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Abstract

Purpose

Breast cancer is one of the most common tumours in women, nevertheless, it is also one of the

cancers that is most usually treated. As a result, early detection is critical, which can be accom-

plished by routine mammograms. This paper aims to describe, analyze, compare and evalu-

ate three image descriptors involved in classifying breast cancer images from four databases.

Approach

Multi–Objective Evolutionary Algorithms (MOEAs) prove themselves as being efficient

methods for selection and classification problems. This paper aims to study combinations of

well–known classification objectives in order to compare the results of their application in

solving very specific learning problems. The experimental results undergo empirical analy-

sis which is supported by a statistical approach. The results are illustrated on a collection of

medical image databases, but with a focus on the MOEAs’ performance in terms of several

well–known measures. The databases were chosen specifically to feature reliable human

annotations, so as to measure the correlation between the gold standard classifications and

the various MOEA classifications.

Results

We have seen how different statistical tests rank one algorithm over the others in our set as

being better. These findings are unsurprising, revealing that there is no single gold standard

for comparing diverse techniques or evolutionary algorithms. Furthermore, building meta-

classifiers and evaluating them using a single, favorable metric is both extremely unwise

and unsatisfactory, as the impact is to skew the results.

Conclusions

The best method to address these flaws is to select the right set of objectives and criteria.

Using accuracy-related objectives, for example, is directly linked to maximizing the number

of true positives. If, on the other hand, accuracy is chosen as the generic metric, the primary

classification goal is shifted to increasing the positively categorized data points.
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Introduction

Breast cancer is the most frequent form of cancer and the main cause of death among women,

as reported by the World Health Organization.

Even though mammograms can detect early asymptomatic stages of the disease [1], they rely

greatly on the radiologist’s knowledge and can result in a high incidence of incorrect diagnoses.

To limit the amount of incorrect diagnoses, a technique known as double-reading has been pro-

moted, which involves two radiologists concurrently analyzing mammograms and then com-

paring the results [2]. This measure, however, increases prices and workload. Computed Aided

Diagnosis (CAD) systems can help a single radiologist establish a diagnosis and provide support

for his or her judgment as a solution to this challenge [3]. Machine learning classifiers are com-

monly used in CAD systems to infer diagnosis. A set of predictors characterizing the observa-

tions must be provided in order to train the classifier. Image descriptors (also known as visual

descriptors) are numerical representations of visual features such as form, color, and texture

that can be used to anticipate how images from mammograms will be described.

In this paper we present several Genetic Programming (GP) classifiers for the learning

phase of a breast cancer CAD system. The input data of the classifiers will consist of character-

istics extracted from images using several image descriptors, namely Statistical Moments, Har-

alick features and Grey Level Run Length (GLRL). The purpose of this paper is to perform an

apprehensive evaluation of the performances of different GP classifiers for solving the given

task, when considering multiple data sets. We decided to develop GP-based decision models

because they offer a great potential for classification: the classifiers can be modeled as trees that

encode complex patterns by combining various operations or functions inside that representa-

tion. Furthermore, GP, as any kind of Evolutionary algorithms, can be easily and suitably

applied to multi-objective problems when several goals have to be optimized simultaneously

and which are often conflicting. In this context, both single-objective and multi-objective clas-

sifiers are used, and the usage of different objectives and fitness functions is investigated. For

the multi-objective scenario, two strategies for combining the classifiers are considered,

namely majority voting and using GP for ensemble selection. The performance of the system

is measured, depending on the classifier, either by using the general accuracy or the Wilcoxon-

Mann-Whitney statistic.

Interpretability, viewed as the attribute of a classifier to be understood by a human being—

a radiologist in our case—and classification accuracy, viewed as the distance between the real

classifier and the modeled one, are two important features of a medical decision model. These

two goals represent contradictory issues in the design of a CAD system: if one of them

increases, the other one must decrease. Our GP-based models propose a solution to this

Interpretability-Accuracy trade-off [4] by limiting the size of a classifier.

Moreover, this paper presents an in depth statistical analysis of the obtained results by per-

forming Wilcoxon sign-ranks tests, Friedman tests, and Nemenyi post-hoc tests. For all of

these tests, the null-hypothesis is that the considered classifiers have similar performances for

the given data sets and representation models. The compared classifiers are all GP-based, with

a special focus on those MO. A comparison with other non-GP classifiers (e.g. SVM or ANN)

is not possible since the considered models are MO, while non-GP approaches optimise a sin-

gle objective.

Image classifiers of various sorts have been developed over the years using a variety of dif-

ferent methods such as decision trees [5, 6], neural networks [7, 8], or support vector machines

[9]. Evolutionary algorithms have gained increased popularity for classification tasks [10] due

to the simplicity with which fitness functions can be expressed, and also the variety of the

expressions (linear, non-linear, tree-based, etc.).
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There is flexibility in the complexity of the expression which defines the classifier. At one

end of the spectrum, one can focus on the readability of the ensuing classifier, writing the fit-

ness function in such a way that a human user (e.g. a clinician) can understand the decisions

made in a particular classification task. It is also possible to set a maximum depth of any

derived decision tree. At the other way of the spectrum, it is also possible to pack the fitness

function with many parameters, allowing the process to derive a task–adequate classifier

which may well seem impenetrable.

The use of evolutionary algorithms for classification is nevertheless non–trivial in contexts

which involve the interplay of several criteria [11]. For example, the user can be interested

simultaneously in the runtime, the quality of the results and the accuracy of the classification.

Multi–criteria problems are hard to express and solve with conventional methods but, because

of the ability of fitness functions to incorporate parameters simultaneously, can be tackled

effectively using evolutionary algorithms.

More often than not, real–life problems involve imbalanced data: there is no uniform gauss-

ian distribution of any of the parameter readings. In the case of cancer diagnosis, for instance,

the majority of the population is healthy, and a relatively small number of pathological cases

constitute outliers in need of detection. Classification methods which rely on a uniform distri-

bution of balanced data are ineligible in cases of data imbalance [12, 13].

In cases where a number of classification criteria are to be considered and optimised, it is

impractical to design a sequential search for potential solutions: the search space can be huge,

and therefore, for speed reasons, the search needs to improve simultaneously on each of the

measured criteria.

Materials and methods

We illustrate the above points using the real–life problem of breast cancer diagnosis. In partic-

ular, the reduction of the number of false positives (through automated classification) can sig-

nificantly reduce physiological stress caused by unnecessary surgery [14].

An automated diagnosis system is expected to classify mammogram images into either

pathological or healthy. The process starts by training the classifier on a set of annotated

images representing mammographies with known (and assumed correct) diagnosis. The clas-

sification algorithm then studies these examples and learns a decision model, which it can then

apply to any mammogram database not previously encountered. The main aim of the learning

process is to identify patterns within observed data, get insight and build models that link the

input to the output data. These models will be used to predict the output for new and unsen

before inputs.

