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catabolism of heme, followed by production of biliverdin, free

iron and carbon monoxide (CO). HO�1 is a stress�responsive pro�

tein induced by various oxidative agents. Recent studies demon�

strate that the expression of HO�1 in response to different

inflammatory mediators may contribute to the resolution of

inflammation and has protective effects in several organs against

oxidative injury. Although the mechanism underlying the anti�

inflammatory actions of HO�1 remains poorly defined, both CO

and biliverdin/bilirubin have been implicated in this response. In

the gastrointestinal tract, HO�1 is shown to be transcriptionally

induced in response to oxidative stress, preconditioning and acute

inflammation. Recent studies suggest that the induction of HO�1

expression plays a critical protective role in intestinal damage

models induced by ischemia�reperfusion, indomethacin, lipo�

polysaccharide�associated sepsis, trinitrobenzene sulfonic acid,

and dextran sulfate sodium, indicating that activation of HO�1

may act as an endogenous defensive mechanism to reduce inflam�

mation and tissue injury in the gastrointestinal tract. In addition,

CO derived from HO�1 is shown to be involved in the regulation

in gastro�intestinal motility. These in vitro and in vivo data

suggest that HO�1 may be a novel therapeutic target in patients

with gastrointestinal diseases.
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IntroductionHeme oxygenase (HO) is the rate-limiting enzyme in heme
catabolism, a process which leads to the generation of equi-

molar amounts of biliverdin, free iron and carbon monoxide
(CO).(1) Heme oxygenase-1 (HO-1) is highly inducible by a vast
array of stimuli, including oxidative stress, heat shock, ultraviolet
radiation, ischemia-reperfusion, heavy metals, bacterial lipo-
polysaccharide (LPS), cytokines, nitric oxide (NO), and its
substrate, heme.(2) Heme oxygenae-2 (HO-2) is a constitutive
gene, expressed in neurons, endothelium and many other cell
types. Although both HO-1 and HO-2 catalyze the identical
biochemical reaction, there are some fundamental differences
between the two in genetic origin, primary structure, and mole-
cular weight. HO-1, once expressed under various pathological
conditions, has an ability to metabolize high amounts free heme to
produce high concentrations of its enzymatic by-products that can
influence various biological events, and has recently been the
focus of considerable medical interest.(3) HO-1 expression can
confer cytoprotection and anti-inflammation in gastric and intes-
tinal disease models. The cytoprotective effects of HO-1 are
related to end-products formation. The pharmacological applica-
tion of CO and biliverdin/bilirubin can mimic the HO-1-dependent
cytoprotection and anti-inflammation in many injury models. In
this review, we provide a comprehensive overview on the mole-
cular mechanisms underlying the regulation and function of HO-1

and its possible clinical implications, especially in gastrointestinal
diseases.

Regulation of HO�1 Expression

The transcriptional upregulation of the ho-1 gene, and sub-
sequent de novo synthesis of the corresponding protein, occurs in
response to elevated levels of its natural substrate heme and to a
multiplicity of endogenous factors including NO, cytokines, heavy
metals, heat shock, ultraviolet radiation, ischemia-reperfusion, and
growth factors.(4,5) Many agents that induce HO-1 are associated
with oxidative stress in that they (i) directly or indirectly promote
the intracellular generation of reactive oxygen species (ROS), (ii)
fall into a class of electrophilic antioxidant compounds that
includes plant-derived polyphenolic substances, or (iii) form
complexes with intracellular reduced glutathione and other thiols.
Two enhancer regions located at approximately –4 and –10 kb
relative to the ho-1 transcriptional start site have been identified
in the mouse gene. The dominant sequence element of the
enhancers is the stress-responsive elements (StRE), which is struc-
turally and functionally similar to the Maf-response element
(MARE) and the antioxidant-response element (ARE).(6) Several
transcriptional regulators bind these sequences, including nuclear
factor erythroid 2-related factor-2 (Nrf2) and BTB and CNC
homolog 1 (Bach1) (Fig. 1). Nrf2 contains a transcription-activation
domain and positively regulates HO-1 transcription, whereas
Bach1 competes with Nrf2 and represses transcription.(7–9) Under
normal conditions, Nrf2 localizes in the cytoplasm, where it
interacts with the actin-binding protein, Kelch-like ECH
associating protein 1 (Keap1), and is rapidly degraded by the
ubiquitin-proteasome pathway, which results in a lower accumu-
lation of Nrf2 in the nucleus and reduced transcription of the
HO-1 gene.(10) Namely, Keap1 acts as negative regulator of Nrf2.
Various stimuli, including electrophiles and oxidative stress,
liberate Nrf2 from Keap1, allowing Nrf2 to translocate into the
nucleus and to bind to stress- or antioxidant-response elements
(StRE/ARE). Nuclearly translocated Nrf2 provides immediate
transactivation of regulated encoding genes. In this sequence of
Nrf2 activation, the phosphorylation of Nrf2 is an important event
in the dissociation of Nrf2 from Keap1.(11) Furthermore, it has
been demonstrated that the oxidation of Keap1 cysteine residues
causes a change in the affinity of Keap1 with Nrf2, easily releasing
Nrf2.(12,13) Thus the Nrf2-Keap1 system is considered a major
defense mechanism that plays a key role in the induction of HO-1.
Bach1 under baseline condition forms a heterodimer with

