with multicollinearity while 
reducing overfitting and selecting important features.

The RCANE model, combining sequence models and 
graph neural networks, was developed in a pan-cancer 
cohort to predict somatic CNA from RNAseq.  3D ten-
sors, in which somatic CNA log-intensity values are 
synthesized per segment, were used to define the seg-
ment-based graph capturing inter-chromosomal, and 
MLP with normalization is then used to extract can-
cer-specific RNA features. LSTM and graph attention 
mechanisms are integrated into the model to detect 
cross-chromosomal correlation, and a debiasing layer 
with a regression loss function predicts sCNA intensity. 
This DL model outperformed existing methods, achiev-
ing high accuracy and highlighting the potential of the 
DL model as a cost-effective alternative to traditional 
sequencing-based methods for SCNA detection (Ge et. al 
2024). To advance the field, future studies should further 
analyze genomic biomarkers and investigate the combi-
nation of DL models with the interpretability of statistical 
techniques.
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AI‑based epigenetic analysis
BC prognosis is associated with epigenetic modifica-
tions, such as DNA methylation, histone modifications, 
and non-coding RNA expression. These alterations can 
impact diverse immune-related pathways, regulating 
tumor immunogenicity and affecting immunotherapy 
effectiveness (Llinàs-Arias et  al. 2021; Yin et  al. 2023). 
Machine learning, statistical methods, and deep learning 
have been employed to extract and predict immunother-
apy by leveraging epigenetic biomarkers. (Table  1) For 
instance, DNA methylation, particularly at CpG sites, is 
a well-established epigenetic factor that influences gene 
expression and immune response in cancer (Zhu et  al. 
2024b).

Various models, validation strategies, and biomarkers 
were used to identify prognostic and immunotherapy-
relevant biomarkers in BC. Zhang created a CpG methyl-
ation risk score to stratify patients into high- and low-risk 
groups. Despite the CpG methylation being associated 
with immune natural killer cell infiltrate, particularly at 
specific CpG sites, LASSO achieved a moderate accu-
racy, highlighting the need for a more complex model 
and feature selection methods (Triki et  al. 2022). Chen, 
on the other hand, focused on the immune cell-specific 
hypermethylation signatures, achieving high perfor-
mances (AUC = 0.86) with LASSO. This demonstrates 
that data preprocessing and feature selection tend to 
optimize model prediction. Beyond nuclear epigenetics, 
mitochondrial epigenetics has emerged as a regulator 
of the tumor. A model study investigated mitochondrial 
DNA methylation with immunotherapy response in BC 
and proposed a gene signature to predict BC prognosis. 
They identified 11 mtDNA methylation-related genes 
and established a signature score after applying univari-
ate Cox analysis and LASSO. Notably, they used qPCR 
to validate their findings and verified the TMB, CD8, and 
MSI (Ma et al. 2023). Besides this, Teng focused on RNA 
methylation and constructed a 21-methylation regulatory 
gene signature to stratify BC patients (Teng et al. 2024). 
This emerging field is promising but needs further clini-
cal validation.

lncRNAs, a novel class of ncRNAs, have been involved 
in the immune response of BC (Zhang et  al. 2020). 
Researchers have explored several lncRNA-based prog-
nostic signatures to construct a risk model using multi-
variate, univariate Cox regression, and LASSO (Zhou 
et al. 2024; Zhu et al. 2022; Li et al. 2022; Yu et al. 2023b; 
Chen et al. 2022b). Among these studies, Yu exploited the 
senescence-related lncRNAs that were linked to immu-
notherapy resistance by upregulating immunoinhibitory 
proteins, including PD-L1 and CD80. Its model achieved 
the highest AUC (81.1%) compared to the rest of the 
LASSO-based models (Yu et  al. 2023b). This suggests 

that while being the most interpretable and clinically 
used models, they achieved moderate performance. 
An interesting study diverged from traditional LASSO 
approaches by testing six ML algorithms (DT, GBM, 
ANN, RF, GLM, and SVM) to predict CD8 + T-cell levels 
using lncRNAs (Chen et al. 2022b). The models achieved 
a range of AUCs, with ANN the highest among them, 
highlighting the potential of deep learning models in 
capturing non-linear interactions between lncRNAs and 
immune infiltration.