The generic problem can be formalised as described in the next paragraph. Let I be a set of

n images (I = {I1, I2, . . ., In}) represented bym real numbers features (Ii = (Ii,1, Ii,2, . . ., Ii,m), for

i = 1, 2, . . ., n). Each image is associated with a binary output label classi (-1 for healthy sample

and 1 for presence of pathology): CLASS = {class1, class2, . . ., classn}, where each classi, with

i = 1, 2, . . ., n belongs to {−1, 1}. The number of images from the positive class is npositive, while

the number of images from the negative class is nnegative (n = npositive + nnegative).

Image descriptors

In order to be able to classify mammogram images, a classifier must receive relevant character-

istics of the images as input data. Medical images are usually large and contain extremely high

numbers of pixels; using an algorithm which receives all the image pixels as input data is

impractical and can lead to complex programs which require high training times.
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Consequently, a smaller number of image attributes are extracted based on the position and

intensity of certain pixels, through the use of image descriptors.

Image descriptors are divided into three main categories: texture descriptors, colour

descriptors and shape descriptors. Since the purpose of our chosen application is to determine

only whether or not a mammogram presents cancer, only texture and colour descriptors have

been used. Further approaches can involve a more in–depth analysis of mammograms on the

basis of tumour contours, where shape descriptors come into their own.

By way of image intensity measures, we make use of moments, histograms of oriented gra-

dients and kernel descriptors.

Moments. The intensity of an image pixels give several statistical measures known as

moments, from which we include in our analysis the following: mean value, standard devia-

tion, skewness, kurtosis, and the minimum and the maximum intensity values. This combina-

tion of statistical measures has been successfully used before for breast cancer diagnosis in [3].

Histograms of Oriented Gradients. The computation of the Histograms of Oriented

Gradients (HOG) is based on the fact that there is a direct connection between the appearance

and the shape of an object and the distribution of intensity gradients.

Using this descriptor for object detection involves the number of gradient orientations in

specific regions of the image [15]. Therefore, 1D HOG is computed for small portions (cells)

whose union represents the whole image.

When computing the histogram, we start with gamma and colour normalization. A number

of mask filters are afterwards applied in order to compute the gradient magnitude. The orien-

tation (the direction of the fastest gradient change) is then computed, which gives an n ×m
matrix, where n andm represent the image size. The HOG is computed based on this matrix,

by computing for each cell how many pixels there are where the gradient orientation falls in

that specific cell. L1 and L2 norms [15] can be used to normalize the histogram with the aim of

obtaining invariance to illumination and shadowing.

Kernel descriptors (KD). The third and final image representation considered is based

on the more generic measure of kernel descriptors (KD) [16]. Histogram–based features can

be expressed as special cases of efficiently matched KDs.

Due to the fact that the gradient computation takes into account the pixels features of an

image patch, the dimensions of the patch need to be known a priori in order to be able to com-

pute the gradient orientation. Any similarity measure between two patches can only be com-

puted afterwards. It is this similarity which is taken into account by learning algorithms.

When considering the HOG descriptors, this value of similarity is based on the histograms

associated with discretized pixels features. The discretization step could lead to quantization

errors, limiting the performance of the recognition.

KDs mitigate the discretization disadvantage by using a kernel function for computing the

similarity of two patches. This function is a match kernel and is mathematically a Gaussian

kernel function.

Named KDs are: the gradient match kernel (considers the magnitude, the orientation and

the position and is suitable for capturing the variation of images), the colour kernel (considers

the colour and the positions and is suitable for describing the appearance of an image), and the

local binary pattern kernel (considers the standard deviation of pixels in the neighbourhood,

the differences between the values of the binarized pixels and the position and is suitable for

local shape capturing).

KDs convert the features of the pixels into features at the level of the patch, without having

to discretize them. The measure of regions similarity is thus based on a match kernel function.

Starting from these match kernels, some compact KDs with low dimensionality can be derived

using kernel principal component analysis (KPCA) [17].
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One level up of abstraction and KDs can also be considered as being applied on sets of KDs.

KDs can be applied not only over sets of pixels, but also over sets of KDs. In this hierarchical

approach [16, 18], KDs are applied recursively until features emerge from the image.

Datasets

The datasets used in this study are all publicly available. Each of them has had specific image

descriptors applied as per Section.

The Mammography Image Analysis Society (MIAS) [19] is available at: http://www.wiau.

man.ac.uk/services/MIAS/MIASweb.html. It offers a set of images along with information

such as class of abnormality, severity, location and size.

The Breast Cancer Digital Repository (BCDR) [3], available at http://bcdr.inegi.up.pt/, con-

tains labelled mammographies and ultrasound images and is divided into two smaller datasets: a

Film Mammography-based Repository (BCDR-FM) and a Full Field Digital Mammography-

based Repository (BCDR-DM). Further details are available at http://bcdr.inegi.up.pt/ and in [3].

The Digital Database for Screening Mammography (DDSM) [20] contains images of breast,

patient and image information from around 2,500 studies. The target of these studies was the

development of screening research as well as the diagnosis improvement.

Table 1 contains, for each dataset, the total number of images (the second column). Some

of the images come from patients with no cancer, and the rest come from patients with cancer.

Fig 1 illustrates the same three datasets.

Table 1. Dataset distribution.

Set of images Total Non-cancer Cancer

calcification masses benign malign.

MIAS 319 207 22 90 64 48

BCDR film 687 325 26 336 187 175

BCDR dig 887 345 201 341 465 77

DDSM 1000 596 89 118 248 156

https://doi.org/10.1371/journal.pone.0269950.t001

Fig 1. Number of images from patients with and without cancer, from the three different datasets.

https://doi.org/10.1371/journal.pone.0269950.g001
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The considered classifiers are trained on two thirds of the data and tested on the remaining

third.

OpenCV http://opencv.org/ has been used for computing the HOG descriptor for each of

the three datasets. The used parameters are the following: 720 × 1152 pixels window; 16 × 16

pixels block; 8 × 8 pixels cell; 2 × 2 pixels block stride; 8 gradient bins. A number of 458, 172

features have been obtained for each set of images, all of them being re-dimensioned to

720 × 1152 pixels.

The values used for the KD parameters are the following: kdesdim (which impacts how

many features are extracted from a patch) = 200, contrast (which is used by the gradient ker-

nel) = 0.8, grid size = 8 and patch size = 16, resulting in a number of 10, 500 features for each

set of images. These values are actually those proposed by the authors of KD.

It is well known that the training data strongly influences the classifier’s performance. An

analysis of the complexity of our data is presented in Section, so as to relate the data to the clas-

sifier behaviour.

Methods

We illustrate this application with Multi–Expression Programming (MEP) [21], by proposing

a multi–objective (MO) version based on NSGA-II [22], which is known due to its rapid con-

vergence and ability to preserve the diversity in the space of solutions.

Being a linear flavour of Genetic programming (GP) [23], MEP is able of automatically dis-

covering optimal calssifiers using techniques inspired by the Darwinian evolution principle. A

population of classifiers, also called chromosomes, gradually evolves during a number of genera-

tions, using bio-inspired mechanisms like the natural selection, mutation and crossover [23].