small maf proteins that represses transcription of the ho-1 gene by
binding to MARE in the 5'-untranslated region of the ho-1 pro-
moter. Under conditions of excess heme, increased heme binding
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to Bach1 causes a conformational change and a decrease in DNA-
binding activity followed by nuclear export of Bach1, which in
turn leads to transcriptional activation of the ho-1 gene through
MARE. Heme also induced nuclear translocation of Nrf2, a
partner molecule for the family, and promotes stabilization of
Nrf2. Thus, an intracellular heme concentration displaces Bach1
from the MARE sequences by heme binding, which then permits
Nrf2 binding to a member of small maf proteins, ultimately
resulting in transcriptional activation of ho-1 genes.
The mitogen-activated protein kinase (MAPK)-activated sig-

naling pathway was also recognized as able to mediate the induc-
tion of HO-1 by extracellular stimuli. The phosphatidylinositol 3
kianse (PI3K)/Akt signaling pathway is also involved in HO-1
regulation.(14) Akt can directly phosphorylate HO-1 protein at Ser-
188 and modulate its activity. In addition to the transcriptional
regulation, a recent study has shown that HO-1 is subjected to
post-translational regulation by the ubiquitin-proteasome system
through an ER-associated degradation pathway.(15)

Reaction Products of HO�1 and Their Roles

It is most likely that the many properties including anti-
inflammation and cytoprotection afforded by HO-1 may be
attributed not only its own action but also to other actions of
three by-products of HO-1 activity. Especially in anti-inflamma-
tion, the degradation of the pro-oxidant heme by HO-1 itself, the
signaling action of CO, the antioxidant properties of biliverdin/
bilirubin, and the sequestration of free iron by ferritin could all
concertedly contribute to the anti-inflammatory effects observed
with HO-1.

Carbon monoxide (CO). CO is known to be an activator of
soluble guanylate cyclase (GC). Though CO is a weak activator
of GC in vitro with much lower potency and efficacy than NO,
application of CO to a number of different tissues results in
increased cGMP production, activation of type I cGMP-dependent
protein kinase and smooth muscle relaxation,(1) suggesting that in
vivo CO does modulate cGMP levels. The activation of cGMP-

dependent protein kinase I is one of the target of CO that acts
as smooth muscle relaxation by direct effects on the contractile
machinery as well as by altering Ca2+ homeostasis and voltage-
gated ion channel activity.(16) CO has also reported to activate K+

channels in a variety of tissues, including gastrointestinal tract.
Intracellular cGMP activate K+ channel and cGMP level is
increased by the treatment of exogenous CO. The antiapoptotic
potential of CO has been reported. Tumor necrosis factor-α (TNF-
α) induced apoptosis in mouse fibroblasts(17) and endothelial
cells(18) were inhibited by exogenous CO treatment. This anti-
apoptotic effect of CO is reported to depend on p38 MAPK
pathway(18) and its upstream MAPK kinase (MKK3).(19) On the
other hand, in Jurkatt T cells, CO treatment increased Fas/CD95-
induced apoptosis. Furthermore, HO-1 or CO cooperated with
NF-κB-dependent antiapoptotic genes to protect against TNF-α-
mediated endothelial cell apoptosis.(20) Anti-inflammatory effect
of CO has been reported using cell culture and animal models of
sepsis.(21) In macrophages, CO inhibited the production of pro-
inflammatory cytokines, such as TNF-α, interleukin-1β (IL-1β),
and macrophage inflammatory protein-1, through modulation of
p38 MAPK activation.(21) In human T cells, CO suppressed IL-2
secretion and clonal expansion via inhibition of ERK pathway.(22)