Trends across these studies suggest a shift from whole 
methylation profiling to a more specific approach with 
cell-specific methylation analysis as mitochondrial and 
immune cell-specific biomarkers. Future studies should 
also emphasize the clinical validation of their signature 
and apply them to the immunotherapy cohort.

AI‑based multi‑omic analysis
Multi-omics integrates diverse data, particularly genom-
ics, epigenetics, radiomics, and transcriptomics, provid-
ing a comprehensive understanding of cancer biology. 
Given the heterogeneous nature of BC, single-modality 
models cannot capture the full complexity of the disease. 
In contrast, multimodal architectures overcome these 
limitations by combining multiple data layers, allowing 
for more precise and personalized prognostic assess-
ments. Several methods were developed to accurately 
capture the complex patterns and contribute to the eval-
uation and prediction of immunotherapy. Some of these 
models are presented in Table 1 with a detailed workflow 
summarized in Fig. 2.

ML and statistical models are widely used for their 
strong interpretability, efficiency, and integration of 
structured and numerical omics. A notable instance is 
the iCEMIGE model, which independently analyzed cell 
morphometrics, bacterial diversity data, and transcrip-
tomic biomarkers to generate an integrated risk score. 
The morphological cell features were extracted using an 
unsupervised sparse decomposition pipeline and were 
combined with microbiome and gene prognostic scores 
previously identified using multivariate Cox regression. 
The integration was performed with an autoencoder and 
sparse representation learning into 256 multimodal bio-
markers, ensuring interpretability and efficiency in the 
selection of biomarkers. Using multivariate Cox regres-
sion, a risk score was constructed and achieved higher 
predictive performance in predicting both OS and PFS 
compared to each modality alone (Mao et al. 2022). Simi-
larly, a radiogenomic prognostic score was constructed 
to predict axillary lymph node metastasis and drug 
response, integrating MRI-derived radiomic features 
and genomic data. The prognostic model was based on 
a linear SVM with an RFE algorithm feature selection, 
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followed by multivariate LR analysis to generate the risk 
score, which, when high, indicates a potentially better 
response to targetable immunotherapy (Lai et  al. 2024). 
A recent study by Mehmood et  al. investigated single- 
and multi-omics models to predict survival class based 
on transcriptomic, proteomic, and clinical data. Super-
vised ML models such as SVM, Naive Bayes (NB), and 
LR with MLP DL model were applied for single omic 
prediction, with MLP achieving higher performance. 
Regarding the combined multi-omic data, a multi-source 
feature interaction controller was adopted to handle the 
different omic types with a unique model for each omic 
and a fusion model to integrate them for final prediction 
(Mehmood et al. 2025).

DL models, on the other hand, dominate when the 
input data are complex, highly dimensional, or time-
related. DeepClinMed-PGM was developed by integrat-
ing several features, among them lncRNA data, pathomic 
features, immune cell levels, and personal features. The 
model predicted survival risk using a CNN architec-
ture integrating an attention module, a regressor, and a 
query-router mechanism to enhance the accuracy of 
patient prognosis. Notably, its superior performance 
over the single-omics model was consistent across dif-
ferent validation cohorts. By assigning distinct weights 
to the different modalities, the model captures complex 
relationships, reinforcing its capability to provide more 
precise prognostic predictions (Yu et  al. 2024). Further-
more, a deep learning-based model was developed by 
Gao et al. to predict therapy response in BC by integrat-
ing omics data, including imaging, alongside radiologi-
cal, histopathological, personal, and clinical data. This 
model addresses the problem of missing data by lever-
aging cross-modal knowledge mining, enabling clinical, 
personal, and other data to be predicted directly from 
imaging-derived features. A ResNet18 architecture was 
used to extract features with temporal information added 
for the MRI model, and their predictions were combined 
using an ensemble model using optimized weightings to 
improve the overall prediction accuracy. As expected, the 
model’s predictive capacity outperformed radiologists in 
early therapy response prediction (Gao et al. 2024).