Out of the advantages of MEP, we remember its flexibility and its ability not only to represent

data, but also to perform computations and to pre-process and post-process data. More pre-

cisely, MEP is able to automatically transform the input data by applying different methods, like

the selection of subsets of features, the creation of new characteristics by applying certain func-

tions on the original attributes, the assessment of the relevance or importance of certain features,

etc. Moreover, MEP is able to solve both linear and non-linear classification problems, without

specifying the type of the problem apriori. Discriminant functions evolved by the MEP algo-

rithm are similar to the mathematical operations and transformations used in image processing,

thus MEP-based models are considered to be very suitable for image classification tasks [10].

The chromosomes involved in a MEP algorithm can be viewed as trees with leaves (that

consist of image features and constants) and internal nodes (that consist of various arithmetic

operators). For instance, if we suppose a classification model based on statistical moments

associated to a given image, the terminal set will be composed by six elements: TS = F1, F2, F3,

F4, F5, F6, where F1 represents the mean, F2 the standard deviation, F3 the skewness, F4 the kur-

tosis, F5 the minimum and F6 the maximum intensity values of an input image. A possible clas-

sifier based on this terminal set and on the above mentioned function set FS is given in Fig 2.

The fitness function shows the goodness of a solution and its performance in solving a

given problem [23]. Solutions with better fitness have higher chances of surviving to the next

generation and, thus, of propagating their genetic material, while solutions with low fitness

functions are gradually removed from the population.

In the canonical single-objective approach, a single individual, which is the fittest one, is

returned at the end of the training process. However, this method can be extended by using

the multi-objective optimization, an adaptation of the learning process that considers multiple,

conflicting objectives, treated separately in the optimization. A set of best trade-off solutions,

also called Pareto front, is then simultaneously evolved along the objectives in a single optimi-

zation run, allowing the end-user to choose the preferred classifier a posteriori.
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In order to achieve this, two modifications have to be performed on the canonical single

objective approach. First of all, the evolutionary search algorithm has to be adapted to simulta-

neously evolve a set of genetic program solutions along the learning objectives. The solutions

of this set form the Pareto front. Then, the fitness function needs to be modified to use the

Pareto dominance, by ranking the solutions according to their performance on all the learning

objectives relative to all other solutions in the population. More specifically, a solution Si is
said to dominate another solution Sj if Si is at least as good as Sj on all of the objectives, and bet-

ter on at least one, while a solution is called non-dominated if it is not dominated by any of the

solutions from the population. The set of non-dominated individuals is improved over a num-

ber of generations, by combining parent and offspring populations, and by selecting the fittest

individuals from this merged population as the parent population for the next generation. At

the end of the evolutionary search, the algorithm will return the individuals from the Pareto

front, more specifically, all of the non-dominated solutions from the population.

This paper uses as a multi-objective optimization algorithm the well established NSGAII

[24]. In this approach, the fitness value for a solution Si is represented by its dominance rank,

defined as the number of other solutions from the population that dominate Si. Therefore fitness

values in NSGAII need to be minimized: non-dominated solutions have the best fitness of 0,

while solutions with poor performances, which are dominated by many individuals, have high

fitness values. In addition to the Pareto dominance, a second fitness measure, called crowding

distance, is used to ensure a good spread-off of solutions across the trade-off frontier. Thus,

Fig 2. MEP-based classifier example.

https://doi.org/10.1371/journal.pone.0269950.g002
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when two or more individuals from the population have the same Pareto ranking, the one from

the most sparsely populated objective region will be preferred over the ones from densely popu-

lated regions. More specifically, the crowding distance for a specific solution represents the aver-

age Manhattan distance to the solution’s nearest neighbors along each of the objectives.

Each MEP chromosome encodes multiple solutions (in our case, multiple classifiers). In

order to identify the best classifier encoded into a chromosome, a quality measure X is

required. In order to determine the fitness of an MEP chromosome (this approach being MO),

more objectives expressed by quality measures Y are used. The measures Y are computed by

taking into account only the best classifier encoded into the current chromosome. In order to

compare the performance of the classifiers obtained in this way on our chosen datasets, we

need a set of performance measures Z. These are described in Section. Taking into account all

these aspects, a classifier will be denoted by indicating the X and Ymeasures.

When evaluating a classifier encoded into an MEP chromosome for a specific datapoint, a

single value is computed, which indicates its predicted class. When there are two output clas-

ses, one can use a threshold for mapping the resulting numeric values to the binary output val-

ues. Two aspects should be considered related to this threshold:

• its value range: the output remains within [0, 1] due to a sigmoid function used for the

resulting value; threshold values from [0, 1] are used for performing the mapping to the

binary output values;

• its optimal value: we carry out an optimisation of the area under the curve (AUC); the corre-

sponding set of thresholds is analysed in order to find the sub-classifier with the best results;

this is known as AUC optimisation [25]. We also discuss the extent to which this measure is

a good choice for determining the best sub–expression from an MEP–based classifier.

Quality measures for a classifier. When a classifier has been evolved through an evolu-

tionary algorithm, different objectives have been taken into account:

• the classification error rate (as an opposite of accuracy, computed by dividing the number of

instances that have been correctly classified to the total number of instances—see Eq 1) and

the computational cost [26]

• accuracy of the minority (positive) class (true positive rate or sensitivity—see Eq 2) and accu-

racy of the majority (negative) class (true negative rate or specificity—see Eq 3) [27, 28]

• values from a histogram associated with the ROC [29]. A new way of representing the ROC

curve is considered, as a histogram of TP rates against FP rates, which are fixed. For each bin

of the histogram, the mean of the TP rates contained within is computed.

Acc ¼
correctly classified items

all items
¼

TP þ TN
TP þ FP þ TN þ FN

ð1Þ

Accmin ¼ Accpos ¼
TP

TP þ FN
ð2Þ

Accmaj ¼ Accneg ¼
TN

TN þ FP
ð3Þ
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Regarding the Xmeasures involved in our approach, since an MEP chromosome is able to

encode more sub-expressions (in fact, more classifiers) and the best one of them has to be

selected,

• the average accuracy over the considered thresholds (denoted AvgAcc),

• the AUC associated to the considered thresholds (denoted AUC),

• the geometrical mean (GM) of positive accuracy and negative accuracy for a single threshold

(denoted GM) or

• the average of GMs between positive accuracy and negative accuracy over more thresholds

(denoted avgGM)

is used in order to select the best sub-classifier.

Regarding the Ymeasure, our MO approach takes into account the following objectives:

• the classification accuracies computed for pre-established thresholds (denoted Accs);

• values from the histogram (each bin averages all TPs from that bin) of TP/FN rates (for pre-

established) thresholds (denotedHistoTP/FNrates);

• the positive and the negative class accuracies for a single threshold (Denoted PosNegAcc);

• the geometrical mean of the positive and the negative class accuracies for pre-established

thresholds (Denoted GMPosNegAcc.

In our approachm, the model of dominance between two classifiers proposed in [29] is con-

sidered. This is a problem that has to be discussed when working with multi-objectives

techniques.

Classifier comparison methods. In multi–objective optimization, a Pareto front of opti-

mal solutions is generated. It is therefore necessary to decide which classifier or which combi-

nation of classifiers should be used. There are several methods to deal with classifier ensembles

(majority voting, linear combination of classifiers from the Pareto front, a meta-classifier over

the simple classifiers from the Pareto front). In our own classification model we make use of

the popular majority voting scheme. This means that each classifier gets applied to decide the

class of a certain instance, and the class chosen eventually is the one that has been predicted by

the majority of the classifiers. This straightforward approach together with other voting

schemes are widely used in the literature [11, 28, 30–35].