CO also inhibited the expression of pro-inflammatory enzymes,
such as inducible NO synthase (iNOS) and cyclo-xygenase-2, in
macrophages via the regulation of C/EBP and NF-κB activa-
tion.(23) In human colonic epithelial cells, the inhibitory effects of
CO on iNOS expression and IL-6 secretion were dependent on the
modulation of NF-κB, activator protein-1 (AP-1), C/EBP activa-
tion, and MAPK pathway.(24) Our group has recently shown the
beneficial effect of CO to colonic epithelial cell restitution.(25) It
has been suggested that submucosal myofibroblast has a crucial
role of epithelial cell restitution via TGF-β secretion. In our
experiments, CO induces fibroblast growth factor-15 (FGF15)
expression in mouse colonic myofibroblast via inhibition of
mir710, and FGF15 enhances the restitution of mouse colonic
epithelial cells.(25)

Biliverdin/bilirubin. Biliverdin and bilirubin both act as

Fig. 1. Model describing the regulation of ho�1 or other target genes by Bach1 and heme. Besides MafK, other Maf�related factors may also serve
as partners for Bach1. Bach1 occupies MARE enhancers to repress transcription of ho�1 gene under normal conditions. An increase in heme levels al�
leviates Bach1�mediated repression through inhibition of its DNA�binding activity and subsequent nuclear export, making MAREs available for acti�
vating Maf complexes including Nrf2.
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antioxidants in vitro and in vivo(26–28) and their increased local
concentrations after HO induction may be beneficial in protecting
several types of cells from injury. Bilirubin can scavenge peroxyl
radicals in vitro as effectively as α-tocopherol, which is regarded
as the most potent antioxidant against lipid peroxidation.(27)

Several epidemiological studies indicate that mild to moderately
elevated serum bilirubin levels are associated with a better out-
come in diseases involving oxidative stress.(29) High plasma
bilirubin levels in the general population are correlated with a
reduced risk of coronary heart disease.(30) Ossola et al.(31,32) demon-
strated that the administration of bilirubin completely inhibited
HO induction as well as oxidative stress parameters such as
glutathione and thiobarbituric acid-reactive substances in rat
liver exposed to ultraviolet A and copper sulfate. These results
suggest that bilirubin is a major contributor to cytoprotective
activities against oxidative stress. Otani et al.(33) demonstrated for
the first time that oxidative stress in sepsis quickly induced HO-1
in intestinal mucosa and that the bilirubin produced subsequently
acted as an antioxidant. They showed that the concentration of
bilirubin in the intestinal mucosa increased to slightly more than
twice control values at 3 and 5 h after LPS injection, then peaked
at 4.3-fold control values at 10 h. Vachharajani et al.(34) demon-
strated that biliverdin is as effective as hemin in attenuating
LPS-induced expression of endothelial selectins in the small and
large intestine, indicating that biliverdin itself or its subsequent
metabolite bilirubin may be more important than CO production in
mediating the beneficial anti-inflammatory effects of HO-1 in a
model of LPS-induced selectin upregulation. Hayashi et al.(35)

showed that the effects of HO-1 induction on leukocyte adhesion
could be mimicked by bilirubin, suggesting that this product of
HO reaction is an important contributor to the anti-inflammatory
effects of HO. However, no report has appeared on the measure-
ment of tissue levels of biliverdin/bilirubin in human gastro-
intestinal tract, and even experimental models have not clarified
the role of the biliverdin-bilirubin pathway in gastrointestinal
diseases.

