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Anionic salicylimine-based cobalt (III) complexes featuring chiral ligands

derived from isoleucine amino acids were used as efficient bifunctional

phase-transfer catalysts for electrophilic iodination of enol ethers. The

Brønsted acids of these complexes enabled the enantioselective asymmetric

iodocyclization of enol ethers, furnishing spiro-fused oxazoline derivatives in

high yields with up to 90:10 er. In addition, chiral cobalt (III) complexes catalyze

the asymmetric intermolecular iodoacetalization of enol ethers with various

alcohols to afford 3-iodoacetal derivatives in high yields with up to 92:8 er.
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1 Introduction

Chiral anionic phase-transfer catalysis has emerged as a distinct strategy to achieve

various stereoselective transformations (Phipps et al., 2012; Kaneko et al., 2016; Larionov

et al., 2021). Nelson et al. introduced this concept for the first time (Carter et al., 2003), but

the mode of catalysis remained elusive until Toste et al. realized that the in situ

replacement of ions solubilizes the cationic reagent in the organic layer and provides

a chiral environment for the desired reaction with the substrate (Scheme 1A) (Rauniyar

et al., 2011). Toste et al. chose Selectfluor™ as a model reagent to be solubilized and

rendered chiral through ion-pairing with chiral phosphate anion catalysts for

enantioselective fluorocyclization of enol ethers (Scheme 1B) (Rauniyar et al., 2011).

This milestone was followed by various anionic phase-transfer catalysts and their

application to different enantioselective transformations (Wang et al., 2012; Phipps

and Toste, 2013; Yang et al., 2014; Yamamoto et al., 2016; Avila et al., 2017; Biswas

et al., 2018; Liang et al., 2018; Long et al., 2021). Although most of these anionic catalysts

show high efficiency in many reactions, their synthetic protocols are quite lengthy and

expensive. Hence, novel chiral anionic platforms are highly desirable for opening new

horizons for this promising anionic phase-transfer strategy.
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Belokon et al. introduced a new series of octahedral anionic

salicylimine-based cobaltate (III) complexes that could be readily

prepared via a facile one-pot protocol (Belokon et al., 1977). The

three-dimensional arrangement of two enantiopure tridentate

salicylimine-based ligands around the octahedral cobalt center

can render the center stereogenic, generating two types of

meridional isomers: Λ and Δ mer isomers (Ghosh et al., 2017;

Cruchter and Larionov, 2018). The metal center itself does not

play any role in the catalytic cycle, although it offers a rigid

framework to create a chiral environment.

In the last decade, the use of anionic chiral cobalt (III)

complexes as phase-transfer catalysts for different asymmetric

SCHEME 1
Chiral Anion-mediated Enantioselective Halocyclization. (A) Concept of anionic phase transfer catalysis. (B) Chiral phosphate anion-mediated
enantioselective fluorocyclization. (C) Chiral cobalt anion-mediated enantioselective bromoaminocyclization. (D) Chiral cobalt anion-mediated
enantioselective iodocyclization and iodoacetalization of enol ethers.
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transformations has received much attention (Gong et al., 2014;

Yan et al., 2017; Cruchter and Larionov, 2018; Liu K et al., 2018;

Larionov et al., 2021). This can be attributed to the ease of

creating a wide range of new structurally diverse chiral metal

complexes with distinct features. The positive charge on the

cobalt center is compensated for by ligand coordination to

generate a lipophilic chiral anion that can be either in the

form of a Brønsted acid or salt. Although the separation of

these two mer isomers via column chromatography (Belokon

et al., 2004) is essential for their application, the highly

stereocontrolled preparation of octahedral cobalt complexes

remains challenging (Belokon et al., 2012; Larionov et al.,

2015; Larionov et al., 2016; Salem et al., 2021).

Generally, two octahedral anionic salicylimine-based

cobaltate (III) complexes can be distinguished: stereogenic-

(only)-at-metal complexes and stereogenic-at-metal

complexes featuring chiral ligands (Cruchter and Larionov,

2018). In the first type, cobalt acts as the exclusive element of

chirality; for example, the first complex reported by Belokon

et al., in which the salicylimine ligand was derived from a

glycine amino acid (Belokon et al., 1977). Alternatively,

stereogenic-at-metal complexes featuring chiral ligands

represent the main proportion of salicylimine-based cobalt

(III) complexes and offer two significant advantages over the

first type. First, it is easier to separate and purify the two mer

isomers compared to other stereogenic-(only)-at-metal

complexes that require either expensive chiral counter

cations or resolution via chiral HPLC. Second, this

additional element of chirality creates an optimum chiral

environment that affords enantioselective transformations.