Of the classifiers in the final Pareto front obtained at the end of the training stage, only one

will be used for the testing stage. The predicted class will be chosen from all classifiers of the

final front so as to represent the answer given by most of the classifiers for each new datapoint.

Let us suppose that the training process gives a front of r classifiers (c1, c2, . . ., cr) in one run

of MO-MEP algorithm. Several medical images are used for testing the classifiers (TS—testing

size). The class of each testing image is determined in the following way:

• Every classifier ci, with i = 1, 2, . . ., r, predicts which is the class associated with each image

imj, with j = 1, 2, . . ., TS from the testing set;

• The predicted classes form a matrix of labels LM with r lines and TS columns;

• The label (e.g. truth value) decided by the majority of classifiers is associated with each

image in the testing set.

Dealing with a binary classification problem, one can use the majority function from Bool-

ean algebra or the median operator. Let us consider the case where an image can have one of

the following two labels: True (T indicates the presence of pathologies) and False (F indicates
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a clear scan). In our case, we have to map r possible inputs for each image (representing all

possible labels) into one label. If there are more than r/2 inputs having the value False, the

function will be evaluated to False. Otherwise, the function will be evaluated to True. Eq 4

can be used to determine the majority label, where True is represented as 1 and False is rep-

resented as 0. In this equation the brackets represent the greatest integer function.

labelimj ¼ MajorityðLMj;1; . . . ; LMj;rÞ ¼
1

2
þ

Pr
i¼1
LMj;i

� �
� 1

2

r

6
6
6
4

7
7
7
5 ð4Þ

Performance measures for the classifiers. Different criteria have been considered in

order to evaluate the performance of the classifiers on our chosen datasets:

• the computational complexity of evolving a classifier and the obtained classification error

(the accuracy) [26]

• diversity (the average number of different Pareto front solutions) and hyperarea (the area

under the Pareto front) [27]

• the accuracy of the minority class and of the majority class respectively, together with the

average size of the evolved ensembles [32]

• AUC [29]

• average hyperarea of the evolved fronts (Pareto–approximated and Pareto–optimal) [28].

Combining them into MO models. From the many models used in the literature, we

investigate the use of the following four approaches. We distinguish betweeen them mainly in

the objectives considered in each case. Notation X&Y stands for a classifier that uses metric X
to select the best sub-expression encoded into an MEP chromosome and metric Y as multi-

objective optimisation.

• Model A: AvgAcc & Accs—the average accuracy over pre-established thresholds indicates

the best sub-expression of an MEP chromosome and the individual accuracies (for each of

these pre-established thresholds) represent the optimisation objectives;

• Model B: AUC & histoTP/FN rates—the AUC over pre-established thresholds indicates the

best sub-expression of an MEP chromosome and the histogram (each bin averages all TPs

from that bin) of TP/FN rates (for pre-established) thresholds indicates the optimisation

objectives;

• Model C: GM & PosNegAcc—the geoemtric mean of positive and negative accuracy indi-

cates the best sub-expression of an MEP chromosome and two optimisation objectives are

considered: the positive and the negative class accuracies for a single threshold;

• Model D: avgGM & GMPosNegAccs—the optimisation objectives are the geometrical mean

of the positive and the negative class accuracies for pre-established thresholds, while the best

MEP-subexpression is selected by taking into account the average of these objectives.

The results contain two categories of Accuracy and AUC, respectively, all computed on the

testing data and associated to Zmeasure.

• the average values of Accuracy/AUC computed on the test sets in several runs of the algo-

rithm—the training and testing take place in each algorithm run; the voting scheme is
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afterwards applied to all classifiers that belong to the optimal Pareto front, considering all

examined threshold values.

• the general optimal values of Accuracy/AUC computed on the test sets after all the runs are

executed—the general Pareto front represents the set of all classifiers that belong to the

Pareto front, in each algorithm run; the voting scheme is afterwards applied to all classifiers

that belong to the general optimal Pareto front, considering all examined threshold values,

and the general optimal values for Accuracy/AUC can therefore be computed.

Note that in the case of model C a single threshold in involved in the process of classifier’s

quality evaluation and the AUC-based performance is not computed, being irrelevant.

Data complexity measures

This section presents a brief characterisation of our data complexity, trying to relate it to the

classifier behaviour. We investigate several measures which characterise the difficulty of a clas-

sification problem (borrowed from both supervised and unsupervised learning) that are inde-

pendent of the used learning algorithm, since, in the case of discriminant classifiers, the cluster

structures which emerge in the feature space may help (or hinder) the learning process. Fur-

thermore, it was already proven [36] that real–world problems (such that those considered in

our numerical experiments) contain structures in the measurement space that are significantly

different from the theoretical problems (constructed by a random labeling of points).

We have considered the following measures [36]:

• Fisher’s Discriminant Ratio (F1)—it computes the discriminating power of a feature, identi-

fying the overlap among different classes by considering the distribution of values with

respect to each feature; this measure emphasizes the geometrical characteristics of the class

distributions;

• Separability of classes (N2)—compares the spread inside the classes and the distance between

the classes, being aimed to evaluate the separability of classes by analysing the shape of their

boundaries.

• Average number of points per dimension (T2)—it measures the shapes of each class

manifolds.

These three complexity measures have been applied to the breast-cancer problems

described in Section for all image representation (for both parts of a dataset: training and test-

ing). The corresponding obtained values of these measures are given in Table 2.

The values corresponding to these complexity measures indicate that:

• if we consider the training stage and

• F1 measure, the DDSM+KD problem is the simplest one and the BCDR film + KD is the

most onerous one,

• N2 measure, the BCDR digital + Mom problem is the simplest one and the the DDSM

+ Mom is the most onerous one,

• T2 measure, the BCDR digital + Mom problem is the simplest one and the MIAS + HOG

is the most onerous one;

• if we consider the testing stage

• F1 measure, the DDSM + KD problem is the simplest one and the BCDR digital + KD is

the most onerous one,
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• N2 measure, the DDSM + Mom problem is the simplest one and the BCDR film + Mom is

the most onerous one,

• T2 measure, the BCDR digital + Mom problem is the simplest one and the MIAS + HOG

problem is the most onerous one.

It follows that a problem can be classed as onerous using one measure, but at the same time,

another measure can class the same problem as simple. This observation is consistent with

each measure capturing different aspects of the classification results.

Results and discussion

Numerical results

Before to investigate the sensitivity of the classification performance to the optimisation crite-

ria, a preliminary experiment was dedicated for comparing two basic strategies for combining

the classifiers: majority voting and simultaneous multi-objective optimisation. In the majority

voting approach, more classifiers (with a single optimisation criterion) are applied in order to

decide the class of a certain instance, and the chosen class is the one that has been obtained by

the majority of the classifiers. This very simple and straightforward approach together with

other voting schema are widely used in the literature [31, 32, 35]. In simultaneous multi-objec-

tive optimization, an adaptation of the learning process that considers multiple, conflicting

objectives, are treated separately in the optimization. A set of best trade-off solutions (forming

the Pareto front) is then simultaneously evolved along the objectives in a single optimization

run, allowing the end-user to choose the preferred classifier a posteriori. In both scenarios

(voting and simultaneuos optimisation) the same objectives have been considered. We com-

pared the performances by involving the objectives of model A—the average accuracy over

pre-established thresholds indicates the best sub-expression of an MEP chromosome and the

individual accuracies (for each of these pre-established thresholds). The classifier’s inputs have

been fixed to statistical moments. The results obtained in this experiment (see Table 3) indicate

the potential of the simultaneous multi-objective approach.