Lessons from HO�1, Nrf2, and Bach1�Deficient Mice

In 1999, Yachie et al.(36,37) firstly reported the first case of human
HO-1 deficiency. This patient suffered persistent hemolytic
anemia and an abnormal coagulation/fibrinolysis system, which
were associated with elevated thrombomodulin and von Wille-
brand factor, indicating persistent endothelial damage. Mice with
a HO-1 null mutation have been shown to develop anemia
associated with hepatic and renal iron overload(38) and right
ventricular infarction after chronic hypoxia exposure.(39) Absence
of HO-1 exacerbates ischemia and reperfusion injury,(40,41) athero-
sclerotic lesion and vascular remoldeling,(42) chronic renovascular
hypertension and acute renal failure,(43) and end-organ damage and
mortality after lipopolysaccharide injection.(44) These findings
provide strong evidence to support that HO-1 has important
functions in normal physiology and pathophysiology, especially
associated with oxidative stress.
Nrf2 regulates the inducible expression of a group of detoxica-

tion enzymes, such as glutathione S-transferase and NAD(P)H:
quinone oxidoreductase, via antioxidant response elements. In
addition, Ishii et al.(45) have shown that Nrf2 also controls the
expression of a group of electrophile- and oxidative stress-
inducible proteins and activities, which includes HO-1, A170, and
peroxiredoxin using peritoneal macrophages from Nrf2-deficient
mice. Nrf2-deficient mice have an increased susceptibility to
dextran sulfate sodium-induced colitis.(46) It has been reported that
anti-inflammatory and anti-oxidative properties with the HO-1
induction by transforming growth factor-b1 or 15-deoxy-D(12,14)-
prostaglandin J2 are clearly cancelled in Nrf2-deficient mice.(47,48)

Mice lacking the gene for Bach1 have dramatic increases in
HO-1 expression in the heart, lung, liver, and gastro-intestinal

tract, indicating a role for Bach1 in tonic suppression of HO-1
transcription. Bach1 deficiency ameliorates lipopolysaccharide-
induced hepatic injury,(49) hyperoxic lung injury,(50) myocardial
injury induced by ischemia-reperfusion,(51) hypertensive cardio-
pathy,(52) spinal cord injury,(53) indomethacin-induced intestinal
injury,(54) and atherosclerosis in apolipoprotein E.(55) Recently,
we have investigated the role of Bach1 in the pathogenesis of
indomethacin-induced intestinal injury using Bach1-deficient
mice, which are kindly presented from Prof. Igarashi (Tohoku
University, Japan).(56) We have shown that the indomethacin-
induced intestinal injury is remarkably improved in Bach1-
deficient mice (Fig. 2), and that the increased expression of
inflammatory chemokines and myeloperoxidase activity in the
intestinal mucosa is suppressed in Bach1-deficient mice, respec-
tively.(54) In addition, these beneficial effects observed in Bach1-
deficient mice are reversed by the cotreatment with an HO-1
inhibitor, SnPP, indicating that these effects are mediated by the
HO-1 activity.

HO�1 Expression in Gastrointestinal Tract

We have investigated the expression of ho-1 mRNA and HO-1
protein in colon specimens obtained from patients with ulcerative
colitis.(57) The expression of ho-1 mRNA in inflamed colonic
mucosa is remarkably increased compared with normal controls.
Furthermore, in the inflamed mucosa of active ulcerative colitis,
HO-1 protein expression was also increased. These results suggest
that the increased expression of HO-1 protein is mainly derived
from the increase in transcription of ho-1 in the inflamed intestine.
In the histological study, we have confirmed the expression of
HO-1 in inflamed intestinal mucosa and that it was localized in
the inflammatory cells, mainly mononuclear cells in the colonic
submucosal layer, but not in epithelial cells. Some of the HO-1
positively stained cells were positively stained CD68 cells.
Maestrelli et al.(58) have reported that the majority of HO-1-
positive cells in the alveolar spaces were CD68-positive cells,
and Yoshiki et al.(59) have reported that HO-1 expression localized
in CD68-positive macrophages. Thus, the expression of HO-1
has been observed mainly in macrophages in various organs.
However, other reports regarding the localization of HO-1 in
human colonic mucosa have described HO-1 expression not only
in inflammatory cells but also in the epithelial cells.(60,61)