Therefore, only the second type of complex was used as a

chiral anionic phase-transfer catalyst.

In 2017, Yu et al. reported the enantioselective

bromoaminocyclization of olefins using anionic cobalt (III)

complexes as bifunctional phase-transfer catalysts to shuttle

the less-soluble brominating reagent to the reaction solution

TABLE 1 Screening of Various Anionic Octahedral Salicylimine-based Cobalt (III) Complexesa.

Entry Catalyst Yield (%)b drd erd

1 Λ-(S,S)-3a 91 >20:1 50:50

2 Λ-(S,S)-3b 96 >20:1 51:49

3 Λ-(S,S)-3c 97 >20:1 52:48

4 Δ-(S,S)-3b 93 >20:1 51:49

5 Δ-(S,S)-3c 90 >20:1 50:50

6 Λ-(S,S)-3d 98 >20:1 53:47

7 Λ-(S,R,S R)-3e 92 >20:1 65:35

8 Λ-(S,S,S,S)-3f 97 >20:1 76:24

9 Δ-(S,S,S,S)-3f 87 >20:1 55:45

10 Λ-(S,S,S,S)-3g 96 (93)c >20:1 79:21

aThe reaction of 1a (0.04 mmol), NIS (0.048 mmol, 1.2 equiv), 3 (0.004 mmol) was conducted in the solvent (1.0 ml).
bYields were determined via 1H NMR, spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.
cIsolated yield.
dDetermined by HPLC, using (Daicel Chiralpak IBN-5).
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and to control stereoselectivity (Scheme 1C) (Jiang et al., 2017).

Similarly, Yu et al. utilized anionic cobalt (III) complexes for the

intramolecular and intermolecular halogenation of olefinic

bonds (Li et al., 2018; Liu W et al., 2018; Wang et al., 2019;

Sun et al., 2021; Wu et al., 2021). However, the enantioselective

iodocyclization of enol ethers has been studied less because of the

limitations posed by the background reaction.

Thus, in this work, we conduct an anionic octahedral cobalt

(III) complex-mediated enantioselective iodocyclization reaction

of enol ethers and a diastereoselective synthetic study of anionic

octahedral cobalt (III) complexes as bifunctional phase-transfer

catalysts (Scheme 1D).

2 Results and discussion

2.1 Iodocyclization of enol ethers

2.1.1 Catalyst screening
Enol ether derivative 1a was selected as the model starting

material to investigate its iodocyclization reaction, which can

afford spiro-fused oxazoline scaffold 2a, the core structure of

many chiral ligands, and biologically active compounds as one of

the N-heterocycles (Banks et al., 2001; Heckmann and Bach,

2005; Holmes et al., 2005; Yadav et al., 2011; Bhandari Neupane

et al., 2019; Bylo et al., 2020; Salem et al., 2020; Connon et al.,

2021; Gardouh et al., 2021). The reaction of enol ether derivative

1a with N-iodosuccinimide (NIS) was initially examined in the

presence of 10 mol% of the sodium salts of anionic chiral cobalt

(III) complexes: Λ-(S,S)-3a and Λ-(S,S)-3b (Table 1). As

anticipated, the desired reaction proceeded smoothly to give

spiro-fused oxazoline derivative 2a in high yields but with no

enantioselectivity (entries 1–2). Some previous reports have

highlighted that metal-templated Brønsted acids exhibit much

higher catalytic activity and stereoselectivity than their

corresponding salts (Li et al., 2018). Hence, we attempted to

check this possibility with Λ-(S,S)-3c; however, there was no

improvement in the enantioselectivity (entry 3). Although the

opposite mer isomers Δ-(S,S)-3b and Δ-(S,S)-3c were also

obtained, no improvement in the enantioselectivity was

observed (entries 4–5). Similarly, increasing the bulkiness of

side chain R2 in the Λ-(S,S)-3d complex did not significantly

enhance the enantioselectivity (entry 6). Therefore, we reasoned

that a significant adjustment to the cobalt (III) complex structure

would be crucial for breaking the enantioselectivity ceiling that

we bumped into.