The second aim in our investigation was to analyse different MO scenarios of the consid-

ered classifiers. We have investigated the performance of the evolved MO classifiers on the test

datasets. Numerical results are given in Tables 4–7. In Tables 4 and 5, the average AUC and

Table 2. Fisher’s discriminant, N2 and T2 measures for all problems (and representations).

Database Represen-tation F1" N2# T2"

train test train test train test

MIAS Mom 0.0029 0.0056 2.3853 1.2526 30.2857 15.2857

HOG 0.0047 0.0076 0.9944 0.9927 0.0005 0.0002

KD 0.0067 0.0231 1.2318 1.2739 0.0202 0.0102

BCDR film Mom 0.0082 0.0016 1.0742 1.7043 65.2857 32.8571

HOG 0.0026 0.0044 0.9786 0.9956 0.0010 0.0005

KD 0.0002 0.0181 1.0287 0.0487 0.0435 0.0219

BCDR digital Mom 0.0013 0.0195 0.8139 1.0944 84.4286 42.2857

HOG 0.0029 0.0167 0.8684 0.8719 0.0013 0.0006

KD 0.0005 0.0011 0.8647 0.9763 0.0563 0.0282

DDSM Mom 0.0003 0.0132 5.7287 0.0006 76.4286 38.2857

HOG 0.0057 0.0114 0.9049 0.3867 0.0012 0.0006

KD 0.0384 0.0384 0.8296 0.8296 0.0510 0.0255

https://doi.org/10.1371/journal.pone.0269950.t002
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accuracy, respectively, computed during testing stage over more runs are presented for all

models (A, B, C, D) and all image representations (Mom, HOG, KD). In each run of the learn-

ing algorithm, the training and testing stages are performed; the trained classifiers belonging

to the optimal Pareto front are tested by using the voting procedure.

In Tables 6 and 7 the general optimal values for AUC and Accuracy, repectively, computed

on the test sets after all the runs are given. The general Pareto front represents the set of all clas-

sifiers that belong to the Pareto front in each algorithm run; the voting scheme is then applied

to all classifiers that belong to the general optimal Pareto front, considering all examined

threshold values, and the general optimal values for AUC/Accuracy can be computed.

Table 3. Comparison of voting and simultaneous MO strategies.

Database Voting MO

MIAS 60.07 61.28

BCDR film 83.03 92.00

BCDR digital 44.18 48.86

DDSM 45.64 50.41

https://doi.org/10.1371/journal.pone.0269950.t003

Table 4. Average AUC.

Database Representation A B D

MIAS Mom 10.44 46.89 9.28

HOG 32.93 50.00 12.46

KD 0.06 33.33 23.26

BCDR film Mom 21.46 50.00 13.72

HOG 23.28 51.39 17.26

KD 50.35 51.14 49.46

BCDR digital Mom 37.24 50.00 27.07

HOG 35.21 50.00 27.87

KD 49.60 50.31 27.35

DDSM Mom 3.54 50.00 12.41

HOG 26.16 49.94 16.98

KD 0.12 65.22 20.14

https://doi.org/10.1371/journal.pone.0269950.t004

Table 5. Average Acc.

Database Representation A B C D

MIAS Mom 61.28 49.16 41.74 54.89

HOG 51.00 52.90 61.99 52.96

KD 63.93 45.17 46.73 53.05

BCDR film Mom 46.86 49.48 53.19 49.77

HOG 47.68 49.68 52.75 49.74

KD 49.87 49.71 50.43 49.97

BCDR digital Mom 50.41 47.77 51.69 49.16

HOG 47.24 47.77 41.78 50.63

KD 58.94 49.12 51.24 49.35

DDSM Mom 9.20 40.15 63.68 38.59

HOG 37.89 40.19 33.71 45.34

KD 75.23 50.16 48.47 62.05

https://doi.org/10.1371/journal.pone.0269950.t005
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The values from Tables 4 and 5 indicate that, by considering Average AUC objectives,

model B performs better for all databases and for all image representation, but when the Aver-

age Acc objectives are considered (see Tables 6 and 7), the model C performs better. Some-

times, model A was the best classifier. In this context, a statistical analysis of the obtained

results must be performed in order to increase the generality of such conclusions.

Statistical analysis methods

Estimating the classification accuracy measurements of each classifier presented is no small

feat. The multi–objective approach means that each classifier converges over multiple values of

its Pareto front. Even comparisons between pairs of classifiers require multiple comparisons,

involving multiple algorithm pairings over multiple problem domains. The pros and cons of

each of the classifiers presented make it impossible to choose a single scheme over the rest.

Numerical values specific to each test are computed for each pair of classifiers in a variety of

contexts. These values make sense within the parameterisation of each test but cannot be com-

pared between different statistical tests.

In order to compare the relative merits of the classifiers under different tests, as well as to

determine the statistical significance of the results, we also calculate the corresponding p–

Table 7. Acc Pareto optimal front.

Database Representation A B C D

MIAS Mom 64.30 45.23 52.34 51.22

HOG 52.52 52.90 61.99 47.48

KD 64.49 50.00 42.06 47.20

BCDR film Mom 46.74 49.48 52.61 51.83

HOG 50.78 51.65 53.91 48.83

KD 50.13 50.13 54.35 50.13

BCDR digital Mom 51.28 47.77 57.77 47.80

HOG 50.54 47.77 54.05 50.00

KD 58.92 48.68 62.84 49.53

DDSM Mom 8.40 40.15 35.82 40.82

HOG 28.58 41.94 57.09 46.75

KD 74.50 50.37 32.34 57.68

https://doi.org/10.1371/journal.pone.0269950.t007

Table 6. AUC Pareto optimal front.

Database Representation A B D

MIAS Mom 1.37 47.56 11.71

HOG 37.51 50.00 27.71

KD 0.17 52.96 37.55

BCDR film Mom 31.66 50.00 18.65

HOG 33.59 43.10 31.50

KD 48.64 48.64 48.64

BCDR digital Mom 38.25 50.00 26.17

HOG 48.24 50.00 40.33

KD 58.92 51.58 49.53

DDSM Mom 0.00 50.00 21.52

HOG 31.39 49.62 22.18

KD 0.05 57.88 27.83

https://doi.org/10.1371/journal.pone.0269950.t006
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value. This number between 0 and 1 can be used to accept or reject the Null Hypothesis. A sig-

nificance level α is chosen for this purpose. The comparison p< α indicates strong evidence

against the Null Hypothesis, meaning that the test is unsuitable for comparing those two

classifiers.