Expanding beyond BC, a pan-cancer study investi-
gated the gene mitotic apparatus signature, linking it 
to immune cell infiltration and treatment response in 
glioma and BC. Researchers further identified cellular 
morphometric biomarkers extracted from WSIs using a 
stacked predictive sparse decomposition model and con-
structed a signature score using multivariate Cox Pro-
portional Hazards. The integrated model significantly 
improved prognostic precision, demonstrating its poten-
tial for patient risk stratification (Mao et al. 2023).

Computational modeling in breast cancer immunotherapy
Computational modeling (CM) has revolutionized breast 
cancer therapy advancement, especially in immuno-
therapy. This approach allows the modeling of drug-
drug interactions, the discovery of drugs, immune 
pathway simulations, and virtual drug screening, pro-
viding insights into the efficiency of the immunother-
apy compound. When integrated with AI, these models 
can predict drug response, simulate immune invasion, 
and predict novel biomarkers. This integration ena-
bles researchers to explore new compound interactions, 
refine therapies, and predict responses to these therapeu-
tic strategies.

Molecular docking, a known cornerstone of com-
putational modeling, predicts the interaction between 
a drug or ligand with a target (receptor or enzyme). 
Applied in immunotherapy, this provides insights into 
how molecules such as PD-1/PD-L1 or CTLA-4 could 
be targeted to enhance immunogenicity. Traditional 
studies use a combination of computationally heavy 
and time-intensive approaches to molecular docking 
simulation and drug repositioning. As an example, a 
study used computational drug repositioning, reversal 
of gene expression signatures, and molecular dynam-
ics simulations to identify and validate potential drug 
candidates for BC treatment (Wang et al. 2023b). While 
this approach successfully identified new compounds 
as potential BC treatments, applying AI can further 
improve and optimize the study. From using DL mod-
els to model drug and gene networks and autoencoders 
for data reduction to DNN architecture for molecular 
interactions, AI can be integrated into the entire com-
putational modeling workflow. A recent study applied 
supervised computational screening of EGFR inhibi-
tors to identify molecules capable of inhibiting immune 
checkpoints. BC omics, including scRNA-seq and 
genomic data, were computed for drug sensitivity and 
IC50 analysis to select a strong EGFR inhibitor. Next, 
compounds similar to the selected reference drug were 
fed to different ML models to predict and screen active 
candidate compounds against EGFR. RF, SVM, and 
ANN  achieved high performance (AUC up to 94%), 
highlighting AI potential in enabling fast identification 
of inhibitors and supporting drug repurposing. These 
findings were further validated by molecular docking, 
providing a roadmap for designing immune-activating 
drugs (Mehmood et al. 2024). Another study employed 
ML-based approaches to predict the anticancer activity 
(IC50 values) of terpenes and their derivatives against 
specific TNBC cells. A robust QSAR-based multiple 
linear regression was constructed using forward step-
wise regression to select the best combination of 2D 
molecular descriptors with minimum multicollinearity 
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with a predictive  r2 of 81%. The resulting model was 
implemented as an R-based package to allow research-
ers to predict IC50 values of novel, untested chemicals 
and understand descriptors associated with anti-TNBC 
activity (Khan et  al. 2024). In addition to screening 
molecules and predicting activity, AI can predict bind-
ing affinities and identify novel ligands based on their 
pharmacodynamics.

Combination therapy has improved outcomes, 
responses, and resistance in BC by targeting diverse 
pathways simultaneously. In a recent study, a stacking 

ensemble classifier called DDSBC predicted synergis-
tic drug pairs in breast cancer cell lines based on tran-
scriptomic and chemical data. The authors aggregated 
predictions from base models (RF, XGBoost, KNN, and 
LR) for a robust prediction. The model was trained on a 
vast dataset of drug responses and achieved good per-
formance in predicting drug-pair combinations. Such 
AI-based tools enable rapid and accurate screening of 
thousands of drug combinations for optimal immune 
enhancement with minimal toxicity (Mehmood et  al. 
2024).

