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ABSTRACT
A series of dithiocarbamate esters of parthenolide (PTL) was designed, synthesised, and evaluated for their
anti- acute myelogenous leukaemia (AML) activities. The most promising compound 7l showed greatly
improved potency against AML progenitor cell line KG1a with IC50 value of 0.7lM, and the efficacy was
8.7-folds comparing to that of PTL (IC50¼ 6.1lM). Compound 7l induced apoptosis of total primary
human AML cells and leukaemia stem cell (LSCs) of primary AML cells while sparing normal cells.
Furthermore, 7l suppressed the colony formation of primary human leukaemia cells. Moreover, compound
12, the salt form of 7l, prolonged the lifespan of mice in two patient-derived xenograft models and had
no observable toxicity. The preliminary molecular mechanism study revealed that 7l-mediated apoptosis is
associated with mitogen-activated protein kinase signal pathway. On the basis of these investigations, we
propose that 12 might be a promising drug candidate for ultimate discovery of anti-LSCs drug.
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Introduction

Acute myelogenous leukaemia (AML) is a malignant disease char-
acterised by an aberrant accumulation of immature myeloid
haematopoietic cells1. AML is the most common form of acute
leukaemia in adults and constitutes approximately 80% of cases2.
Although current treatments could significantly improve the rate
of remission in AML, more than 50% relapse with resistant disease;
it is still a main challenge for AML chemotherapy3. Leukaemia
stem cells (LSCs) are a group of leukemic cells with self-renewal
ability and capable of producing heterogeneous leukaemia cell
populations4,5. It has been considered to play significant role in
the initiation and relapse of acute leukaemia6. Therefore, targeting
LSCs is considered to be an effective strategy for treatment of
AML and might cure AML7–10. However, LSCs are refractory to clin-
ical used chemotherapy drugs, such as nucleoside analogues (e.g.
cytosine arabinoside) and anthracyclines (e.g. idarubicin and
daunorubicin)11,12. Therefore, effective agents that can selectively
eradicate LSCs are urgently needed for the development of new
therapies for treatment of leukaemia.

Parthenolide (PTL, 1, Figure 1), a sesquiterpene lactone origin-
ally separated from the shoots of Feverfew (Tanacetum parthe-
nium), was reported to induce apoptosis of cancer stem cell (CSC),
including LSCs, breast cancer stem cells, and prostate tumour-ini-
tiating cells13–17. PTL was shown to inhibit NF-jB, activate p53
and overturn the redox balance in LSCs13,18–23. However, the
instability in both acidic and basic conditions and poor solubility

limited the clinical application of PTL24. DMAPT (2, Figure 1), a
dimethylamine adduct of PTL, was in clinical trial for treatment of
AML, acute lymphoblastic leukaemia, and chronic lymphocytic
leukaemia in the United Kingdom in 200925–27. The other PTL
derivative Dimethylaminomicheliolide (DMAMCL) (3) is conducting
clinical trials in Australia for the treatment of gliomas28.

Dithiocarbamates have received considerable attention for their
excellent biological activities, such as anti-fungal, anti-bacterial,
and carbonic anhydrase inhibiting activities29–32. It has been
reported that many compounds containing the dithiocarbamate
moiety exhibited anticancer activity in recent years33–39.
Disulphiram (DSF, 4, Figure 2) is used as an anti-alcoholism drug
in clinical practice40. It was reported that DSF could inhibit NF-jB
activity and enhance the anticancer activity of cytotoxic drugs41,42.
DSF or DSF/copper complex exhibited inhibitory effect on a var-
iety of cancer cells43–47. More importantly, they showed the ability
to eliminate LSCs and breast cancer stem-like cells14,46–48. Clinical
trials of DSF for treatment of multiple malignant gliomas are
ongoing in Greece49. DSF’s analogues, diethyldithiocarbamate
(DETC, 5, Figure 2), and ammonium pyrrolidinedithiocarbamate
(PDTC, 6) could inhibit breast cancer stem cells via NF-
jB pathway14.