The tool selection and its parameters are based on conventional choices in the literature

[37]. As such, throughout this paper we set the statistical confidence level to 95%, which corre-

sponds to a significance level α = 0.05.

Whenever p< α values of p are shown in boldface.

We present a range of ranking tools for comparing classifiers, highlighting the disagree-

ments between such comparisons and concluding that the comparison tools themselves bias

for or against specific schemes.

Wins, ties and losses. One of the most simplistic estimates, the wins, ties and losses
method offers a single numerical estimate of win percentage, in that it compares the number

of datasets over which an algorithm is the overall winner. This can be used to compare either

the win percentage of an image representation over other representations (as per Fig 3), or the

win percentage of a classification method against other methods (as per Fig 4).

The comparison of the three image representations (Moments, HOG and KD) across the

four classificaton models indicates that the best representation for three classification models

is KD, while the win for best representation under one model (C) is shared by HOG and

Mom. This is shown in Fig 3. Fig 4 turns the comparison the other way around, comparing the

four classification methods. The AUC&histoTP/FPrates model wins across the three image

representations.

Sign test. The Sign Test is a significance test between the number of winnings and losses,

while the Wilcoxon’s Signed Ranks Test is a significance test using both the number of win-

nings and looses and the level of winnings/losses (difference between actual two data).

The performance of classification algorithms based on machine learning is often evaluated

using the paired t–test. Since this is a parametric analysis and requires conditions such as inde-

pendence, normality, heteroscedasticity [38], it has been impractical to use it to compare our

Fig 3. Performance of representations based on Moments (Mom), Histogram of Oriented Gradients (HOG), Kernel

Descriptors (KD) as percentage of wins, ties and losses (for all classification models).

https://doi.org/10.1371/journal.pone.0269950.g003
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classifiers. Instead, we have opted strictly for non–parametric (distribution–free) tests, such as

the Sign test and the Wilcoxon signed rankings for comparing two classifiers, as well as the

Friedman test with the related post–hoc tests for comparing several classifiers over different

data sets.

Our statistical analysis is a post–hoc procedure aiming to highlight the disagreements

between the various classifiers.

The Sign test compares pairs of classification models by taking into account their number

of wins, ties and losses over all image representations.

The Sign test is a classic form of inferential statistics and the null hypothesis assumes that, if

two algorithms are compared, each should win approximately nc=2þ Z
ffiffi
ð

p
ncÞ=2 out of nc

datasets or problems.

In Eq 5, nc is the total number of cases, out of which we single out the number of wins:

ncwðA$ BÞ represents the number of cases when model A performs better or the same to

model B; Zα is the value that corresponds to the z statistic at significance level α. The null

hypothesis, that classification model A and classification model B perform equally well, is

rejected if the inequality in Eq 5 is satisfied. The critical p–values corresponding to ncw have

been inferred from statistical tables.

ncwðA$ BÞ �
nc
2
þ Za

ffiffiffiffiffi
nc
p

2
ð5Þ

The results of applying this test over all non–trivial pairs of classification models are pre-

sented in the triangular Table 8.

For our chosen significance level α = 0.05 we get Zα = 1.645, and hence the null hypothesis

is accepted for pairings:

• model A vs. model B,

• model B vs. model D, and

• model C vs. model D.

Fig 4. Performance of classification models (A, B, C, D) for all image representations as percentage of wins, ties

and losses (for all classification models).

https://doi.org/10.1371/journal.pone.0269950.g004

PLOS ONE On the use of MOEA classifiers for breast cancer detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0269950 July 19, 2022 16 / 29

https://doi.org/10.1371/journal.pone.0269950.g004
https://doi.org/10.1371/journal.pone.0269950


The null hypothesis is rejected for the remaining pairs. Therefore, on the basis of the sign

test only, we can say that (p< 0.05):

• model A outperforms model C,

• model A outperforms model D, and

• model B outperforms model C.

The sign test does not take into account the magnitude of the differences between the com-

pared algorithm’s performances. Furthermore, the null-hypothesis of this test is rejected only

one algorithm almost always outperforms the other algorithm.

Wilcoxon test. The Wilcoxon sign ranking test [39] is more sensitive than the Sign test

due to taking into account both the number of wins and losses and their level. A ranking is

then carried out based on the absolute value of the difference in performance of two algo-

rithms over each of the data sets.

The Wilcoxon ranking is a non-parametric counterpart to the paired t–test, it goes beyond

normal distributions and is not affected by the presence of outliers.

If we denote by diffi the performance difference of the two algorithms A and B on the ith

out of n data sets, then the sum of ranks for those data sets where B outperformed A is com-

puted by Eq 6 and for the opposite is computed by Eq 7. The smaller of the two sums is T =

min(R+, R−). Since in our case the number of datasets is way smaller than 25, the precise critical

values for T can be found in statistical textbooks.

Rþ ¼
X

diffi>0

rankðdiff iÞ þ
1

2

X

diffi¼0

rankðdiff iÞ ð6Þ

R� ¼
X

diffi<0

rankðdiff iÞ þ
1

2

X

diffi¼0

rankðdiff iÞ ð7Þ

An ideal goal would be to reject the null hypothesis (that two algorithms perform equally

well). To this end, we computed the Wilcoxon test for all pairs of considered classification

models considering all four performance measures (for each descriptor and for all descriptors,

respectively).

The results of these tests are compiled in Figs 5–7. The corresponding p–values are pro-

vided in brackets. Like before, we choose a significance level α = 0.05 and N = 4 data sets. Con-

sidering the exact critical values for the Wilcoxon’s test, for these α and N values, the

disagreement between the classifiers is statistically significant if the test’s z value is smaller than

−1.96 or p< α. Unfortunately in all of our comparisons using the three individual data repre-

sentations (HOG, Mom and KD) the null hypothesis is not rejected, which indicates that the

Wilcoxon test is insufficient by itself, and a more sensitive tool needs to be used. Sections—

detail other such tests.

Table 8. Results of sign test: ncwðA$ BÞ for all possible combinations and the corresponding p–value.

nc = 4databases × 3representations = 12.

A B C D

A — 15 (p = 0.999) 33 (p = 0.009) 31 (p = 0.052)

B — 31 (p = 0.030) 29 (p = 0.151)

C — 16 (p = 0.993)

D —

https://doi.org/10.1371/journal.pone.0269950.t008
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Fig 5. New Wilcoxon test—Mom. The significance level is α = 0.5.

https://doi.org/10.1371/journal.pone.0269950.g005

Fig 6. Wilcoxon test—HOG. The significance level is α = 0.5.

https://doi.org/10.1371/journal.pone.0269950.g006
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Note that, since Model Conly feature an Acc, there are no corresponding values (i.e. the

third column is missing) in all of the tables which deal with an Avg AUC calculation.

Collating the above information over the same datasets regardless of image representation,

we can draw conclusions about the four performance measures used.

1. The assessment of the Avg AUC performance measure across all three image representa-

tions reveals that (p< 0.05)

• model A significantly outperforms model B,

• model B significantly outperforms models C and D, and

• model C significantly outperforms model D.

Meanwhile, for other pairings (e.g. model Avs. model D) there is no detectable disagree-

ment (p> 0.3).