Fig. 2 Multi-omic integration in breast cancer immunotherapy. The multi-omic approach combines various biomarkers from epigenomic, 
transcriptomic, proteomic, microbiomic, genomic, radiomic, and clinical data. After feature selection and data integration, the model is constructed 
to predict survival, drug response, immune subtypes, and biomarker classifications in breast cancer immunotherapy. Least absolute shrinkage 
and selection operator (LASSO), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), hematoxylin 
and eosin (H&E)
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Pharmacogenomics aims to tailor specific drug therapy 
based on a patient’s genetic variation. This field, a core 
part of personalized medicine, has drastically improved 
the selection of effective immunotherapy strategies, 
especially with the aid of AI. A notable example of AI-
powered models is a study that applied machine learning 
models (LASSO, Elastic Net, and Ridge) with transcrip-
tomic and molecular profiling data to predict drug sen-
sitivity across breast cell lines. Feature selection was 
performed using maximum relevance and minimum 
redundancy to reduce dimensionality and improve inter-
pretability. The authors successfully predicted candidate 
drugs and identified new translationally relevant bio-
markers (Mehmood et al. 2023).

Nanotechnology in breast cancer immunotherapy
Combining nanotechnology with immunotherapy agents 
enhances the response by enabling the manipulation of 
materials of small size (< 100 nm). Adopting nanoparti-
cles (NPs) improves a targeted distribution of drugs while 
protecting other healthy tissue by offering biocompatibil-
ity, the possibility to load a high number of drugs, and a 
longer circulation time. Currently, several nanomaterials, 
such as liposomes, microneedles, polymer-based con-
jugates, and dendrimers, are applied to improve cancer 
immune response. Multifunctional nanoplatforms like 
P-R@P/U-V and PD-1@RSL3 NPs were developed by 
combining immunotherapy mechanisms, BC biomark-
ers, and nanotechnology. For instance, P-R@P/U-V com-
bines tumor ablation, ferroptosis, and real-time imaging 
to enhance anti-PD-L1 immunotherapy in TNBC, rep-
resenting a next-generation nanomedicine approach. 
The laser-activated combat TNBC cells, while ferropto-
sis induction enhances the release of tumor-associated 
antigens. The combination of this local tumor destruc-
tion with anti-PD-L1 therapy boosts antigen release and 
immune activation and suppresses metastasis (Cheng 
et  al. 2024). Another example is the PD-1@RSL3 NPs, 
PD-1 membrane-coated RSL3 nanoparticles developed 
to enhance cancer immunotherapy, especially in TNBC. 
These nanocarriers bind to the PD-L1 expressed on 
tumor cells and block immune checkpoints, reactivating 
T cells, and at the same time, the RSL3 triggers ferropto-
sis cell death, leading to the release of tumor antigens and 
enhancing the immunogenicity. In animal subjects, this 
combination of PD-L1 blockade and ferroptosis induc-
tion leads to a robust immune response, with a significant 
delay in tumor progression and extended survival (Mu 
et al. 2023). A dendritic-inspired nanoparticle,  DMSNs3@
HA, combines anti-CD3 and anti-CD28 to activate T 
cells, anti-PD-1 antibodies for checkpoint blockade, and 
hyaluronic acid for tumor targeting (Li et al. 2021).

Nanotechnology was applied to monitor immuno-
therapy response. The electrochemical biosensor’s role 
is to convert biological interactions into electrical sig-
nals, allowing real-time, minimally invasive detection 
of specific biomarkers. Combining nanomaterials such 
as carbon nanotubes with electrochemical biosensors 
enhances biocompatibility and signal amplification, mak-
ing them powerful tools for monitoring immunotherapy 
response (Sadeghi et. al 2023). By detecting sensitive 
changes in biomarker expression, clinicians could moni-
tor, adjust, and evaluate patients’ responses to immuno-
therapy treatments. A noticeable trend is the emergence 
of nanoplatforms combining multimodal therapy with 
nanomaterial technologies. For example, DoxMel/PD-L1 
DsiRNA proposed by Bahreyni et  al., integrates chemo-
therapy (doxorubicin), immunotherapy (PD-L1 RNAi 
checkpoint blockade), and an immune adjuvant in hya-
luronic acid for targeting tumors via CD44. By adopting 
this efficient delivery of 3 different modalities, survival 
was improved with a significant enhancement of cytotox-
icity and cell infiltration (Bahreyni et al. 2023). Similarly, 
a study developed ICG@SANPs-cRGD, a multifunctional 
iron-based nanoplatform combining photothermal ther-
apy (PTT), photodynamic therapy (PDT), and immune 
checkpoint blockade (anti-PD-L1). These nanoplatforms 
not only amplify anti-tumor immunity but also demon-
strate imaging capabilities (MRI and fluorescence), ena-
bling theranostic applications (Kong et al. 2022). Another 
application is the nanovaccines used to stimulate T-cells, 
reshape the tumor immune microenvironment, and 
enhance the durability of the immunotherapy effect. They 
can target lymph nodes, tumor antigens, mRNA, and 
biomimetics, allowing for an adaptable and precise appli-
cation (Yin et al. 2020).

