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Multidrug resistance (MDR) of tumors is one of the clinical direct reasons for chemotherapy
failure. MDR directly leads to tumor recurrence and metastasis, with extremely grievous
mortality. Engineering a novel nano-delivery system for the treatment of MDR tumors has
become an important part of nanotechnology. Herein, this review will take those different
mechanisms of MDR as the classification standards and systematically summarize the
advances in nanotechnology targeting different mechanisms of MDR in recent years.
However, it still needs to be seriously considered that there are still some thorny problems
in the application of the nano-delivery system against MDR tumors, including the excessive
utilization of carrier materials, low drug-loading capacity, relatively narrow targetingmechanism,
and so on. It is hoped that through the continuous development of nanotechnology, nano-
delivery systems with more universal uses and a simpler preparation process can be obtained,
for achieving the goal of defeating cancer MDR and accelerating clinical transformation.
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INTRODUCTION

Cancer is still a worldwide malignant disease. According to the latest statistics of CA 2021 (CA: A
Cancer Journal for Clinicians), by 2020, the number of cancer deaths in the world had reached 9.96
million (Sung et al., 2021). With the developments in cancer pathology, the research on
chemotherapeutic drugs developed for cancer has obtained tremendous advances. However, due
to its inherent characteristics, chemotherapy still faces some challenges, such as lack of sufficient
targeting ability and limited bioavailability (Subramanian et al., 2016; Rodriguez-Nogales et al., 2018;
Mu et al., 2020). More importantly, repeated treatments of chemotherapeutics lead to multiple drug
resistance of tumor cells (Kibria et al., 2014) so that patients with malignant tumors (such as
non–small cell lung cancer and triple-negative breast cancer) may initially respond to the first-line
chemotherapy strategy; their tumor growth is obviously inhibited, but they often have cancer
metastasis or recurrence; then, second-and third-line chemotherapy or other treatments are needed
(Wu et al., 2010; Shapira et al., 2011; Brufsky et al., 2012). Consequently, the response of tumor cells
to the subsequent chemotherapy using various cytotoxic drugs becomes ineffective. Therefore,
finding a broad and effective treatment strategy to reverse multidrug resistance is a very important
topic in tumor treatment research.

It has been proven that the mechanisms of tumor multidrug resistance mainly include ATP-
dependent drug efflux, DNA repair, inhibition of the apoptosis pathway, and tumor tissue
heterogeneity in recent years (Figure 1) (Shapira et al., 2011; Housman et al., 2014; Bar-Zeev
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et al., 2017; Wei et al., 2021). In addition to that, the hypoxic
tumor microenvironment (Zeng et al., 2015; Jing et al., 2019),
cancer stem cell regulation (Donnenberg and Donnenberg, 2005;
Mihanfar et al., 2019), endoplasmic reticulum stress (Bahar et al.,
2019), and the immune suppression microenvironment of
tumors (Vasan et al., 2019) were also proven to be closely
related to the progress of MDR. At present, although the
severity of multidrug resistance can be alleviated by various
therapeutics, which can mainly increase the sensitivity of
tumor cells to chemotherapeutic drugs by reducing the drug
efflux of tumor cells, these small molecular drugs still have the
same disadvantages as mentioned above, such as lack of targeting
and bioavailability (Milane et al., 2011; Gao et al., 2012). More
importantly, it is difficult for these drugs to approach the tumor
site along with chemotherapy drugs simultaneously, for achieving
an ideal synergistic effect and eventually a better clinical
treatment effect (Duan et al., 2013; Meng et al., 2013; Zhang
M. et al., 2017; Wang and Huang, 2020).

With the continuous development of nanotechnology,
rationally designed nanoscale drug delivery systems (NDDSs)
with their distinct advantages can be employed to deliver various
bioactive payloads to tumor sites for resolving the
aforementioned problems (Acharya and Sahoo, 2011; Bertrand
et al., 2014; Guo and Huang, 2020; Xu et al., 2021). Through
evading or inhibiting tumor MDR mechanisms, NDDSs can
effectively improve the enrichment process of
chemotherapeutics, or sensitivity of tumor cells, to obtain
obvious therapeutic effects (Lim et al., 2019; Wang L. et al.,
2019; Ji C. et al., 2021). Therefore, the development of more ideal
NDDSs, which can synergistically reverse multidrug resistance,

has become one of the important topics in the field of tumor
therapy. This review will focus on the different mechanisms of
multidrug resistance and systematically summarize the relevant
progress of NDDSs which are utilized for synergistically treating
tumors effectively and reversing multidrug resistance in recent
3 years, to provide references for exploring the next generation
NDDSs targeting MDR.

NDDSS TARGETING DRUG EFFLUX
PUMPS FOR INHIBITING MDR

As illustrated by Figure 1, among these mechanisms involved in
MDR, the drug efflux mechanism is the most important one
which obtains the most common and intensive research. After
continuous stimulation by chemotherapeutic drugs, tumor cells
will upregulate drug efflux–related transporters, especially
including multidrug resistance protein 1 (MDR1), multidrug
resistance–associated protein 1 (MRP1), and breast cancer
resistance protein (BCRP) (Shapira et al., 2011; Housman
et al., 2014). The physiological processes of these transporters
are ATP energy-dependent, so they belonged to the ATP-binding
cassette (ABC) transporter family. After recognizing
chemotherapeutic drugs with a molecular weight less than
2,000 Da, ABC proteins will pump these drugs out
immediately (Ambudkar et al., 2003). As a result, the
intracellular drug concentration will be reduced significantly,
with decreased or even completely lost chemotherapeutic
efficiency. Therefore, targeting the ABC proteins and
engineering a novel kind of NDDS for regulating or evading

FIGURE 1 | Mechanisms of anticancer drug resistance: efflux pump-mediated mechanisms of MDR and efflux pump-independent drug resistance mechanisms
(Bar-Zeev et al., 2017). Copyright 2017 Elsevier Ltd. This figure was generated by Microsoft PowerPoint and OneKeyTools Lite.
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the MDR pathway has become an important research topic for
reversing the MDR of tumors.