2. The assessment of the Avg Acc performance measure across all three image representations

reveals that (p< 0.05)

• model B significantly outperforms model D,

while for other pairings there is no detectable disagreement (p> 0.5).

3. The assessment of the AUC optimal performance measure across all three image represen-

tations reveals that (p< 0.05)

• model A significantly outperforms model B,

• model B significantly outperforms models C and D, and

Fig 7. Wilcoxon test—KD. The significance level is α = 0.5.

https://doi.org/10.1371/journal.pone.0269950.g007
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• model C significantly outperforms model D.

Meanwhile, for other pairings (e.g. model Avs. model D) there is no detectable disagree-

ment (p> 0.8).

4. The assessment of the Acc optimal performance measure across all three image representa-

tions reveals that no evidence of significant disagreements is detected (p> 0.2) for any of

the pairings.

In conclusion, according to the Wilcoxon test (see results from Fig 8, the models C and D

could be discarded altogether. However, these models will be rehabilitated in Sections—where

using a different yard stick will give them a higher level or credibility.

Friedman. In the case of comparing multiple algorithms over several problem domains,

there is a need for more advanced tests. In order to compare one algorithm with other N algo-

rithms, as well as all N algorithms to each other, a set of post–hoc procedures is needed.

The Friedman test [40] or its related Iman and Davenport test [41] are used in such situa-

tions. The main goal of these tests is to perform a ranking of the algorithms. Both tests give

information about the existence of disagreements between the result samples compared.

In the case of our data, a comprehensive evaluation considers all the experiments (four clas-

sification models) over all three (HOG, Mom and KD) image representations.

The null–hypothesis was reformulated in order to state that the four recognition models

perform equally well. The Friedman test was applied in order to establish whether or not to

reject this null–hypothesis. In the case of Friedman test, the algorithms are ranked so that the

rank 1 is given to the algorithm with the best performance, for each data set. The ranks are

averaged in case of ties.

Let us consider rji being the rank assigned to the j-th algorithm on the i-th data set, having a

total of k algorithms and Nds data sets. The average ranks of all algorithms are computed as

Rj ¼ 1

Nds

PNds
i¼1
rji. Under the null-hypothesis, according to which the performances of all

Fig 8. Wilcoxon test—All representations. The significance level is α = 0.5.

https://doi.org/10.1371/journal.pone.0269950.g008
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algorithms are equal and so their values for Rj should be equal, the Friedman statistic

w2
F ¼

12Nds
kðkþ 1Þ

Xk

j¼1

R2

j �
kðkþ 1Þ

2

4

" #

ð8Þ

is distributed according to w2
F with k − 1 degrees of freedom.

For our specific numbers of algorithms (k = 4) and data sets (Nds = 12 = 4datasources ×
3representations), exact critical values can be computed. The results of applying the Friedman

test are shown in Fig 9.

We continue to work with a level of significance of α = 0.05. The degree of freedom is 3 due

to the fact that we compare four classifiers. We extracted from Distribution Tables [42] the

corresponding critical value, which is 7.7.

Therefore, the null–hypothesis is rejected for the first and third performance measures

taken into account (A = AvgAcc&Accs and C = GM&PosNegAcc). The Friedman perfor-

mance measures for Model B = AUC&histoTP/Fnrates and for Model

D = avgGM&GMPosNegAccs indicate that there is no significant disagreement between the

four considered classification models.

Iman and Davenport. In order to identify the existence of disagreements between all

result samples compared, it is also possible to apply the Iman—Davenport test [41]. This is

a test related to Friedman but less conservative and free of parameters. The expression of

Iman—Davenport is given in Eq 9 and it is distributed according to the F-distribution with

k − 1 and (k − 1)(Nds − 1) degrees of freedom. As before, k is the number of algorithms and Nds
is the number of data sets.

FF ¼
ðNds � 1Þw2

F

Ndsðk � 1Þ � w2
F

ð9Þ

Fig 10 shows the Iman—Davenport values (FF). The corresponding Distribution Table [42]

critical value for a level of significance α = 0.05 is pα = 2.9223. Since the Iman—Davenport test

values are clearly greater than their associated critical value in two cases, it follows that there

are significant disagreements between the observed results. A post–hoc statistical analysis is

therefore needed in these two cases.

Figs 9 and 10 show the results of applying the Friedman and Iman—Davenport tests. When

comparing the statistics of Friedman and Iman—Davenport and their associated critical

Fig 9. The results of Friedman’s test (w2
t ) for all performance measures, degree of freedom 3, the significance level

α = 0.05 and the critical value pα = 7.7.

https://doi.org/10.1371/journal.pone.0269950.g009
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values, we conclude that there are significant disagreements between the obtained results with

a probability error p� 0.05. A post–hoc statistical analysis is therefore needed.

The next section illustrates the application of several post-hoc tests over the performances

of the considered algorithms. This highlights pairs of algorithms which disagree.

Nemenyi. The Friedman and Iman—Davenport tests only show whether or not there is a

significant disagreement between the various approaches, but neither of them shows where

any discrepancies occur. In cases where the null–hypothesis is rejected, additional post–hoc

tests can be performed to reveal any significant differences in algorithm performance.

Nemenyi’s post–hoc procedure for multiple comparisons [43] goes further than the previ-

ous two, in that it singles out pair(s) of algorithms which point out the relevant disagreements,

as well as quantifying the magnitude of these disagreements.

We have applied the Nemenyi test to obtain pairwise comparisons of the four classifiers.

Any two classifiers are considered to disagree significantly if the corresponding average ranks

differ by at least the Critical Difference (CDf) defined in Eq 10, where critical values qα are

based on the Studentized range statistic divided by
ffiffiffi
2
p

. As before, k is the number of algo-

rithms and Nds is the number of data sets.

CDf ¼ qa
kðkþ 1Þ

6Nds
ð10Þ

Demsar [37] proposed a way of visualising the results of a post–hoc analysis, where several

algorithms are compared. CDf diagrams (such as the ones in Figs 11–14 illustrate the ranking

Fig 10. The results of the Iman—Davenport test (FF) for each performance measure, for k − 1 = 3 and, respectively

(k − 1)(Nds − 1) = 3×11 = 33 degrees of freedom, for significance level α = 0.05 and critical value pα = 2.9223.

https://doi.org/10.1371/journal.pone.0269950.g010

Fig 11. Visualisation of post hoc Nemenyi test results for all considered classification techniques over all datasets.

The Avg AUC performance measure is considered. The mean ranks are depicted on the main line, while CDf
represents the critical difference. In the case of no significant difference, the methods are furthermore connected.

https://doi.org/10.1371/journal.pone.0269950.g011
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of each algorithm in terms of its average rank, the magnitude of the disagreement between

them, and the interpretation of these rankings.

Differences in algorithm performance is considered statistically significant if algorithms are

placed further apart than the specified CDf. The black lines in these diagrams connect groups

of algorithms whose performance is not significantly different.

Subsequent to the Friedman test rejections, the Nemenyi post–hoc test compares all classifi-

ers pairwise, and concludes that two classifiers can be considered significantly different

Fig 12. Visualisation of post hoc Nemenyi test results for all considered classification techniques over all datasets.