Recent studies showed that glutamine, the major fuel for entero-
cytes, induces HO-1 in intestinal mucosa of rats(62) as well as
humans.(63) Substantial expression of HO-1 after glutamine admin-
istration is observed in villous epithelial cells, crypts and muscular
layers. In rats, the protective effect of glutamine on the intestine
is associated with HO-1 induction in a model of ischemia-
reperfusion injury.(62) In human duodenal mucosa, HO-1 is consti-
tutively expressed in nearly all types of intestinal epithelial cells
and approximately 10% of lamina propria cells from the villi core,
whereas its expression is minimal in deep mucosa. Glutamine
increases intestinal HO-1 expression in both intestinal epithelial
cells and lamina propria cells, and this histological finding is
correlated with an increase in mRNA levels for HO-1. These
data suggest that the modulation of HO-1 expression by glutamine
may contribute to its protective effect on intestinal injury, together
with the previously reported reduction of proinflammatory cyto-
kines production.(64) Further investigation is required as to whether
glutamine may affect HO-1 expression under conditions of
intestinal inflammation, including inflammatory bowel disease.
As one example, HO-1 mRNA expression was reported to be not
affected in pouchitis.(65)

Roles of HO�1 in Gastric Diseases

It has been demonstrated that gastric cytoprotection induced by
polaprezinc,(66) eupatilin,(67) and ketamine(68) against noxious
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agents is mediated by HO-1 induction (Table 1). Recent our study
shows that lansoprazole, a gastric H+/K+ ATPase inhibitor, up-
regulates HO-1 expression in rat gastric epithelial cells, and the
up-regulated HO-1 has anti-inflammatory effects, and that
lansoprazole-induced HO-1 induction is mediated by the activa-
tion, phosphorylation and nuclear translocation of Nrf2 in
accompaniment with the dissection of oxidized Keap1.(69,70) In this
study, we firstly demonstrated that oxidation of Keap1 protein is
crucial in the induction of HO-1 by lansoprazole.
In addition to cytoprotection by HO-1, it has been shown that

HO-1 exerts a modulatory role on gastric smooth muscle excit-
ability via CO production.(71,72) Using a diabetic gastroparesis
model, Choi et al.(72,73) have demonstrated that Kit expression in
interstitial cells of Cajal is lost during diabetic gastroparesis due to
increased levels of oxidative stress caused by low levels of HO-1,
and that CD206(+) M2 macrophages that express HO1 appear to
be required for prevention of diabetes-induced delayed gastric
emptying. Because lansoprazole induces HO-1 in macrophages,(74)

it should be investigated whether lansoprazole could reverse
delayed gastric emptying in diabetic mice via the induction of HO-1.

Roles of HO�1 in Small Intestinal Diseases

Three reports are available on the use of HO-1 inducers
(lansoprazole, sulforafane, and Bach1-deficiency) in indomethacin-
induced gastric mucosal injury(54,75,76) (Table 1). Higuchi et al.(75)

have shown that lansoprazole inhibits indomethacin-induced
intestinal injury in rats and that the inhibition is reversed by SnPP,
an HO-1 inhibitor. Because CORM, a CO donor, also ameliorates
these injury, cytoprotective effects of HO-1, in part, exerts via
CO-dependent manner. Many reports have confirmed the anti-
inflammatory and cytoprotective effects of HO-1 inducers on
small intestinal injuries induced by ischemia-reperfusion,(77–83)

lipopolysaccharide,(84–86) radiation,(87–89) and burn shock.(90–93) Pang
et al.(86,94) have used live Lactococcus lactis secreting bioactive
HO-1 to treat intestinal mucosal injury induced by lipopoly-
saccharide in rats. Intragastric administration of HO-1-secreting
Lactococcus lactis strain led to bioactive delivery of HO-1 at

intestinal mucosa and significantly decreased mucosal damage,
myeloperoxidase activity, bacterial translocation, and tumor
necrosis factor-α levels when compared with rats treated with the
wild-type strain.
Among products of HO-1, CO may be an important mediator

of the host defense response to sepsis.(95) Chung et al.(95) have
demonstrated that targeting HO-1 to smooth muscle cells and
myofibroblasts of blood vessels and bowel ameliorates sepsis-
induced death associated with Enterococcus faecalis in associa-
tion with enhancement of bacterial clearance by increasing phago-
cytosis and the endogenous antimicrobial response, and that
injection of a CO-releasing molecule into wild type mice increases
phagocytosis and rescues HO-1-deficient mice from sepsis-
induced lethality. More interstingly, it has been reported that
CO-releasing molecule ameliorates postoperative ileus and
muscularis inflammation, and that these protective effects are,
at least in part, mediated through induction of HO-1, in a p38-
dependent manner, as well as reduction of ERK1/2 activation.
These findings shown here may be of significant importance in
clinical small bowel transplantation, post-operative condition for
small intestine, or sepsis-related intestinal failure.