NDDSs Reducing the Content of
MDR-Related Proteins
MDR1 (also known as P-glycoprotein, P-gp) is highly expressed
in a variety of drug-resistant tumor cells, which are mainly
distributed on the surface of the cell membrane. It is a typical
ATP-dependent protein and plays a direct important role in the
efflux of small molecule drugs (Ghetie et al., 2004; Housman et al.,
2014; De Vera et al., 2019). In recent years, RNA interference
(RNAi) technology has been employed to inhibit the expression
of related proteins. It has achieved amounts of promising results
in tumor therapy, especially in the process of reversing multidrug
resistance (He et al., 2019; Chen Q. et al., 2020; Ge et al., 2020).
NDDSs have proven the ability to protect small interfering RNA
(siRNA) from degradation in the process of circulation (Dong
et al., 2019b). In addition, NDDSs can load chemotherapy drugs

and siRNA together to simultaneously transport them to the
tumor site for obtaining enhanced combination therapeutic
effects for reversing multidrug resistance and inhibiting tumor
growth (Gao et al., 2019; Mendes et al., 2019; Wang C. et al., 2020;
Zhu et al., 2020). For example, a novel kind of dual-responsive
polyplex, a complex consisting of a variety of polymers, with
effective endo-lysosomal escape composed of methoxy poly
(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine
(mPEG-b-PLA-PHis-ssOEI) was developed by Gao, Y. et al.,
which was employed for co-delivering MDR1 siRNA and
doxorubicin (DOX) (Figure 2A). Meanwhile, the payloads
were triggered a release in response to pH/redox stimuli, due
to the pH-sensitive poly (l-histidine) (PHis) protonation and the
disulfide bond cleavage. The polyplex provided a much higher
payload delivery efficiency, MDR1 gene silence efficiency,
cytotoxicity against MCF-7/ADR cells (adriamycin-resistant
human mammary adenocarcinoma), and stronger MCF-7/
ADR tumor growth inhibition (Gao et al., 2019). Another
example is a particular kind of all-in-one fluorescent silicon

FIGURE 2 | (A) Schematic illustration of construction and effective endo-lysosomal escape of the pH/redox dual-responsive mPPP-ssOEI/DOX/siRNA co-delivery
polyplex. After being internalized, the acidic and reduction potential environment of the endo-lysosome triggers the payload release and the subsequent endo-lysosomal
escape (Gao et al., 2019). Copyright 2019 American Chemical Society. (B) Illustration of the formation, composition, and reservation progress against MDR tumor cells of
siRNAsome (Zheng et al., 2019). Copyright 2019 John Wiley & Son, Inc. (C) Schematic illustration of entry into tumor cells of GNPs-P-DOX-GA and its efficient
targeting regulation to mitochondria under multi-stimuli (Liu Z. et al., 2019). Copyright 2019 American Chemical Society. (D) Illustrating the NO and DOX programmable
release and MDR cancer therapy of ADLAu2@CuS YSNPs (Wang L. et al., 2019). Copyright© 2019 American Chemical Society. This figure was generated by Microsoft
PowerPoint and OneKeyTools Lite.
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nanoparticle (SiNP)-based NDDS described by Guo, D. et al. This
novel NDDS was engineered for visible co-delivering P-gp siRNA
and DOX. This approach enhanced therapeutic efficacy in
multidrug-resistant breast cancer cells. Notably, this NDDS
enhanced the stability of siRNA in the biological environment
and entitled the loaded siRNA with a responsive release behavior.
As a result, the expression of P-gp was downregulated by
approximately 80%. The results of the cell survival experiment
indicated that this co-delivery nanoscale delivery system obtained
the pronounced therapeutic efficiency to MDR cancer cells (Guo
et al., 2019).

The traditional gene delivery system needs to use several
positive charge carriers, which bring a huge risk of toxicity in
vivo (Lv et al., 2006; Wang et al., 2014). Therefore, researchers
recently began to employ the regulatory gene itself as a part of the
carriers to construct NDDSs, for delivering synergistic
chemotherapeutics and achieving ideal safety and therapeutic
effect simultaneously (Zheng et al., 2019; Ji W. et al., 2021).
Zheng, M. et al. utilized a hydrophilic siRNA shell, a thermal- and
intracellular-reduction-sensitive hydrophobic median layer, and
an empty aqueous interior to construct a siRNA-based vesicle
(siRNAsome). When siRNAsomes were loaded with the
hydrophilic drug doxorubicin hydrochloride and anti-P-gp
siRNA, synergistic therapeutic activity was achieved in MCF-
7/ADR tumor cells and a tumor model (Zheng et al., 2019)
(Figure 2B). In addition, due to the high biosafety and targeting
ability of exosome and biomimetic vesicles, these studies on
constructing new NDDSs have developed vigorously in recent
years (Wang T. et al., 2019; Liang et al., 2020; Zhao et al., 2020).
Wang, T. et al. utilized versatile mimic vesicles derived from
aptamer erythrocytes to investigate a novel kind of delivery
system for siRNA and DOX to treat MDR tumors. This
system could be readily obtained through extruding
erythrocyte membranes and had the advantages of biological
homogeneity, high output, controllable size, low cost, and
excellent biocompatibility. The drug-loaded vesicles could
successfully conquer drug resistance through P-gp silencing
and synergistically eliminating MDR tumor cells via DOX-
induced growth inhibition (Wang T. et al., 2019).