Mitogen-activated protein kinase (MAPK) is a group of serine/
threonine kinases in vivo, which can accelerate the proliferation of
tumour cells and inhibit their apoptosis after being stimulated by
external stimuli50. MAPK signal pathway abnormality is one of the
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reasons that affect the emergence and development of tumour
cells. The abnormal activation of the MAPK pathway is also
involved in the production, development, and metastasis of cancer
stem cells, including LSCs51, breast cancer stem cells52, liver cancer
stem cells53, prostate cancer stem cells54, colon cancer cells55, and
glioblastoma multiforme stem cells56. Therefore, MAPK pathway is
considered to be an important target for ablating CSCs57–60.

Inspired by the above-mentioned findings and in continuation
with our previous efforts to find the new PTL-based anti-LSCs can-
didates61–65, herein, we report the design (Figure 3) and synthesis
of a series of dithiocarbamate esters of PTL, and evaluation of
their anti-AML activities in vitro and in vivo. The preliminary
molecular mechanism of the most promising compound 7l was
also investigated.

Materials and methods

Chemistry

Unless otherwise mentioned, all reactions were carried out under
a nitrogen atmosphere with dry solvents under anhydrous condi-
tions. The used solvents were purified and dried according to
common procedures. Reactions were monitored by thin-layer

chromatography carried out on 0.25mm Tsingdao silica gel plates (60F-
254). Visualisation was achieved using UV light, phosphomolybdic acid
in ethanol or potassium permanganate in water, each followed by heat-
ing. Tsingdao silica gel (60, particle size 0.040–0.063mm) was used for
flash column chromatography. Reagents were purchased at the highest
commercial quality and used without further purification, unless other-
wise stated. NMR spectra were recorded with a 400MHz (1H: 400MHz,
13C: 100MHz) spectrometer and referenced to the solvent peak for
CDCl3, CD3OD, and DMSO-d6. Data are reported as follows: chemical
shift, multiplicity (s¼ singlet, d¼doublet, t¼ triplet, q¼quartette,
br.¼broad, m¼multiplet), coupling constants, and integration. All
NMR copies are shown in Supplemental data. The purity of the final
compounds was determined to be �95% by means of analytical high
pressure liquid chromatography (HPLC) with an ODS-C18 column
(4.6� 150mm, 5lm) eluted at 1ml/min with Milli-Q water and CH3CN.

General procedure for the synthesis of compounds 7a–7m

After a mixture of corresponding amine or amine hydrochloride
(1.2 eq), triethylamine (TEA) (1.1 eq) and CS2 (1.5 eq) in dichloro-
methane (DCM) and menthol (4/1) was stirred at 0 �C for 30min,
PTL (1 eq) was added. The reaction was stirred at room tempera-
ture for 2–8 h and quenched by adding water. The resulting

Figure 1. Structures of PTL (1), DMAPT (2), and DMAMCL (3).

Figure 2. Dithiocarbamates that can selectively ablate CSCs.

Figure 3. Design of compounds 7a–7o.
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mixture was extracted with DCM for three times. The combined
organic layer was dried over anhydrous Na2SO4, concentrated
under reduced pressure, and purified by column chromatography
on silica gel to give compounds 7a–7m.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,10a,
10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-yl)
methyl methylcarbamodithioate (7a). White amorphous solid (yield:
71%, purity: 95%). 1H NMR (400MHz, CDCl3) d 8.05 (d, J¼ 4.2Hz,
1H, N-H), 5.12 (d, J¼ 10.5Hz, 1H, H-1), 3.84 (t, J¼ 8.8Hz, 1H, H-6),
3.81–3.76 (m, 1H, H-13), 3.67 (dd, J¼ 14.5, 3.6 Hz, 1H, H-13), 3.18 (d,
J¼ 4.5Hz, 3H, N-CH3), 2.78 (dt, J¼ 11.9, 4.5Hz, 1H, H-11), 2.73 (d,
J¼ 8.9Hz, 1H, H-5), 2.33 (dd, J¼ 12.8, 4.7Hz, 1H, H-7), 2.25–2.02 (m,
6H, CH2), 1.64 (s, 3H, H-14), 1.59 (d, J¼ 9.1Hz, 1H, CH2), 1.24 (d,
J¼ 8.1Hz, 3H, H-15), 1.22–1.13 (m, 1H, CH2).