2.1.2 Designing new catalysts
Although asymmetric induction of anionic octahedral

cobalt (III) complexes has not been identified, the catalytic

cavity lies near the amino acid moiety of salicylimine ligands

(Cruchter and Larionov, 2018). The above analysis led us to

propose that introducing an additional element of chirality in

the coordinating salicylimine ligands can modify the chiral

FIGURE 1
Diastereoselective complexation of octahedral cobalt complexes.
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environment and improve the enantioselectivity of this

iodocyclization reaction. Accordingly, we used two amino

acids with chiral side chains (threonine and isoleucine) to

prepare the corresponding anionic cobalt (III) complexes via

a one-pot protocol. These complexes were then tested in the

model reaction under the same conditions, and spiro-fused

oxazoline derivative 2a was isolated in high yields and with

substantially improved enantioselectivity (entries 7–8). In

particular, Λ-(S,S,S,S)-3f provided 97% yield and 76:24 er.

We also evaluated the opposite mer isomer Δ-(S,S,S,S)-3f, in
which the enantiomeric ratio decreased to 55:45 er (entry 9).

Generally, the two mer isomers (Λ and Δ) do not offer an

equivalent degree of enantio-induction owing to the

distortion of the chelate rings, which leads to an increase

in the distance between the coordinating ligands and alters

the chiral environment (Belokon et al., 2004; Belokon et al.,

2009; Maleev et al., 2013). Finally, we checked the potential

of the corresponding metal-templated Brønsted acid Λ-
(S,S,S,S)-3g, which slightly increased the enantioselectivity

to 79:21 er (entry 10). The absolute configuration of 2a was

determined using X-ray crystallography (Table 1). To the

best of our knowledge, this is the first report of anionic cobalt

(III) complexes showing three elements of chirality (one

from the stereogenic center of cobalt and two in each

TABLE 2 Optimization of reaction conditionsa.

Entry [I] source Solvent Yield (%)b erc

1 NIS CCl4 (0.04 M) 96 79:21

2d NIS CCl4 (0.04 M) 95 73:27

3e NIS CCl4 (0.04 M) 99 75:25

4 NIS CHCl3 (0.04 M) 45 50:50

5 NIS TFE (0.04 M) 89 51:49

6 NIS toluene (0.04 M) 91 53:47

7 NIS CH2Cl2 (0.04 M) 98 53:47

8 NIS EtOH (0.04 M) 84 51:49

9 NIS 1,4-dioxane (0.04 M) 93 52:48

10 NIS C6H5F (0.04 M) 97 51:49

11 NIS C6H5Cl (0.04 M) 99 50:50

12 NIS CCl4 (0.02 M) 92 65:35

13 NIS CCl4 (0.06 M) 95 80:20

14 NIS CCl4 (0.08 M) 97 84:16

15 NIS CCl4 (0.1 M) 98 78:22

16f NIS CCl4 (0.08 M) 95 90:10

17f NIP CCl4 (0.08 M) 89 59:41

18f DIH CCl4 (0.08 M) 99 78:22

19f, g NIS CCl4 (0.08 M) 98 87:13

aThe reaction of 1a (0.04 mmol), [I] source (0.048 mmol, 1.2 equiv), Λ(S,S,S,S)-3 g (0.004 mmol) was conducted in the solvent (1.0 ml).
bYields were determined via 1H NMR, spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.
cDetermined by HPLC, using (Daicel Chiralpak IBN-5) and dr > 20:1 in all entries.
dCatalyst loading (5 mol%).
eCatalyst loading (20 mol%).
fTemperature = −20°C.
gUsing MS, 3A.
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tridentate ligand coming from the chiral centers of amino

acids). This additional element of chirality plays a critical

role because of its proximity to the catalytic sites of

complexes.