At the same time, the influence of physiological properties of
the tumor cell internal and external environment onMDR cannot
be ignored. By enhancing the level of reactive oxygen species
(ROS) or reducing the level of ATP by targeting mitochondria,
NDDSs can effectively inhibit the expression of P-gp, reverse
multidrug resistance, and significantly increase the concentration
of intracellular chemotherapeutic drugs (Liu Y. et al., 2019; Chang
et al., 2020; Del Valle et al., 2020; Sui et al., 2020). For instance,
Chang, N. et al. engineered a pH/ROS programmed-responsive
and self-accelerating drug release NDDS and utilized it for the
treatment of multidrug-resistant human colon adenocarcinoma.
This NDDS, named as PLP-NPs, was composed of an ROS-
sensitive polymeric paclitaxel (PTX) prodrug (DEX-TK-PTX), a
PHis, and an ROS-generating agent, β-lapachone (Lapa). PHis
protonation facilitated the escape of the PLP-NPs from the
lysosome and the release of Lapa under acidic conditions in
lysosomes. Attributed to a large amount of ROS generated by
Lapa, ATP within tumor cells was consumed, and P-gp

production was downregulated consequently. In vitro and in
vivo experiments subsequently confirmed that this novel kind
of NDDS successfully obtained tumor-specific cytotoxicity and
reversed MDR (Chang et al., 2020). On the other hand, targeting
the mitochondria is also an important strategy to reverse
multidrug resistance by reducing the expression level of P-gp.
Liu, Y. et al. designed a mitochondria-targeting multi responsible
NDDS (GNPs-P-DOX-GA) for overcoming MDR through
enhanced ROS generation, where increased cellular uptake of
drugs and accumulation of it towards the mitochondria were both
achieved by glycyrrhetinic acid (GA) (Figure 2C). GNPs-P-
DOX-GA nanoparticles could be degraded by tumor
extracellular metal matrix protease-2 (MMP2) and release
small size P-DOX-GA to facilitate tumor tissue penetration.
After internalization by tumor cells, DOX-GA was released
through hydrolysis of the hydrazone bond and then efficiently
delivered to the mitochondria (Liu Y. et al., 2019).

As an important substance for constructing NDDSs, nitric
oxide (NO) is capable of not only directly eliminating tumor cells
but also effectively inhibiting the expression of P-gp, to reduce the
drug efflux phenomena of MDR tumor cells. It has been widely
used in the synergistic treatment of MDR tumors along with
chemotherapeutic drugs (Ding et al., 2019; Wang L. et al., 2019;
Wei et al., 2019; Wu W. et al., 2020; Wang J. et al., 2021).
Considering an NO-stimulated NDDS as an example, it was
rationally designed to release NO and DOX with a significant
time gap for promotingMDR cancer therapy. Under 808 nm laser
irradiation, ROS was generated in the confined space of Au-
ADL@CuS YSNPs, and it effectively converted L-Arg into NO
consequently (Figure 2D). As the NO release progressed, the
NO-responsive liposome layer was deteriorated more severely,
allowing DOX to escape. This NDDS could significantly inhibit
the P-gp expression and lead to promising therapeutic effects on
MCF-7/ADR cancer cells (Wang L. et al., 2019).

NDDSs Reducing the Drug Efflux Ability of
MDR-Related Proteins
Due to the inherent advantages of NDDSs, it can transport a
variety of active substances to the tumor site simultaneously, to
induce a synergistic therapeutic effect, such as the nano co-
delivery of oxaliplatin and folinic acid, achieving synergistic
chemo-immunotherapy with 5-fluorouracil, and the co-
delivery of siRNAs of two key inflammation-related proteins
(p38α MAPK and p65) by novel liposomal delivery (Wang Y.
et al., 2020; Guo et al., 2020). Therefore, through rational design,
the inhibitors of MDR-related proteins and chemotherapeutic
drugs can reach the tumor lesion at the same time via NDDSs
(Dong et al., 2019a; Huang et al., 2019; Ren et al., 2019; Zhen et al.,
2019; Fathy Abd-Ellatef et al., 2020; ShairMohammad et al., 2020;
Wang S. et al., 2021; Pan et al., 2021). Pan, Y. et al. developed
cancer stem cell–specific targeted mSiO2-dendritic polyglycerol
(mSiO2-dPG) nanocarriers for simultaneously delivering the
chemotherapy drug DOX along with the P-gp inhibitor
tariquidar (Tar) for enhanced chemotherapy to overcome
MDR in breast cancer stem cells. The mSiO2-dPG
nanocarriers possessed a high loading capability, excellent pH
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stimuli-responsive performance, and good biocompatibility.
With the help of cancer stem cell–specific targeting and P-gp
inhibitor Tar, the accumulation of DOX delivered by the mSiO2-
dPG nanocarriers could be greatly increased in the drug-resistant
three-dimensional mammosphere of breast cancer stem cells, and

the chemotherapeutic efficacy against breast cancer stem cells was
enhanced (Pan et al., 2021). On the other hand, as mentioned
above, targeting the tumor cell mitochondria can reduce the
production of ATP. Because the drug efflux function of P-gp is
ATP-dependent, the damage to mitochondrial function will also