13C NMR (100MHz,
CDCl3) d 197.4 (C-16), 176.4 (C-12), 134.8 (C-10), 124.9 (C-1), 82.7
(C-6), 66.1 (C-5), 62.1 (C-4), 48.4 (C-11), 47.0 (C-7), 41.0 (C-9), 36.5
(CH2), 34.4 (CH2), 32.6 (C-13), 29.9 (CH2), 24.0 (C-2), 17.2 (C-14),
16.9 (C-15). HRMS (ESI) calcd for C17H26NO3S2 [MþH] þ 356.1349,
found 356.1348.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl dimethylcarbamodithioate (7b). White amorph-
ous solid (yield: 85%, purity: 95%). 1H NMR (400MHz, CDCl3) d
5.13 (d, J¼ 9.9 Hz, 1H, H-1), 3.88–3.70 (m, 3H, H-6, -13), 3.54 (s, 3H,
N-CH3), 3.38 (s, 3H, N-CH3), 2.81 (ddd, J¼ 12.1, 6.1, 4.3 Hz, 1H, H-
11), 2.69 (d, J¼ 8.9 Hz, 1H, H-5), 2.30–2.24(m, 3H, H-7, CH2),
2.18–2.03 (m, 4H, CH2), 1.66 (s, 3H, H-14), 1.66–1.58 (m, 1H, CH2),
1.26 (s, 3H, H-15), 1.17 (td, J¼ 13.0, 5.9 Hz, 1H, CH2);

13C NMR
(100MHz, CDCl3) d 196.4 (C-16), 175.9 (C-12), 134.9 (C-10), 125.0
(C-1), 82.4 (C-6), 66.2 (C-5), 61.7 (C-4), 47.9 (N-CH3), 47.7 (N-CH3),
45.9 (C-11), 41.6 (C-7), 41.1 (C-9), 36.6 (CH2), 35.3 (C-13), 30.0 (CH2),
24.1 (CH2), 17.2 (C-14), 17.0 (C-15); HRMS (ESI) calcd for
C18H27NNaO3S2 [MþNa] þ 392.1325, found 392.1323.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl diethylcarbamodithioate (7c). White amorphous
solid (yield: 81%, purity: 95%). 1H NMR (400MHz, CDCl3) d 5.11 (d,
J¼ 10.1Hz, 1H, H-1), 4.07–3.97 (m, 2H, N-CH2), 3.89–3.72 (m, 5H,
H-6, 13, N-CH2), 2.87–2.78 (m, 1H, H-11), 2.67 (d, J¼ 8.9 Hz, 1H, H-
5), 2.43–2.22 (m, 3H, H-7, CH2), 2.19–2.05 (m, 4H, CH2), 1.67 (s, 3H,
H-14), 1.66–1.58 (m, 1H, CH2), 1.32–1.23 (m, 9H, H-15, N-CH2CH3),
1.18 (td, J¼ 12.6, 5.5 Hz, 1H, CH2);