2.1.3 Diastereoselective complexation of
octahedral cobalt complexes

As highlighted previously, the diastereoselective

complexation of octahedral salicylimine-based cobalt

complexes remains elusive. Although a few tridentate

ligands afforded a single mer isomer exclusively upon

complexation with cobalt, most of the similar ligands

afforded a mixture of Λ and Δ mer isomers (Belokon et al.,

2012; Larionov et al., 2015; Larionov et al., 2016; Salem et al.,

2021). Yu et al. conducted a preliminary study on the effects of

reaction conditions on the ratio of the two mer isomers (Jiang

et al., 2017). To understand the reason for these discrepancies,

we correlated our experimental observations with a

preliminary computational study to further understand this

phenomenon. Based on DFT calculations at the B3LYP

function using the Wachters–Hay basis set for Co and

D95** for other atoms in the Gaussian 16 package, we

observed a variation in energy between the two mer

isomers. Λ-(S,S)-3 complexes were more stable than Δ-
(S,S)-3, which explains why the former were obtained as

the major product in most cases. Some Λ-(S,S)-3d and Λ-

(S,R,S,R)-3e complexes were obtained exclusively as pure Λ
isomers because of the high energy gaps between Λ and Δ. Our

computational results are also in good agreement with the

experimental results obtained (Yu et al., 2015) that

demonstrated that Δ-(R,R)-3 was obtained exclusively using

D-amino acid-based ligands (Figure 1). Finally, our DFT

calculations suggested that the bulkiness and configuration

of the side chain of the amino acid (R2) are key parameters that

control the yield and configuration of the major isomer (see

ESI for more information).

2.1.4 Optimization of reaction conditions
After determining the optimal catalyst for this reaction, we

started to optimize the conditions by screening different

parameters, including catalyst loading (Table 2, entries

1–3), solvents (entries 4–11), concentrations (entries

12–15), temperature (entry 16), iodinating agents (entries

17–18), and additives (MS 3A, MS 4A) (entry 19), which

showed that the reaction in CCl4 afforded a higher

enantioselectivity and MS 4A was the best additive to

adsorb any moisture and confirm the ultimate dryness. The

higher enantioselective induction in the case of CCl4
compared to that in other solvents can be attributed to its

lower dielectric constant (~2.2); hence, CCl4 molecules do not

interpose between the two ions, which is crucial for chiral

anion-mediated reactions (Lacour and Moraleda, 2009).

TABLE 3 Substrate scope and limitationsa.

aThe reaction of 1 (0.04 mmol), NIS (0.048 mmol, 1.2 equiv), Λ(S,S,S,S)-3g (0.004 mmol) was conducted in CCl4 (1.0 ml).
bYields were determined via 1H NMR, spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.
cDetermined by HPLC.
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Notably, the reaction temperature and concentration exerted

little effect on enantioselectivity.

2.1.5 Substrate scope and limitations
With the optimized conditions in hand, we next explored

the substrate scope of enantioselective iodocyclization

(Table 3). Various enol ether derivatives (1) were well

tolerated, affording spiro-fused oxazoline derivatives (2) in

up to 99% yield and 90:10 er. Lower enantioselectivities were

observed for halo-substituted spiro-fused oxazoline

derivatives 2b, 2c, 2g, 2i, and 2j, because of the higher

solubility of their corresponding starting materials. Highly

soluble substrates are more likely to undergo fast background

reactions, which, in turn, affect the enantioselectivity. This

phenomenon can be further realized by comparing both the

catalytic and background reactions of the two substrates that

show a large variance in enantioselectivity, for example, 1a

and 1c. The calculated rate constants k for the formation of 2c

showed that the catalytic pathway proceeded 2.25 times faster

than the background pathway (Figure 2A), while k for the

formation of 2a was approximately five times faster than that

of the background pathway. Hence, we can rationalize the

variance in the enantioselectivities of different substrates

(Figure 2B).

2.1.6 Plausible reaction mechanism
Based on the kinetic study (Figure 2) and previous reports on

halocyclization reactions (Marsden et al., 1994; Jiang et al., 2017;

LiuW et al., 2018), a plausible mechanism was proposed (Scheme

2). The Brønsted acid [Co*]−H+ undergoes a fast exchange with

the NIS to generate a lipophilic chiral iodinating agent [Co*]−I+.

The generated chiral [Co*]−I+ species are highly soluble in CCl4
and thereby undergo an asymmetric iodocyclization reaction

with enol ether derivative 1 to generate product 2 and regenerate

the Brønsted acid [Co*]−H+ via transition states TS-II and TS-

III. As shown in (Scheme 2), iodocyclization could favorably

occur on the Re face in TS-II, as the Si face in TS-I might be

disfavored because of the steric hindrance between the phenyl

ring of substrate 1 and the sec-butyl side chain of the cobalt

complex itself.