FIGURE 3 | (A) Schematic representation of the construction and application of photoresponsive NCwith trimodal synergistic therapy properties (Xing et al., 2019).
Copyright 2019 American Chemical Society (B) Schematic illustration of the HA-TPD-CL-PTX/SOR liposome for co-delivery of PTX and SOR to overcome MDR in
cancer cells. Drug delivery includes steps of the intravenous injection, active targeting of liposome, and degradation of HA by HAase together with the exposure of PLL-
DA at HAase-rich lysosome, the release of drugs, action onmitochondria function, and inhibition of the P-gp efflux by TPGS to further enhance drug accumulation in
cancer cells (Lei et al., 2019). Copyright 2019 Taylor & Francis Group. This figure was generated by Microsoft PowerPoint and OneKeyTools Lite.
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significantly inhibit the function of P-gp (Gu et al., 2019; Wei
et al., 2019; Dong et al., 2020; Cheng et al., 2021; Guo et al., 2021).
Guo, W. et al. developed a drug delivery system incorporating
PTX onto polyethylene glycol–modified and oxidized sodium
alginate–functionalized graphene oxide nanosheets. Owing to
pH/thermal-sensitive drug release properties, these nanosheets
could induce more obvious antitumor effects on gastric cancer,
compared to free PTX. With near-infrared-irradiation, these
nanosheets could generate excessive ROS, attack the
mitochondrial respiratory chain complex enzyme, reduce the
ATP supplement for P-gp, and effectively inhibit its efflux
pump function (Guo et al., 2021).

In addition, with the deepening and expansion of NDDS
engineering research, some carrier molecules with biological
regulatory functions have been found, such as D-alpha-
tocopheryl poly (ethylene glycol)-1000 succinate (TPGS),
which can reduce the ATP content in tumor cells (Lei et al.,
2019; Xing et al., 2019; Jiang et al., 2020). Xing, Y. et al. reported a
photo-responsive nanocluster system prepared by installing
polydopamine nanoparticle clusters on the surface of TPGS
micelles solubilized with IR780 (a photosensitizer) to achieve
combined chemotherapy/photothermal therapy/photodynamic
therapy for drug-resistant breast cancer (Figure 3A). The
nanocluster shows prominently quenched fluorescence
emission and inhibited singlet oxygen generation upon
exposure to near-infrared light, favoring a highly efficient
photothermal therapy module. More importantly, TPGS could
enhance the intracellular accumulation of doxorubicin
hydrochloride whose release is boosted by the photothermal
heat. Demonstrated by the results of in vitro and in vivo
experiments, the developed nanocluster exhibited a great
potential to treat MDR cancer (Xing et al., 2019). Another
example of this special carrier molecule, TPGS, is a
multifunctional liposome consisting of TPGS and a polylysine-
deoxycholic acid copolymer, paclitaxel, and a chemosensitizing
agent, sorafenib. Contributed to theMDR reversal effect of TPGS,
this particular kind of liposome significantly increased the cellular
concentration of paclitaxel and induced antitumor therapeutic
effects (Figure 3B) (Lei et al., 2019).

NDDSs Designed for Evading Drug Efflux
Pumps
MDR relying on the drug efflux mainly realizes the protection of
tumor cells by directly reducing the intracellular drug
concentration (Housman et al., 2014). Therefore, in addition
to directly inhibiting the function and expression of MDR-related
proteins, we can also take advantage of the characteristics of the
drug efflux process to evade the exclusion process and improve
the intracellular concentration of drugs. As mentioned above,
P-gp can recognize drugs with a molecular weight below 2,000 Da
and pump them out of cells (Ambudkar et al., 2003). Therefore, it
can avoid the drug pumping process of tumor cells to a certain
extent by simply using the size property of NDDSs (Chen et al.,
2019; Wan et al., 2019; Zhao et al., 2019; Song et al., 2020; Cao
et al., 2021; Hu et al., 2021). For example, the amphiphilic block
copolymer poly (2-methyl-2-oxazoline-block-2-butyl-2-

oxazoline-block-2-methyl-2-oxazoline) (P(MeOx-b-BuOx-b-
MeOx) was utilized to form a novel nano-micelle for co-
delivering paclitaxel (PTX) and alkylated cisplatin. Superior
antitumor activity of co-loaded PTX/CP drug micelles
compared to single drug micelles, or their mixture, was
demonstrated in cisplatin-resistant human ovarian carcinoma
A2780/CisR xenograft tumor and multidrug-resistant breast
cancer LCC-6-MDR orthotopic tumor models (Wan et al., 2019).

However, since the release process of drugs from ordinary
NDDSs is often free diffusion, the intracellular drug consent is
difficult to rapidly accumulate to the ideal level for efficient
treatment. To solve this problem, great efforts have been
continuously put into developing novel kinds of NDDSs from
the following three aspects: 1) building a stimuli-responsible
NDDS based on the physiological parameters of the tumor
microenvironment; 2) constructing an active targeting NDDS
to improve the overall drug concentration into tumor cells; 3)
according to the specific action mechanism of the drug, targeting
its action position and improving the regional drug concentration
for achieving the maximum effect.

Construction of Stimuli-Responsive NDDSs Based on
the Physiological Parameters of Tumor Cells
For approaching the accurate and rapid drug release, reduced
toxic side effects, and increased intercellular drug concentration,
some tumor microenvironment physiological properties which
are different from those of normal tissues, such as pH and enzyme
concentration (Llopis-Lorente et al., 2019; Gannimani et al.,
2020), have been widely utilized as environmental stimuli for
triggering the drug release of NDDSs, and tremendous studies
have emerged continuously in recent years (Zhang C. et al., 2017;
Che et al., 2019; Liu Z. et al., 2019; Zhi et al., 2019; Wang J. et al.,
2020; Kumar et al., 2020; Luo et al., 2020; Mei et al., 2020).