13C NMR (100MHz, CDCl3) d
194.8 (C-16), 175.9 (C-12), 135.0 (C-10), 124.9 (C-1), 82.4 (C-6), 66.4
(C-5), 61.7 (C-4), 50.1 (C-11), 48.0 (N-CH2), 47.9 (N-CH2), 47.0 (C-7),
41.2 (C-9), 36.7 (CH2), 34.9 (C-13), 30.1 (CH2), 24.2 (CH2), 17.3 (C-
14), 17.0 (C-15), 12.7 (N-CH2CH3), 11.7 (N-CH2CH3); HRMS (ESI)
calcd for C20H32NO3S2 [MþH] þ 398.1818, found 398.1820.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl dipropylcarbamodithioate (7d). White amorph-
ous solid (yield: 75%, purity: 95%). 1H NMR (400MHz, CDCl3) d
5.11 (d, J¼ 9.9 Hz, 1H, H-1), 3.97–3.86 (m, 2H, N-CH2), 3.83 (dt,
J¼ 12.6, 6.0 Hz, 3H, H-6, -13), 3.70–3.61 (m, 2H, N-CH2), 2.82 (dt,
J¼ 12.0, 5.1 Hz, 1H, H-11), 2.67 (d, J¼ 8.9 Hz, 1H, H-5), 2.44–2.22
(m, 3H, H-7, CH2), 2.11 (dt, J¼ 18.4, 11.1 Hz, 4H, CH2), 1.74 (dd,
J¼ 14.8, 7.4 Hz, 4H, N-CH2CH2CH3), 1.67 (s, 3H, H-14), 1.66–1.58 (m,
1H, CH2), 1.27 (s, 3H, H-15), 1.24–1.13 (m, 1H, CH2), 0.94 (dd,
J¼ 16.7, 7.5 Hz, 6H, N-CH2CH2CH3);

13C NMR (100MHz, CDCl3) d
195.5 (C-16), 175.9 (C-12), 135.0 (C-10), 125.0 (C-1), 82.4 (C-6), 66.5
(C-5), 61.7 (C-4), 57.4 (C-11), 54.4 (C-7), 47.92 (N-CH2), 47.90 (N-
CH2), 41.3 (C-9), 36.8 (CH2), 35.0 (C-13), 30.2 (CH2), 24.2 (CH2), 20.9
(N-CH2CH2CH3), 19.8 (N-CH2CH2CH3), 17.3 (C-14), 17.1 (C-15), 11.3

(2 C, N-CH2CH2CH3); HRMS (ESI) calcd for C22H36NO3S2 [MþH]þ

426.2131, found 426.2129.
((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-

2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl dibutylcarbamodithioate (7e). White amorphous
solid (yield: 80%, purity: 97%). 1H NMR (400MHz, CDCl3) d 5.10 (d,
J¼ 10.5 Hz, 1H, H-1), 4.01–3.90 (m, 2H, N-CH2), 3.89–3.76 (m, 3H,
H-6, -13), 3.74–3.61 (m, 2H, N-CH2), 2.87–2.76 (m, 1H, H-11), 2.65
(d, J¼ 8.9 Hz, 1H, H-5), 2.42–2.28 (m, 2H, H-7, CH2), 2.28–2.20 (m,
1H, CH2), 2.18–2.03 (m, 4H, CH2), 1.73–1.57 (m, 8H, N-
CH2CH2CH2CH3), 1.34 (dt, J¼ 14.3, 7.1 Hz, 4H, H-14, CH2), 1.26 (s,
3H, H-15), 1.17 (td, J¼ 13.0, 5.8 Hz, 1H, CH2), 0.93 (dd, J¼ 12.0,
7.1 Hz, 6H, N-CH2CH2CH2CH3);