AI models can advance the design of nano-drug deliv-
ery systems by analyzing the immune cell and cytotoxic-
ity profiles based on the physicochemical properties of 
the nanoparticles. Furthermore, AI can be used to create 
personalized nanovaccines by analyzing patient omics 
data and predicting specific neoantigens, thus offering 
a personalized and optimal response. AI can also evalu-
ate signals from various biomarkers, such as immuno-
therapy biomarkers, cancer progression biomarkers, 
and metabolic changes, in real time by integrating elec-
trochemical biosensors. This allows for the classification 
and prediction of changes in these biomaterials, allow-
ing for the detection of resistance or the prediction of 
early response. Generative AI and reinforcement learn-
ing could be used to explore new nanomaterial structures 
and suggest novel surface modifications. Additionally, 
imaging-based nanoparticles offer a real-time and effi-
cient modification of delivery routes due to tissue dam-
age or patient complications.
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The AI‑driven healthcare landscape
Recently, the integration of automated learning systems 
and precision medicine has transformed healthcare, 
particularly in the field of oncology. Personalized medi-
cine relies on the usage of tailored treatment for cancer 
patients by adopting a more individualized approach that 
considers the patient’s distinctive characteristics. This 
has transformed the conventional “one treatment fits 
all” paradigm, allowing a more individualized medicine 
(Johnson et al. 2021). Given that BC is distinguished by 
a significant heterogeneity among patients, healthcare 
providers should take into account the patient’s genetic 
profile, medical background, environmental factors, 
and lifestyle preferences. AI offers a powerful potential 
to enhance the analysis of data, uncover complex pat-
terns, and refine treatment strategies. Various AI mod-
els have been developed, as described in this review, to 
predict therapy outcomes through multimodal methods 
that integrate diverse patient data from clinical, genomic, 
epigenetic, proteomic, and microbiome information. AI-
powered technologies, such as wearable electronics and 
biosensors, reshaped cancer care by providing continu-
ous monitoring of patient parameters and offering non-
invasive and accurate methods for diagnosis (Birla et. al 
2025). An example of these devices are smartwatches and 
smart patches, which, simple as they are, allow heart rate, 
respiratory, and glucose tracking, offering non-invasive 
monitoring. Nanosensors, on the other hand, can detect 
biomarkers at the molecular level, such as ctDNA or pro-
teins, and are usually integrated into wearable devices to 
enable hand-free and continuous quantification of bio-
markers (Adeniyi et al. 2024).

With such advancements in AI-based wearable nan-
odevices capable of monitoring, analyzing, and adjust-
ing treatment, the role of healthcare providers must be 
redefined. This prompts a reconsideration of how health 
professionals contribute to patient care within an AI-
enhanced healthcare ecosystem. While AI-based systems 
can process heterogeneous data and identify complex 
patterns in a reasonable time, they lack the human ability 
to consider the patient’s quality of life and personal and 
economic considerations. Furthermore, AI predictions 
may be skewed for several reasons, including differences 
in demographics that lead to wrong choices and predic-
tions. To address these challenges, an interdisciplinary 
team must validate AI-driven predictions to ensure reli-
ability and collaboratively establish a treatment plan with 
the patient, taking into account their preferences and 
values. This approach is consistent with the concept of 
shared decision-making, utilizing AI as a support tool 
that analyzes data and provides recommendations to help 
guide discussions between patients and healthcare pro-
viders (Seyhan and Carini 2019).