Among those tumor environmental stimuli, it is the most
common strategy to construct responsive nanosystems by using
the difference of pH value between the tumor microenvironment
and normal tissue. Due to the abnormal metabolism of tumor
cells, the pH value of the tumor microenvironment is 6.5–7.0,
while the pH values of endosomes and lysosomes are 5–6 and
4.5–5.5, respectively, (Yin et al., 2013; Ghadiri et al., 2017). This
special pH gradient can be applied to trigger drug release or
dissociation of NDDSs (Wu et al., 2018; Yang et al., 2018; Li et al.,
2019c; Wang Q. et al., 2019; Zhang et al., 2020). A pH-sensitive
graft copolymer, poly[(3-amino ester)-g-B-cyclodextrin (PBAE-
g-(3-CD)], was synthesized by Wang, Q. et al. It was employed to
co-deliver DOX and adjudin (ADD, a mitochondrial inhibitor).
Triggered by low pH in endo/lysosome after endocytosis, both
ADD and hydrolyzed DOXwere released rapidly into tumor cells.
Owing to that, the NDDSs exhibited an effective growth
inhibition against MDR cells via the synergistic effect of ADD
and DOX (Wang Q. et al., 2019). On the other hand, Li, Y. et al.
reported a sequential release drug delivery system that imparts
avoiding the drug efflux and nuclear transport in synchrony via a
simple nanostructured drug strategy. The liposome-based
nanostructured drugs (LNSDs) loaded two modules: DOX
loaded into tetrahedral DNA (TD) to form small
nanostructured DOX and the nanostructured DOX was
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encapsulated into the pH-sensitive liposomes. In the in vivo
experiments, under the weak acidity of lysosomes, liposomes
rapidly dissociated and released nanostructured DOX, rapidly
increased the intracellular drug concentration, and finally,
successfully reduced the drug efflux of MDR and then
obtained an ideal therapeutic effect (Li et al., 2019c)
(Figure 4A). At the same time, this stimulus can also be used
in combination with other stimuli to realize multi-level
dissociation of drugs (Li et al., 2019b; Zhang S. et al., 2019;
Feng et al., 2020). Zhang, S. et al. engineered a pH/redox dual-
responsive NDDS containing DOX and celecoxib (CXB) for
synergistically treating drug-resistant breast cancer. This
particular kind of NDDS presented significantly accelerated
drug release under acidic and redox conditions. In MDR
breast cancer cells, this dual-responsive NDDS significantly
enhanced the cellular uptake of DOX and the downregulated
P-gp expression induced by COX-2 inhibition, and thus
obviously increased the cytotoxicity and apoptosis-inducing
activity of DOX. Demonstrated by the results of the in vivo
treatment experiment, nanomedicine remarkably enhanced

tumor chemosensitivity and reduced COX-2 and P-gp
expressions in tumor tissues (Zhang S. et al., 2019) (Figure 4B).

The gradient change of redox inside and outside tumor cells
can be used as another specific stimulus for drug release. Among
them, glutathione (GSH) is the most used redox stimulant. This is
because the concentration of GSH in the tumor cytoplasm
(~10 mm) is about 7 times higher than that in normal cells
(He et al., 2014). Studies have shown that GSH can specifically
hydrolyze the disulfide bond and quickly release the drugs
covalently connected or dissociate NDDSs. Therefore, the
disulfide bond is widely used in the construction of new
environmentally responsive NDDSs (Cheng et al., 2011).
When this kind of NDDS is exposed to the tumor cytoplasm,
it can quickly unload the therapeutic payload through self-
decomposition, to maximize its anticancer efficacy and reduce
the impact of drug resistance (Maiti et al., 2018; Shen et al., 2018;
Wang et al., 2018; Yan et al., 2021). For instance, Yan, J. et al.
presented redox-responsive polyethyleneimine (disulfide cross-
linked PEI, PSP)/tetrahedral DNA (TDNs)/DOX nanocomplexes
(NCs) and PSP/TDNs@DOX NCs to achieve tumor cell/tissue

FIGURE 4 | (A) Preparation, anti-efflux, and cell nuclear-transport effects of the LNSD (Li et al., 2019c). Copyright 2021 Springer Nature Switzerland AG. (B)
Schematic illustrations for preparation of HPPDC nanoparticles and their functional mechanisms for overcoming drug resistance in breast cancer treatment (Zhang S.
et al., 2019). Copyright 2021 Springer Nature Switzerland AG. (C) Schematic representation of the redox-responsive PEI/TDNs/DOX nanocomplexes with membrane-
breaking and size-changeable properties for combatingMDR tumor (Yan et al., 2021). Copyright 2020 Elsevier B.V. (D) Scheme of the formulation process for anti-
EGFR-PEG-SPIO NPs and their applications in MRgFUS (Wang et al., 2017). Copyright 2017 Elsevier Ltd. This figure was generated by Microsoft PowerPoint and
OneKeyTools Lite.
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penetration for conquering MDR. The NCs can respond to
glutathione and DNase I to disassociate and release DOX
rapidly (Yan et al., 2021) (Figure 4C).