13C NMR (100MHz, CDCl3) d 195.2
(C-16), 175.9 (C-12), 135.0 (C-10), 124.9 (C-1), 82.4 (C-6), 66.4 (C-5),
61.6 (C-4), 55.5 (C-11), 52.6 (C-7), 47.9 (N-CH2), 47.8 (N-CH2), 41.2
(C-9), 36.7 (CH2), 34.9 (C-13), 30.2 (CH2), 29.6 (CH2), 28.5 (CH2), 24.1
(CH2), 20.1 (2 C, N-CH2CH2CH2CH3), 17.3 (C-14), 17.0 (C-15), 13.9
(N-CH2CH2CH2CH3), 13.8 (N-CH2CH2CH2CH3); HRMS (ESI) calcd for
C24H40NO3S2 [MþH]þ 454.2444, found 454.2450.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl butyl(methyl)carbamodithioate (7f). White
amorphous solid (yield: 89%, purity: 99%). 1H NMR (400MHz,
CDCl3, rotamer) d 5.13 (d, J¼ 10.7Hz, 1H, H-1), 4.12–4.00 (m, 1H,
H-6), 3.89–3.69 (m, 4H, H-13, N-CH2), 3.49 (s, 1.5 H, N-CH3), 3.34 (s,
1.5 H, N-CH3), 2.82 (dt, J¼ 11.9, 5.1 Hz, 1H, H-11), 2.68 (d,
J¼ 8.9 Hz, 1H, H-5), 2.45–2.21 (m, 3H, H-7, CH2), 2.18–2.02 (m, 4H,
CH2), 1.71–1.61 (m, 6H, H-14, CH2), 1.43–1.31 (m, 2H, CH2), 1.27 (s,
3H, H-15), 1.19 (td, J¼ 13.0, 5.8 Hz, 1H, CH2), 0.95 (td, J¼ 7.3,
2.8 Hz, 3H, N-CH2CH2CH2CH3);

13C NMR (100MHz, CDCl3) d 196.2
(C-16), 195.7 (C-16), 175.9 (C-12), 135.0 (C-10), 125.0 (C-1), 82.4 (C-
6), 66.4 (C-5), 61.7 (C-4), 57.5 (C-11), 54.6 (C-7), 48.01 (N-CH2),
47.96 (N-CH2), 47.90 (N-CH3), 47.85 (N-CH3), 44.2 (CH2), 41.2 (CH2),
39.8 (CH2), 36.7 (N-CH2CH2CH2CH3), 35.1 (N-CH2CH2CH2CH3), 30.2
(CH2), 29.6 (CH2), 28.6 (CH2), 24.2 (CH2), 20.1 (CH2), 17.3 (C-14),
17.1 (C-15), 14.0 (N-CH2CH2CH2CH3), 13.9 (N-CH2CH2CH2CH3);
HRMS (ESI) calcd for C21H34NO3S2 [MþH] þ 412.1975,
found 412.1981.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl (2-(dimethylamino)ethyl)carbamodithioate (7g).
White amorphous solid (yield: 77%, purity: 95%). 1H NMR
(400MHz, CDCl3) d 8.15 (br m, 1H, NH), 5.12 (d, J¼ 10.2 Hz, 1H, H-
1), 3.84–3.46 (m, 5H, H-6, -13, N-CH2), 2.82–2.72 (m, 1H, H-11), 2.70
(d, J¼ 8.9 Hz, 1H, H-5), 2.52 (t, J¼ 6.2 Hz, 2H, (CH3)2NCH2) ,
2.42–2.24 (m, 3H, H-7, CH2), 2.23 (s, 6H, N-CH3), 2.17–2.01 (m, 4H,
CH2), 1.66 (s, 3H, H-14), 1.65–1.55 (m, 1H, CH2) , 1.26 (s, 3H, H-15),
1.17 (td, J¼ 12.9, 5.8 Hz, 1H, CH2);