Role of HO�1 in Large Intestinal Diseases

Wang et al.(96) used a rat model of inflammatory bowel disease
induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) to investi-
gate whether the expression of HO-1 is an endogenous mechanism
responsible for host defense against inflammatory injury in
colonic tissue. They demonstrated that HO activity and HO-1 gene
expression increased markedly after TNBS induction, and that
administration of tin mesoporphyrin (SnMP), an HO inhibitor,
potentiated the colonic damage as well as decreased HO-1 activity.
These results indicate that HO-1 plays a protective role in the
colonic damage induced by TNBS enema. Using a dextran sulfate
sodium (DSS)-induced colitis model of mice, we have demon-
strated that HO-1 mRNA is markedly induced in inflamed colonic
tissue, whereas HO-2 mRNA is constitutively expressed.(97) Co-
administration with ZnPP, an HO inhibitor, also enhanced

Fig. 2. (A) Effect of Bach1 deficiency on ulcer index in the intestinal mucosa treated with indomethacin. Data are expressed as means ± SEM of five
to seven mice. (B) Macroscopic findings of the small intestine in mice treated with indomethacin. The administration of indomethacin provoked
multiple erosions in the small intestine in wild type mice. On the other hand, in Bach1�deficient mice, the number and the severity of legions were
clearly diminished.
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Table 1. Induction of heme oxygenase�1 inhibits gastrointestinal diseases

Type of experimental models HO�1 induction Mechanism References

Stomach

gastroparesis in diabetic mice CD206(+)/HO1(+) M2 macrophage protection for Kit cells Choi et al. 2010

HCl�induced acute gastric 
mucosal lesions

polaprezinc cytoprotection Ueda et al. 2009

gastric mucosal cells lansoprazole anti�inflammatory Takagi et al. 2009

endothelial cells/macrophages lansoprazole phosphatidylinositol 3�kinase dependecnt 
cytoprotection

Schulz�Geske et al. 2009

diabetic gastroparesis hemin protection for Cajal cells Choi et al. 2008

H2O2�induced cell injury eupatilin cytoprotection Choi et al. 2008

LPS�induced gastricl injury ketamine NF�kappaB ↓, AP�1 ↓, iNOS ↓ Helmer et al. 2006

gastric smooth muscle 
excitability

CoCl2 CO�dependent Kadinov et al. 2002

Small intestine

Ischemia�reperfusion ischemic preconditioning Mallick et al. 2010

indomethacin�induced 
intestinal injury

Bach1−/− inflammatory chemokine ↓, MPO ↓ Harusato et al. 2009

indomethacin�induced cell injury sulforaphane cytoprotection Yen et al. 2009

indomethacin�induced 
intestinal injury

lansoprazole cytoprotection Higuchi et al. 2009

hemorrhagic shock�induced 
intestinal injury

glutamine anti�inflammatory, cytoprotection Umeda et al. 2009

postoperative ileus CORM p38�dependent pathway ↑, ERK1/2 ↓ De Backer et al. 2009

hemorrhagic shock�induced 
gastric mucosal injury

HO1�secreting Lactococcus lactis anti�inflammatory, cytoprotection Pang et al. 2009

feline ileal smooth muscle cells eupatilin ERK and Nrf2 signaling Song et al. 2008

lipopolysaccharide�induced 
intestinal injury

HO1�secreting Lactococcus lactis anti�inflammatory, intestinal barrier ↑ Pang et al. 2008

neutrophil�mediated intestinal 
damage

cobalt protoporphyrin IX chloride neutrophil O2� production ↓ Li et al. 2008

trauma�hemorrhage�induced 
intestinal injury

estrogen p38 MAPK�dependent pathway Hsu et al. 2008

sepsis HO�1 Tg mice CO�dpendent host defense response ↑ Chung et al. 2008

ischemia�reperfusion injury Cobalt protoporphyrin (CoPP) cytoprotection Wasserberg et al. 2007