Construction of NDDSs Actively Targeting the Tumor
Lesion
Contributing to the EPR effect, NDDSs are entitled to the ability
of passive targeting to tumor tissues, and it is very important to
promote the effective and rapid entry of drugs into specific cells
(Subramanian et al., 2016). Active targeting provides us with
another feasible scheme to enhance the probability of drugs
entering specific cells. Active targeting refers to a drug delivery
system that covalently connects ligands (with targeting function)
to carriers or drug molecules and realizes the connection with
target receptors by taking advantage of the special affinity
between them. It can enhance the endocytosis of tumor cells
and realize the rapid entry of NDDSs into cells. Due to that, it can
effectively increase the effective drug concentration in cancer cells
and then enhance the curative effect of drugs (Hirsjarvi et al.,
2011; Wang et al., 2017; Liu S. et al., 2019; Ma et al., 2019; Soe
et al., 2019; Wang Y. et al., 2019; Xiao et al., 2020). For example,
based on the high overexpression of Y-1 receptor (Y1R) protein
and P-gp in the multidrug-resistant breast cancer cell line, a
selective Y1R ligand, [Asn(6), Pro(34)]-NPY (AP) was employed
to stabilize the chemotherapeutic drug DOX and P-gp inhibitor
tariquidar (Tar) co-loaded nanomicelles at the physiological level.
This also improved the targeted delivery of DOX and Tar into
MCF-7/ADR cells. Co-delivered Tar further inhibited the efflux
of DOX and increased its accumulation in the drug-resistant
cancer cells, thereby inducing significant inhibition of cell growth
(Wang Y. et al., 2019). Another example is an active targeting
nano-sized theragnostic superparamagnetic iron oxide (SPIO)
platform for significantly increasing the imaging sensitivity and
energy deposition efficiency in the MDR tumor model using a
clinical MRgFUS system which was developed by Wang, Z. et al.
The surfaces of these PEGylated SPIO nanoparticles (NPs) were
conjugated with anti-EGFR (epidermal growth factor receptor)
monoclonal antibodies (mAb) for targeted delivery to lung cancer
with the EGFR overexpression (Wang et al., 2017) (Figure 4D).

Construction of NDDSs Targeting the Site of Drug
Action
The therapeutic effect of tumors largely depends on the drug
delivery efficiency of NDDSs to its final target, especially forMDR
tumors, ensuring the drug concentration near the final target is an
important strategy to overcome multidrug resistance. The
nucleus has been proved to be the main interaction site of
most therapeutics. Therefore, it is highly expected that nuclear
targeted NDDSs can provide a more effective strategy than
ordinary cell membrane-targeted therapy (Wang et al., 2011;
Ling et al., 2012; Li et al., 2018; Li H. et al., 2019; Tu et al., 2020).
Tu, Z. et al. conjugated a cyclic R10 peptide [cR(10)] to
polyglycerol-covered nanographene oxide for developing a
novel nanomedicine to overcome multidrug resistance. The
nuclear translocation of this nanomedicine was facilitated by
the cR(10) peptide. Subsequently, a laser-triggered release of the
loaded DOX results in efficient anticancer activity confirmed by

both in vitro and in vivo experiments (Tu et al., 2020). The
biodistribution and photothermal effects of this nanomedicine
were studied in HeLa-R tumor-bearing nude mice. These results
showed that this nanomedicine could target the tumor lesion
most efficiently. At the same time, it has the most photothermal
effect under the NIR laser (808 nm), compared to other
therapeutic forms. Furthermore, another example is a
mesoporous silica nanoparticle (MSN)-based nucleus-targeted
system engineered by Li, H. et al., which could directly target
the cancer stem cells and further enter the nucleus by the surface
modification of anti-CD133 and thermal-triggered exposure of
TAT peptides under an alternating magnetic field (AMF). In the
in vivo treatment of Balb/C mice bearing MCF-7 breast tumor,
the nucleus-targeted NDDS efficiently inhibited cancer stem cells
by blocking the hypoxia signaling pathway (Li H. et al., 2019).

NDDSS FOR INHIBITING DNA REPAIR

In addition to the drug efflux mechanism discussed above, tumor
cells can also effectively repair the damaged DNA by excision
repair or homologous recombination under the stimulation of
chemotherapeutic drugs and eventually weaken or even eliminate
the efficacy of chemotherapy (Galluzzi et al., 2012; Housman
et al., 2014; Hu et al., 2016). Studies have shown that the process
of DNA repair by tumor cells often depends on O6
methylguanine DNA methyltransferase (MGMT), suggesting
that MDR caused by DNA repair can be reversed through
function or expression inhibition to restore the efficacy of
chemotherapeutic drugs, but there were few ideal results at
present (Galluzzi et al., 2012; Housman et al., 2014; Hu et al.,
2016). Recently, Wang, L. et al. proposed a novel systematic
combination strategy for overcoming cisplatin resistance using
near-infrared (NIR)-light–triggered hyperthermia. The NDDSs,
named F-Pt-NP, were composed of two kinds of polymer.
Induced by an 808 nm NIR laser, F-Pt-NPs generated mild
hyperthermia (43°C) for enhancing the cellular membrane
permeability to promote the uptake of drugs and activating
cisplatin by accelerating the glutathione consumption.
Moreover, it could increase the Pt-DNA adduct formation and
possibly the formation of a portion of irreparable Pt-DNA
interstrand crosslinks, which significantly inhibited the repair
of DNA. In vivo, on a patient-derived xenograft model of
multidrug-resistant lung cancer (A549DDP), the efficacy of the
F-Pt-NPs treatment group showed a tumor inhibition rate of 94%
(Wang L. et al., 2021) (Figure 5A). Similarly, Xin, J. et al. reported
a carrier-free aquo-cisplatin arsenite multidrug nanomedicine
loaded with cisplatin and arsenic trioxide prodrugs
simultaneously. This nanomedicine achieves a high loading
capacity and pH-dependent controlled release of the drugs.
Cisplatin and arsenic trioxide in this nanocomposite can
induce massive DNA damage and inhibit the activity of
PARP-1, which is closely related to the DNA damage repair in
cisplatin-resistant tumor cells. Gene expression profiles
demonstrated the expressions of proto-oncogenes, and DNA
damage repair–related genes MYC, MET, and MSH2 were
reduced, respectively. On the other hand, the expressions of
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tumor suppressor genes PTEN, VHL, and FAS were increased.
This nanocomposite showed strong cytotoxicity against cisplatin-
resistant ovarian tumor cells and could overcome cisplatin
resistance effectively (Xin et al., 2019).