The Avg Acc performance measure is considered. The mean ranks are depicted on the main line, while CDf represents

the critical difference. In the case of no significant difference, the methods are furthermore connected.

https://doi.org/10.1371/journal.pone.0269950.g012

Fig 13. Visualisation of post hoc Nemenyi test results for all considered classification techniques over all datasets.

The AUC Pareto optimal front performance measure is considered. The mean ranks are depicted on the main line,

while CDf represents the critical difference. In the case of no significant difference, the methods are furthermore

connected.

https://doi.org/10.1371/journal.pone.0269950.g013

Fig 14. Visualisation of post hoc Nemenyi test results for all considered classification techniques over all datasets.

The Avg Acc Pareto optimal front performance measure is considered. The mean ranks are depicted on the main line,

while CDf represents the critical difference. In the case of no significant difference, the methods are furthermore

connected.

https://doi.org/10.1371/journal.pone.0269950.g014
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from the performance point of view if their average ranks are different at least from the CDf
perspective.

Fig 11, where Average AUC is considered as performance measure, indicates that some sig-

nificant differences appear between: A and C, B and C, B and D.

Fig 12, where Average Accuracy is considered as performance measure, indicates that no

significant differences appear between any pairs of models.

Fig 13, where the AUC of the Pareto optimal front is considered as performance measure,

indicates that some significant differences appear between: A and C, B and C, B and D, C

and D.

Finally, Fig 14, where AverageAccuracy is considered as performance measure, indicates

that no significant differences appear between any pairs of models.

Related work

In recent times the research for automated breast cancer recognition in digital mammography

was dominated by deep learning and convolutional neural networks. The capabilities of deep

learning were initially compared to those of traditional CAD methods, which rapidly revealed

the promise of this new technology. The recognition results obtained by deep learning meth-

ods have been compared against those obtained by experts radiologists, indicating a good per-

formance [3, 44, 45]. However, new improvements are possible.

Evolutionary computation represents an alternative to deep learning. Deep learning is

focused on modeling what we know, whereas evolutionary computation is focused on develop-

ing new solutions. Exuberant, but directed, exploration is enabled thanks to evolutionary com-

putation, which allows for the discovery of novel designs and behaviors. In some ways, it is the

next step beyond deep learning: an intelligent system that can think outside the box. Deep

learning has demonstrated its worth in automating well-known and well-described actions

and abilities, but it lacks the ability to go beyond them. This is why evolutionary computation

is so important for classification problems too.

In addition, because the internal learning processes as well as the resulting models are not

totally visible, deep learning looks to be a “black box” due to the increasing complexity of

underlying models and algorithms. Systems based on artificial intelligence must provide reli-

able support for society through robustness and reliability as well as compliance with legal reg-

ulations and ethical principles. Trustworthy AI brings important challenges to the

development of transparent, accountable and human-centered systems, accountability-ori-

ented technologies in terms of data collection and algorithm design [46]. In this context, the

Evolutionary Computationhas the potential to balance the performance and the explainability

of an intelligent system.

Recently, the use of evolutionary algorithms for training classifiers has been investigated.

Genetic programming (GP) is a versatile and powerful evolutionary technique with specific

characteristics that make it ideal for classifier evolution. In [47] the authors have investigated

the capability of the GP approach for producing hierarchical, rule-based, classification trees. In

[48] GP is used to evolve decision trees for data classification, search spaces tend to become

extremely large by using data sets from the UCI machine learning data set repository. The

paper [49] focuses on adapting the fitness function in GP to evolve classifiers with good indi-

vidual class accuracy. In all these approaches and also many others (e.g. [50]) the evaluation of

classification methods are performed by using data from UCI repository that means the image

descriptors have not been taken into account, UCI providing directly the extracted features

from different, medical or not, image databases. In our study, the raw images are considered
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and the visual descriptors are computed directly, in order to obtain a more realistic framework

that can truly help a medical practitioner.

Due to the fact that classification is by definition a task consisting of multiple objectives that

are usually conflicting, the use of multi-objective optimization for solving classification prob-

lems has been intensively studied. Some of the most popular algorithms are Pareto Envelope-

based Selection Algorithm (PESA) [51], Strength Pareto Evolutionary Algorithm (SPEA2) [52]

and Non-dominated Sorting Genetic Algorithm (NSGA-II) [24].

In [53] the authors strive to minimize both the number of mistakes and the number of tree

nodes while evaluating decision trees, which is one of the early approaches to utilize GP and

Pareto-based multi-objective optimization for image classification. In [54] the authors present

another evolutionary multi-objective strategy for creating decision trees for picture categoriza-

tion. The tree size and the training error are the two objectives to be minimized. In [26], the

NSGA-II algorithm is used to suggest two novel GP-based approaches. The first method aims

to reduce the GP-evolved program’s classification error and size, whereas the second one

divides the single goal of reducing the classification error rate into numerous goals of lowering

the error for each class. In a multi-objective GP approach to classification, two opposing goals

are considered: false negative rate vs. false positive rate [55]. In the case of uneven training

data, multi-objective GP has recently been employed for classification [27].

The most important shortcommings of the described approach is represented by the scar-

city of assessment methodologies used for validating an MOEA approach. Such assessment is

difficult because MOEAs produce more solutions (instead of a single one) by stochastic meth-

ods (that require to be validated by statistical tools). In addition, the final client could be inter-

ested in measuring in different ways the produced results. The previous described approach

didn’t advance such challenges. In our numerical experiments, we searched an answer for

these issues.

Conclusions

We have seen how various statistical tests rank one or the other algorithm as better than the

others in our set, for our statistical confidence level to the conventional value of 95%, and

hence a corresponding significance level α = 0.05. Had we chosen a smaller α we might have

obtained slightly different rankings, but it is still unlikely that we would have achieved agree-

ment amongst the rankings.

These results are hardly surprising. They agree with Demšar’s [37] conclusion that there is

no actual gold standard for comparing classes of learning or evolutionary algorithms in a sin-

gle fashion. At best, one can apply the classifiers to a single data set, in which case the perfor-

mance is biased by the variance, or lack thereof, within that data. When working with generic

or unrelated data, however, it is hard to infer that one meta–classifier is better than any other.

In line with Wolpert’s No Free Lunch theorems [56], our findings highlight shortcomings in

the medical image classification literature: it is inadvisable and insufficient to construct meta–

classifiers and measure them using a single, favourable metric, because the effect is to skew the

results.

The way to mitigate these shortcomings is to ensure an adequate choice of objectives and

metrics pairs. For instance, a focus on maximising the number of true positives is directly

linked with using accuracy–related objectives. Conversely, if accuracy is chosen as the generic

metric, its effect is to focus the primary classification objective on maximising the positively

classified data points.

Future work includes detection of cancer in digital breast tomosynthesis also and to extend

the multi-objective evolutionary approach to other tasks (lession segmentation, lession
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stratification). Furthermore, depending on the usage scenario, a variety of medico-legal and

ethical issues would need to be addressed and explained after the technical/clinical perfor-

mance assessment is completed. Once all of these obstacles have been overcome, Evolutionary

Computation may be expected to revolutionize the way breast cancer screening is done.
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