The integration of personalized medicine, AI nanode-
vices, and omics data with cloud-based solutions will 
enhance disease treatment efficacy and reinforce public 
health initiatives. As shown in Fig. 3, AI-based wearable 
nanodevices that collect real-time omics data and patient 
medical records are integrated into a complex system and 
stored in a secure cloud-based solution. These diverse 
data are then analyzed by AI systems, which gener-
ate personalized treatment recommendations for both 
patients and healthcare providers. Through a collabora-
tive approach, patients and healthcare professionals are 
both engaged in shared decision-making, balancing AI 
insights with clinical judgment and patient preferences. 
A personalized and automated treatment administration 
can be adopted through nanodevices without the need 
for human intervention. Additionally, with the genera-
tion of big data that AI models can further analyze, the 
optimization of population health management strategies 
through resource allocation can be performed.

Limitations and future directions
Patient-level immunotherapy decisions using AI models 
by integrating multi-omic data for better tumor profiling 
are the primary application of AI in personalized immu-
notherapy. AI also advanced the discovery of new immu-
notherapy biomarkers and the in  vitro simulation of 
immunotherapy adverse effects. Although various stud-
ies have investigated the application of AI in predicting 
response to immunotherapy, challenges associated with 
their application in clinical practice remain.

One of the primary limitations is the insufficient 
amount of available data, as few curated datasets are pub-
licly available. The construction of robust and accurate 
AI models depends primarily on the data quality, size, 
annotation, and preprocessing techniques applied. Train-
ing a model on biased or incomplete datasets may affect 
the generalization of the model, causing false predictions 
across diverse ethnicities and cancer subtypes comprising 
clinical reliability. Researchers have applied several tech-
niques to compute missing data and balance the datasets, 
such as statistical imputation methods inspired by KNN, 
multivariate and distribution metrics, or machine learn-
ing-based imputations such as PCA, RF, or XGBoost. 
Using generative adversarial networks (GANs) or learn-
able embeddings in deep learning models offers an alter-
native solution for obtaining accurate results. However, 
these approaches are computationally intensive and may 
be biased by the specific training data.

Lack of standardization of data preprocessing, stor-
age, and annotation of data affects model performance. 
In BC, several imaging techniques, sequencing technol-
ogies, and the non-uniform format of electronic health 
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records make AI models highly dependent on the insti-
tution where they were developed. Moreover, privacy 
regulations (such as HIPAA and GDPR) often restrict 
data sharing, limiting the size and diversity of the data-
sets required for robust model training. This institu-
tional collaboration is needed to overcome privacy 
issues without compromising data security, ensuring 
the collection of data from underrepresented popula-
tions to ensure equity. Additionally, most AI models 
operate as “black boxes,” with no interpretability or a 
clear explanation of the decision-making process. This 
undermines clinical transparency and further compli-
cates the integration of AI in clinical oncology. Efforts 
should be made to find explainable AI, such as attention 

maps or SHAP, to aid physicians in understanding why 
an AI system recommends a specific immunotherapy 
strategy or predicts a specific outcome.

Limited clinical validation and integration of the AI 
approach in real-world cases is yet another challenge 
spanning both technical and ethical dimensions. Rig-
orous validation, multicenter trials, and collabora-
tion between clinicians and AI developers are needed 
to ensure model efficiency and facilitate integration 
in hospital systems. Interdisciplinary collaboration 
between developers, clinicians, ethicists, regulators, 
and patients will be critical to building AI systems that 
are not only powerful but also inclusive.