NDDSS FOR REACTIVATING THE
APOPTOSIS PATHWAY OF TUMOR CELLS

The reactivation of the anti-apoptotic process of tumor cells plays
another important role in resisting the attack in
chemotherapeutics, which involves promoting survival, anti-
apoptotic regulator Bcl-2, and its downstream nuclear factors-
κB (NF-κB), and so on. More than 50% of cancers have defects in
the mechanism of apoptosis. The most characteristic of these
abnormalities is the increased expression of Bcl-2 family proteins
(Housman et al., 2014; Hu et al., 2016). Targeting these anti-
apoptotic factors to improve the killing efficiency of

chemotherapeutics against tumor cells is a promising tumor
therapy strategy (Pan et al., 2020; Wang H. et al., 2020; Xie
et al., 2020; Sivak et al., 2021). For instance, Sivak, L. et al.
described a polymer biomaterial composed of the antiretroviral
drug ritonavir derivative (5-methyl-4-oxohexanoic acid ritonavir
ester; RD), covalently bound to the HPMA copolymer carrier via
a pH-sensitive hydrazone bond (P-RD). Importantly, RD
inhibited STAT3 phosphorylation in CT26 cells (murine colon
adenocarcinoma) in vitro and the expression of the NF-κB p65
subunit, Bcl-2, and Mcl-1 in vitro. P-RD nanomedicine showed
significant antitumor activity in CT26 and B16F10 tumor-bearing
mice (Sivak et al., 2021). Additionally, Pan. Q. et al. constructed a
multifunctional DNA origami-based nanocarrier for co-delivery
of a chemotherapeutic drug (doxorubicin, DOX) and two
different antisense oligonucleotides [ASOs; B-cell lymphoma 2
(Bcl2) and P-gp] into drug-resistant cancer cells for enhanced
therapy. Experiments revealed that the origami could protect
ASOs against nuclease degradation in 10% FBS. Moreover, with

FIGURE 5 | (A) Schematic illustration of the preparation of F–Pt-NPs and possible mechanism involved in inhibition of cisplatin resistance under NIR laser irradiation
(Wang L. et al., 2021). Copyright 2021 Wiley-VCH GmbH. (B) Schematic illustration of the regulation process against MDR tumor of Apt-DOA (Pan et al., 2020).
Copyright 2019 American Chemical Society. (C) Schematic illustration of components and cocktail therapy of metastatic MDR breast cancer by PM@THL with the dual
sensitive double-layered structure (Lang et al., 2019). Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This figure was generated by Microsoft
PowerPoint and OneKeyTools Lite.
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the synergetic effect of co-delivery of multi-ASOs and DOX, the
anticancer assay showed that Apt-DOA (Apt-DOX-origami-
ASO) could circumvent multidrug resistance and significantly
enhance cancer therapy in Hela/ADR andMCF-7/ADR cells (Pan
et al., 2020) (Figure 5B).

ACCURATELY TARGETING CANCER STEM
CELLS AND IMPROVING REVERSAL
EFFICIENCY
Recent studies have shown that a small number of tumor cells
have the characteristics of stem cells and usually have drug
resistance ability, due to the heterogeneity of tumor tissues
(Housman et al., 2014). In addition, another small number of
adult tumor cells also have the same ability (Housman et al.,
2014). In conventional tumor treatment, these drug-resistant
tumor cells can survive and continue to proliferate as seeds
over time, leading to recurrence (Housman et al., 2014). Some
of these drug-resistant cancer cells may enter the blood
circulation and may form metastases in distant organs
(Mansoori et al., 2017; Bukowski et al., 2020). Therefore,
through the rational design and construction of new NDDS,
accurately targeting cancer stem cells or adult cancer cells that
have developed drug resistance can effectively improve the
efficiency of reversing multidrug resistance and inhibiting
tumor growth. As discussed before, the cancer stem cell-
specific–targeted mesoporous silica (mSiO2)-dendritic
polyglycerol (dPG) nanocarriers co-delivered the
chemotherapy drug DOX and the P-gp inhibitor tariquidar
(Tar) for reversing MDR and enhancing chemotherapy to
breast cancer stem cells (Pan et al., 2021). In addition to the
active targeting strategy, relying on the intelligent change of
nanomedicine size for deeply penetrating the tumor tissue and
improving the clearance of cancer stem cells is also an important
strategy for reversing MDR efficiently. Based on that, a particular
kind of morphology-tunable nanomedicine was developed.
Chemotherapy and immune checkpoint blocking therapy for
large tumor cells and cancer stem cells were integrated into a
drug delivery system. The particle size shrank when the
nanoparticle transferred from circulation to tumor tissues,
favoring both pharmacokinetics and cellular uptake,
meanwhile achieving the sequential drug release where needed.
This nanomedicine reduced the proportion of cancer stem cells
and enhanced the therapeutic efficacy against the tumor and thus
prolonged the survival time of mice (Lang et al., 2019)
(Figure 5C).