LPS�induced intestinal injury Intestinal preconditioning bilirubin�dependent cytoprotection Tamion et al. 2007

burn injury�induced impaired 
intestinal transit

hemin iNOS, COX�2, IL�1β ↓ Gan et al. 2007

endotoxin�shock model hemin anti�inflammatory Tamion et al. 2006

ischemia�reperfusion injury pyrrolidine dithiocarbamate leucocyte�endothelial interactions ↓ Mallick et al. 2006

radiation�induced intestinal 
damage

glutamate NF�kappaB ↓ Giris et al. 2006

radiation�induced intestinal 
damage

octreotide anti�inflammatory Abbasoglu et al. 2006

ischemia�reperfusion injury hypothermia cytoprotection Sakamoto et al. 2005

ischemia�reperfusion injury hemin MPO ↓ Attuwaybi et al. 2004

impaired intestinal transit after 
gut I/R

Hypertonic saline anti�inflammatory Attuwaybi et al. 2004

hemin intestinal cell cycle progression Uc et al. 2003

ischemia�reperfusion injury hypothermia cytoprotection Attuwaybi et al. 2003

ischemia�reperfusion injury preconditioning cytoprotection Tamion et al. 2002

Large intestine

DSS�induced colitis hemin (i.p.) Treg ↑, IL�17 ↓, apoptosis ↓ Zhong et al. 2010

DSS�induced colitis tranilast (enema) IFN�g ↓, IL�6 ↓ Sun et al. 2010

colitis�related colon 
carcinogenesis

4'�geranyloxy�ferulic acid modulating proliferation, oxidative stress ↓ Miyamoto et al. 2008

TNBS�induced colitis heme, cadmium chloride damage ↓, MPO ↓ Varga et al. 2007

TNBS�induced colitis 2',4',6'�Tris(methoxymethoxy) chalcone nuclear translocation of NF�kappaB ↓ Lee et al. 2007

TNBS�induced colitis glutamine antioxidant, antiapoptotic, anti�inflammatory Giris et al. 2007

TNBS�induced colitis octreotide NF�kappaB ↓ Erbil et al. 2007

TNBS�induced colitis gliotoxin NF�kappaB ↓ Jun et al. 2006

DSS�induced colitis cobalt�protoporphyrin biliverdin�dependent Berberat et al. 2005

TNBS�induced colitis CO anti�inflammatory Hegazi et al. 2005

TNBS�induced colitis bolinaquinone (BQ) petrosaspongiolide 
M (PT)

NF�kappaB ↓ Busserolles et al. 2005
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intestinal inflammation and increased the disease activity index as
determined by a calculated score based on changes in body
weight, stool consistency, and intestinal bleeding.
Recent investigation has shown that upregulation of HO-1 by

several HO-1 inducers significantly reduces the intestinal injuries
induced by DSS(98–100) or TNBS(101–107) (Table 1). In these studies,
HO-1 inducers increase HO-1 expression in intestinal mucosa, and
ameliorate mucosal injury as well as inflammatory cell accumula-
tion by decreasing infiltrating neutrophils and lymphocytes via
the inhibition of NF-κB-dependent proinflammatory cytokines. To
further assess the anti-inflammatory mechanisms, Zhong et al.(100)

have examined whether hemin enhanced the proliferation of
Treg cells and suppressed the production of interleukin (IL)-17
in a DSS-colitis model. Flow cytometry analysis has revealed
that hemin markedly expands the CD4+ CD25+ Foxp3+ Treg
population and attenuates IL-17 and TH17-related cytokines. It
has been also demonstrated that HO-1 exerts immunoregulatory
effects by modulating Treg cell function,(108) and that HO-1
activity in antigen-presenting cells is important for Treg-mediated

suppression, providing an explanation for the apparent defect in
immune regulation in HO-1-deficient mice.(109)

Conclusion

The biological significance of HO-1 up-regulation in gastro-
intestinal inflammation remains to be fully elucidated. However,
there is no doubt that CO derived from HO-1 exerts significant
effects on many pathways of cellular metabolism. In inflamed
intestinal cells CO may inhibit the inflammatory response, by
consequently influencing the synthesis of cytokines, expression of
adhesion molecules, and cell proliferation. Although the mecha-
nisms underlying HO-1 activity on gene expression are not well
known, the results obtained in recent years have demonstrated its
importance in modulation of the inflammatory reaction. Recent
experimental studies clearly demonstrated that HO-1 expression
is a self-defense mechanism against inflammation. These data
suggest that HO-1 is a possible therapeutic target in several kinds
of gastrointestinal diseases.
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