Fig. 3 Integrated AI-driven healthcare ecosystem from personalized medicine to public health management. AI-powered wearable nanodevices 
and patient medical records are integrated in complex databases and stored in a cloud-based solution. The AI system analyzes this data as omic 
to generate personalized treatment recommendations tailored to the patient. These recommendations are then integrated through the shared 
decision-making system by providing it to both the patient and the healthcare provider. Beyond individual care, this system produces valuable big 
data that supports public health initiatives by enabling disease surveillance, and optimized population health management
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The use of nanomedicine for the prediction and char-
acterization of breast cancer immunotherapy has made 
significant advancements in recent years. Integrating 
digital, biological, chemical, and physical elements into 
a small and compact technology, has made it possible to 
develop various solutions. Although there are few clini-
cal trials, researchers have validated these nanotechnolo-
gies in vitro or on animals to confirm their effectiveness. 
As nanoparticles vary drastically based on AI integra-
tion, their biological and physical properties, adaptive 
clinical trials are indispensable for regulating these solu-
tions. Efforts are needed to create rapid and advanced 
minimum standards for approval, ensuring safe clinical 
translation.

Besides this, several challenges still need to be resolved. 
For instance, the heterogeneity of BC makes nanother-
apy solutions less effective, especially over the resist-
ance mechanisms. Nanoparticles must be personalized 
and combined with powerful predictive biomarkers to 
account for tumor evolution. Biocompatibility remains 
the central issue in nanotechnology-based immuno-
therapy. Nanoparticles use various materials from met-
als, polymers, or carbon-based materials that can induce 
an immune response , off-target toxicity, or even the 
accumulation of toxins in organs due to poor clearance. 
Metallic nanoparticles, for example, can interfere with 
specific cellular redox status, leading to oxidative stress 
or other complications. Propulsion mechanisms used by 
some nanorobots can often be toxic at the physiological 
level, and thus alternative energy sources still need inves-
tigation and thorough validation for their safety and bio-
degradability. The non-biodegradable nanoparticles can 
also activate innate immunity, triggering an autoimmune 
response or immunosuppression and reducing the effi-
cacy of the treatment.

Nanotechnology and AI integration will help over-
come some nanotechnology challenges but at other 
costs. Leveraging AI to tailor and design nanovaccines 
based on each patient’s genetic, transcriptomic, and 
immunologic profiles will increase the precision and 
therapeutic response, reducing toxicity. Furthermore, 
integrating electrochemical and optical nanobiosensors 
with AI allows for rapid decision-making and therapy 
adjustment. Smart nanocarriers equipped with AI can 
address clinical safety and regulatory approval concerns 
by predicting toxicity and immunogenicity. The future 
of AI-enabled nanomedicine requires addressing other 
concerns such as a lack of explainability of AI decisions 
and data privacy. Resolving these limitations requires 
multidisciplinary approaches to tackle computational 
modeling, clinical practice, physics, and immunology. 
Future research should focus on the investigation of 

biomimetic strategies, biodegradable materials, and non-
toxic propulsion methods to overcome nanotechnology 
challenges and ensure safe and effective translation into 
clinical practice. Early and rigorous testing, integration 
of predictive AI-based toxicity models, and interdisci-
plinary design frameworks are key strategies to provide 
clearer guidance for future studies in this field and also 
to improve the safety, efficacy, and clinical translation of 
nano-AI approaches in cancer immunotherapy.

Conclusions
In this review, we explored the application of AI-driven 
models with genomic, microbiomic, epigenetic, tran-
scriptomic, clinical, and imagery biomarkers in predict-
ing immunotherapy outcomes. Various models were 
developed to analyze single modalities and assess immu-
notherapy responses with moderate accuracy in several 
cohorts. However, we demonstrated the efficiency of 
combining these biomarkers in multimodal AI models 
to capture the complex immunotherapy-related biologi-
cal system. In the era of personalized medicine, future 
research should focus on leveraging multimodal algo-
rithms to optimize individualized immunotherapy and 
improve patient quality of life and prognosis.

Providing AI models with access to a continuous range 
of diverse data sources allows the conception of AI-
based decision-making systems capable of monitoring 
treatment responses, predicting prognosis, and provid-
ing personalized treatments. This is achieved through 
cloud-based wearable nanodevices, capable of storing, 
analyzing data, and providing real-time feedback and rec-
ommendations. A thorough understanding of AI systems 
and their prediction algorithms is crucial for ensuring 
adequate follow-up by healthcare providers. The long-
term prospects of this integration of AI in the healthcare 
system are very promising, especially with the technolog-
ical advances and the increasing availability multi-omics 
data, introducing a new era for enhancing personalized 
medicine and ultimately public health management.
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