DISCUSSION

With the continuous development of nanotechnology, the
application of NDDSs in cancer treatment has received
extensive attention all over the world. In fact, according to the
NIH, there are 110 clinical trials involving the application of
nanotechnology for cancer treatment nowadays (Gonzalez-
Valdivieso et al., 2021). Among them, Doxil® is a

representative example, which is the first FDA-approved
NDDS for clinic application since 1995, consisting of PEG-
liposome and doxorubicin. Compared to free doxorubicin,
Doxil® has some important advantages, such as a 100-times
longer half-life inside the body circulation and a reduction in
cardiotoxicity. Due to that, Doxil® has been applied in several
clinical therapies of malignant tumors, such as myeloma and
ovarian cancer (Barenholz, 2012). Similarly, another FDA-
approved NDDS is Abraxane®, which is composed of albumin
particles and paclitaxel. The results of clinical studies showed
that, compared with Taxol®, Abraxane® can significantly reduce
the toxic side effects caused by Cremophor® in Taxol® and
increase the maximally tolerated dose of patients by 80%
(Green et al., 2006; Desai, 2016).

In addition to these, other novel NDDSs, which are
constructed based on different strategies, have entered the
clinical research from preclinical research in the laboratory,
including passive-targeting tumor lesions via the EPR effect or
active-targeting tumor sites relying on the antibody technology,
such as PK2, an HPMA polymer doxorubicin conjugate, was the
first targeting nanotherapeutic agent reaching the clinic (Julyan
et al., 1999; Hopewell et al., 2001; Kopeček and Kopečková, 2010;
Gonzalez-Valdivieso et al., 2021). Notably, in addition to the
primary tumor-targeting NDDSs, some NDDSs aiming at
reducing tumor metastasis have also been gradually translated
into clinical studies, such as DaunoXome® which was employed
for the treatment against metastatic ovarian cancer andmetastatic
breast cancer (Eckardt et al., 1994; Forssen, 1997). Unfortunately,
for patients with MDR, although in preclinical laboratory studies,
researchers have developed many potential NDDSs described
above, which can obtain exciting in vivo/vitro therapeutic effects
in animal models, especially mousemodels; there is still no NDDS
for reserving MDR that has been transferred into the clinic due to
the great differences between human and animal models, as well
as the significant challenges brought by the complex mechanism
of MDR to the construction strategy of NDDSs.

Thus, novel strategies for overcoming these following
obstacles that limit the clinical translation process of NDDSs
are needed. First, although nanoscale carriers can enhance drug
penetration and accumulation within tumor lesions, the actual
number of drugs that can eventually enter tumor tissues is still
limited due to the generally low drug content in NDDSs, and the
vehicles themselves have clinical risks (Stiegler et al., 2010; Yang
et al., 2019; Chen S. et al., 2020). At present, some nanoscale
carriers are related to oxidative stress, adverse inflammatory
reaction, and genotoxicity (Liu et al., 2013; Zuo et al., 2013;
Yuan et al., 2020). Based on this, researchers began to focus on
the development of carrier-free NDDSs. For example, siRNA
itself was used as the carrier for drug delivery by using gene
origami technology and a kind of carrier-free NDDS composed
of the drug-chemogene conjugate. This drug-chemogene was
formed by two paclitaxel (PTX) molecules with a floxuridine
(FdU)-integrated antisense oligonucleotide (terminated
chemogene), which take fluorescent dithiomaleimide (DTM)
as a linker. This carrier-free drug delivery system obtained the
ability to knock down the expression of P-gp and the synergistic
inhibitor effect (Zhu et al., 2020). Similarly, we recently
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combined the COX-2 inhibitor indomethacin (IND) with the
chemotherapeutic drug paclitaxel through a simple self-assembly
to obtain a series of nanomedicine with different morphologies and
achieved ideal results in preliminary antitumor therapy (Zhang C.
et al., 2019). Because COX-2 inhibitors can effectively inhibit the
production of ATP, this carrier-free NDDS has the potential to
reverse tumor multidrug resistance and was of great value for
further research. The above research can not only effectively reduce
the use of inactive carrier materials and effectively improve the
drug content but also greatly reduce the preparation difficulty of
NDDSs and then has a broader prospect of clinical transformation.
However, how to rationally integrate the existing concept of
developing NDDSs for multidrug-resistant tumors with carrier-
free NDDSs is still an urgent problem to be solved by researchers,
which needs to make great efforts.

In addition, because the mechanism of MDR is very complex
and changeable, simply targeting one mechanism is far from
meeting the clinical needs. Therefore, exploring a reasonable drug
combination to achieve multi-channel reversal of multidrug
resistance and tumor treatment is a further research direction
in this field. At present, researchers have made some
corresponding exploration. For instance, Liu, X. et al.
developed a novel kind of gold nanoparticle (AuNP) modified
by multifunctional molecular beacons (MBs), which was utilized
as a vehicle for loading three different drug resistance–related
mRNAs (MDR1 mRNA, MRP1 mRNA, and BCRP mRNA).
After uptake by cells, MBS AuNP would inhibit the translation
of drug resistance–related mRNAs and reduce the flux protein
expression. This NDDS was provided to have the ability of
synergistic inhibiting MDR and in situ imaging of drug
resistance–related mRNAs in living cells (Liu X. et al., 2019).
Delivering drugs by passing the drug efflux mechanisms of MDR

is also a solution to those problems discussed above. For example,
telomerase, as a biomarker of tumor cells, is expressed in more
than 90% of tumor cells. The inhibition of telomerase can
effectively increase the chemosensitivity of tumor cells.
Therefore, the construction of new NDDS-targeting telomerase
has also achieved an obvious therapeutic effect on multidrug-
resistant tumors (Wu Y. et al., 2020).

In conclusion, even though key steps are still needed to
improve their possibility of clinical translation, NDDSs are
becoming more and more promising to eventually solve MDR
of tumors in clinical application. Based on this fact, we have
reason to believe that in the foreseeable future, there will be an
NDDS that can effectively solve the MDR of tumors and be
translated into clinical application.
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