13C NMR (100MHz, CDCl3) d
196.6 (C-16), 175.9 (C-12), 134.8 (C-10), 125.0 (C-1), 82.5 (C-6), 66.2
(C-5), 61.7 (C-4), 56.2 (CH3)2NCH2, 48.2 (C-11), 47.7 (C-7), 45.0 (N-
CH3), 44.9 (N-CH3), 44.8 (N-CH2), 41.2 (CH2), 36.7 (CH2), 32.9 (C-13),
30.0 (CH2), 24.1 (CH2), 17.3 (C-14), 17.0 (C-15); HRMS (ESI) calcd for
C20H33N2O3S2 [MþH]þ 413.1927, found 413.1935.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-
2,3,3a,4,5,8,9,9a,10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-
b]furan-3-yl)methyl pyrrolidine-1-carbodithioate (7h). White amorph-
ous solid (yield: 87%, purity: 96%). 1H NMR (400MHz, CDCl3) d
5.15 (d, J¼ 10.6 Hz, 1H, H-1), 3.93 (t, J¼ 6.9 Hz, 2H, N-CH2),
3.88–3.74 (m, 3H, H-6, -13), 3.74–3.63 (m, 2H, N-CH2), 2.86–2.76 (m,
1H, H-11), 2.71 (d, J¼ 8.9 Hz, 1H, H-5), 2.45–2.24 (m, 3H, H-7, CH2),
2.20–2.04 (m, 6H, CH2), 2.03–1.93 (m, 2H, CH2), 1.68 (s, 3H, H-14),
1.63 (s, 1H, CH2), 1.27 (s, 3H, H-15), 1.26–1.14 (m, 1H, CH2);

13C
NMR (100MHz, CDCl3) d 192.1 (C-16), 175.9 (C-12), 135.0 (C-10),
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125.1 (C-1), 82.5 (C-6), 66.3 (C-5), 61.7 (C-4), 55.6 (C-11), 50.8 (C-7),
48.0 (N-CH2), 48.0 (N-CH2), 41.2 (CH2), 36.8 (CH2), 34.1 (C-13), 30.1
(CH2), 26.1 (CH2), 24.3 (N-CH2CH2), 24.2 (N-CH2CH2), 17.3 (C-14),
17.0 (C-15); HRMS (ESI) calcd for C20H30NO3S2 [MþH]þ 396.1662,
found 396.1667.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl piperidine-1-carbodithioate (7i). White amorphous solid
(yield: 83%, purity: 95%). 1H NMR (400MHz, CDCl3) d 5.12 (d,
J¼ 9.9 Hz, 1H, H-1), 4.27 (d, J¼ 29.0 Hz, 2H, H-13), 3.98–3.75 (m,
5H, H-6, N-CH2), 2.82 (ddd, J¼ 12.0, 6.1, 4.3 Hz, 1H, H-11), 2.68 (d,
J¼ 8.9 Hz, 1H, H-5), 2.39–2.22 (m, 3H, H-7, CH2), 2.11 (dq, J¼ 12.1,
8.3 Hz, 4H, N-CH2CH2), 1.73–1.62 (m, 10H, H-14, CH2), 1.27 (d,
J¼ 6.1 Hz, 3H, H-15), 1.21–1.13 (m, 1H, CH2);

13C NMR (100MHz,
CDCl3) d 194.9 (C-16), 175.9 (C-12), 135.0 (C-10), 125.0 (C-1), 82.4
(C-6), 66.4 (C-5), 61.7 (C-4), 53.7 (C-11), 51.7 (C-7), 48.1 (N-CH2),
47.9 (N-CH2), 41.3 (CH2), 36.8 (CH2), 34.9 (C-13), 30.1 (CH2), 26.3
(CH2), 25.7 (N-CH2CH2CH2), 24.4 (N-CH2CH2), 24.2 (N-CH2CH2), 17.3
(C-14), 17.1 (C-15); HRMS (ESI) calcd for C21H32NO3S2 [MþH]þ

410.1818, found 410.1817.
((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,