2.2 Iodoacetalization of enol ethers

To demonstrate the capacity of our new Co(III)-

complex Λ-(S,S,S,S)-3g, featuring chiral ligands with two

elements of chirality in each tridentate ligand, we studied

another electrophilic iodination reaction of olefins, the

iodoacetalization of enol ethers 4 with alcohols 5,

affording 3-iodoacetal derivatives 6, which have high

biological and synthetic values (Ollivier and Renaud,

2001; Haidzinskaya et al., 2015; Martinez et al., 2016). In

2018, Yu et al. conducted a primary study on this reaction

using chiral Co(III)-complex-templated Brønsted acids to

afford enantioenriched 3-iodoacetals in high yields and up

to 83:17 er (Li et al., 2018) using only primary alcohols as

substrates. Under our optimal conditions (see ESI,

Funding), the scope of asymmetric intermolecular

iodoacetalization with various alcohols 5 (Table 4) was

explored. When primary alcohols such as substituted

benzyl or naphthylmethyl were examined, 3-iodoacetal

derivatives 6a–6i were isolated in up to 99% yield with

85:15 er. Electron-withdrawing substituents such as nitro

groups (6c and 6e) or bromo groups (6 g–6i) on the benzyl

ring improved the enantioselectivity, and the highest

enantiomeric ratio of 85:15 was obtained with 4-NO2-

FIGURE 2
Kinetic studies on the iodocyclization reaction of enol ethers.
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substituted benzyl alcohol 6c. In contrast, electron-

donating substituents such as methoxy groups did not

have any positive impact on the enantioselectivity of

product 6f. The number of electron-withdrawing

substituents (e.g., two nitro groups) or their position did

not show any improvement in terms of yield and

enantioselectivity for derivatives 6e and 6 g–6i. Changing

enol ether 4 from DHP to DHF afforded 3-iodoacetal

derivative 6d in a good yield (84%); however, the

enantiomeric ratio dropped to 66:34. Secondary alcohols

also proved to be the optimum nucleophiles to give 3-

iodoacetal derivatives 6j–6n in up to 97% yield with 90:

10 er. Similarly, electron-withdrawing substituents

improved the enantiomeric ratio, as shown by a

comparison of derivative 6l (90:10) with 6j (83:17).

Meanwhile, using rac. methyl mandelate provided two

easily separable diastereomers 6n with a high

enantiomeric ratio. When we attempted the reaction

using both optically pure (R) and (S)-1-phenylethanol, we

obtained moderate enantiomeric ratios for both, with a

slight improvement in the case of (R)-6m (80:20) over

(S)-6m (71:29), because its configuration is more suitable

for the catalytic pocket of Λ-(S,S,S,S)-3g. Screening tertiary

alcohols also afforded high yields of 3-iodoacetals 6o–6s

with a high enantiomeric ratio of 92:8 er. Many functional

groups were found to be compatible with our reaction

system, including nitro groups (6c–6e), bromides (6g–6i),

chlorides (6l), esters (6n), and dienones (6q–6s).

SCHEME 2
Possible Catalytic Cycle and Transition States.
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3 Conclusion

We introduced new anionic salicylimine-based cobalt (III)

complexes with an additional element of chirality, which

improved their catalytic activities toward the electrophilic

iodination reactions of enol ethers. We attempted to

rationalize the reasons for the discrepancies between the

ratios of the mer isomers during the preparation of

analogous octahedral cobalt (III) complexes. In addition,

two iodination reactions of enol ethers have been studied.

Iodocyclization of enol ethers 1 furnished valuable spiro-fused

oxazoline derivatives 2 in high yields and good

enantioselectivities up to 90:10 er. A plausible mechanism

of this reaction was proposed. Asymmetric iodoacetalization

of enol ethers 4 was also promoted to afford various 3-

iodoacetals 6, derived from primary, secondary, and

tertiary alcohols, in high yields and enantiomeric ratios of

up to 92:8 er. More applications of these new anionic

salicylimine-based cobalt (III) complexes 3 are currently

under investigation.
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