10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl 4-methylpiperazine-1-carbodithioate (7j). White amorph-
ous solid (yield: 79%, purity: 97%). 1H NMR (400MHz, CDCl3) d
5.14 (d, J¼ 9.9 Hz, 1H, H-1), 4.35 (d, J¼ 31.6 Hz, 2H, N-
CH2CH2NCH3), 4.00 (s, 2H, H-13), 3.83 (qd, J¼ 14.1, 5.2 Hz, 3H, H-6,
N-CH2), 2.82 (ddd, J¼ 12.0, 6.4, 4.1 Hz, 1H, H-11), 2.69 (d,
J¼ 8.9 Hz, 1H, H-5), 2.49 (s, 4H, H-7, CH2), 2.43–2.23 (m, 6H, N-
CH2CH2NCH3, CH2), 2.11 (dt, J¼ 18.0, 11.0 Hz, 4H, N-CH3, CH2), 1.68
(s, 3H, H-14), 1.65–1.59 (m, 1H, CH2), 1.27 (s, 3H, H-15), 1.23–1.13
(m, 1H, CH2);

13C NMR (100MHz, CDCl3) d 196.3 (C-16), 175.8 (C-
12), 134.9 (C-10), 125.1 (C-1), 82.5 (C-6), 66.4 (C-5), 61.7 (C-4), 54.6
(2 C, N-CH2CH2NCH3), 51.9 (C-11), 50.0 (C-7), 48.1 （ N-
CH2CH2NCH3） , 47.8（ N-CH2CH2NCH3） , 45.7（ N-CH3） , 41.2
(CH2), 36.7 (CH2), 34.9 (C-13), 30.1 (CH2), 24.2 (CH2), 17.3 (C-14),
17.0 (C-15); HRMS (ESI) calcd for C21H33N2O3S2 [MþH]þ 425.1927,
found 425.1922.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl 4–(2-hydroxyethyl)piperazine-1-carbodithioate (7k). White
amorphous solid (yield: 75%, purity: 95%). 1H NMR (400MHz,
CDCl3) d 5.12 (d, J¼ 9.8 Hz, 1H, H-1), 4.30 (s, 2H, H-13), 4.02 (br m,
2H, N-CH2), 3.87–3.72 (m, 3H, H-6, N-CH2), 3.70–3.58 (m, 2H,
CH2OH), 3.11 (s, 1H, O-H), 2.81 (ddd, J¼ 12.1, 6.4, 4.1 Hz, 1H, H-11),
2.68 (d, J¼ 8.9 Hz, 1H, H-5), 2.63–2.56 (m, 6H, (CH2)2NCH2),
2.40–2.24 (m, 3H, H-7, CH2), 2.19–2.06 (m, 4H, CH2), 1.66 (s, 3H, H-
14), 1.65–1.57 (m, 1H, CH2), 1.25 (s, 3H, H-15), 1.17 (td, J¼ 13.0,
5.8 Hz, 1H, CH2);

13C NMR (100MHz, CDCl3) d 196.2 (C-16), 175.8
(C-12), 134.8 (C-10), 125.0 (C-1), 82.4 (C-6), 66.3 (C-5), 61.7 (C-4),
59.2 (CH2OH), 58.1 (NCH2CH2OH), 52.5 (2C, CH2NCH2CH2OH), 51.7
(C-11), 49.9 (C-7), 48.1 (N-CH2), 47.7 (N-CH2), 41.1 (CH2), 36.7 (CH2),
34.8 (CH2), 30.0 (CH2), 24.1 (CH2), 17.2 (C-14), 17.0 (C-15); HRMS
(ESI) calcd for C22H35N2O4S2 [MþH]þ 455.2033, found 455.2039.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl (pyridin-3-ylmethyl)carbamodithioate (7l). White amorph-
ous solid (yield: 68%, purity: 95%). 1H NMR (400MHz, CDCl3) d
9.38 (s, 1H, N-H), 8.50 (s, 1H, H-2’), 8.37 (s, 1H, H-6’), 7.70 (d,
J¼ 5.7 Hz, 1H, H-4’), 7.21 (s, 1H, H-5’), 5.00 (d, J¼ 11.3 Hz, 1H, H-1),
4.91 (s, 2H, H-7’), 3.87–3.73 (m, 2H, H-6, -13), 3.67 (d, J¼ 14.3Hz,
1H, H-13), 2.75 (d, J¼ 8.7 Hz, 1H, H-11), 2.62 (d, J¼ 8.2 Hz, 1H, H-5),
2.38–2.24 (m, 1H, H-2), 2.21–1.92 (m, 6H, H-2, -3, -7, -8, -9), 1.62 (s,
4H, H-8, -14), 1.22 (s, 3H, H-15), 1.15 (d, J¼ 12.3Hz, 1H, H-3).13C

NMR (100MHz, CDCl3) d 198.0 (C-16), 176.3 (C-12), 149.4 (C-2’),
148.6 (C-6’), 136.4 (C-4’), 134.7 (C-10), 132.7 (C-3’), 125.0 (C-1),
123.7 (C-5’), 82.6 (C-6), 66.1 (C-5), 62.1 (C-4), 48.4 (C-7’), 48.3 (C-11),
47.1 (C-7), 41.1 (C-9), 36.5 (C-3), 32.6 (C-13), 30.0 (C-8), 24.1 (C-2),
17.2 (C-14), 16.9 (C-15); HRMS (ESI) calcd for C22H29N2O3S2
[MþH]þ 433.1614, found 433.1608.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl methyl(pyridin-3-ylmethyl)carbamodithioate (7m). White
amorphous solid (yield: 77%, purity: 97%). 1H NMR (400MHz,
CDCl3, rotamer) d 8.55–8.50 (m, 2H, Ar-H), 7.67–7.59 (m, 1H, Ar-H),
7.28–7.26 (m, 1H, Ar-H), 5.37 (s, 1.5 H, Ar-CH2), 5.14 (d, J¼ 11.1 Hz,
1H, H-1), 5.05 (br s, 0.5 H, Ar-CH2), 3.92–3.72 (m, 3H, H-6, -13), 3.50
(s, 1H, N-CH3), 3.34 (s, 2H, N-CH3), 2.84 (d, J¼ 6.2 Hz, 1H, H-11),
2.70 (d, J¼ 8.8 Hz, 1H, H-5), 2.47–2.23 (m, 3H, H-7, CH2), 2.22–2.04
(m, 4H, CH2), 1.68 (s, 3H, H-14), 1.67–1.60 (s, 1H, CH2), 1.28 (s, 3H,
H-15), 1.24–1.14 (m, 1H, CH2);

13C NMR (100MHz, CDCl3) d 198.8
(C-16), 175.8 (C-12), 149.5 (Ar-C), 149.3 (Ar-C), 135.5 (Ar-C), 134.8
(C-10), 131.4 (Ar-C), 125.1 (C-1), 123.8 (Ar-C), 82.5 (C-6), 66.3 (C-5),
61.7 (C-4), 57.6 (Ar-CH2), 48.2 (C-11), 47.7 (C-7), 41.3 (C-9), 39.4 (N-
CH3), 36.7 (C-3), 35.6 (C-13), 30.1 (C-8), 24.2 (C-2), 17.3 (C-14), 17.0
(C-15); HRMS (ESI) calcd for C23H31N2O3S2 [MþH]þ 447.1771,
found 447.1765.

General procedure for the synthesis of compounds 7n and 7o

To a mixture of corresponding amine (1.2 eq) in tetrahydrofurane
(THF) was added n-BuLi (1.2 eq) at 0 �C, the mixture was stirred for
1 h at 0 �C, CS2 was added. After 2 h, PTL (1 eq) dissolved in THF
was added to the mixture. The reaction was stirred overnight at
room temperature. The reaction was quenched by adding saturated
aqueous ammonium chloride solution, extracted with ethyl acetate
three times, organic phase was washed with water and saturated
brine, the combined organic layer was dried over anhydrous
Na2SO4, concentrated under reduced pressure and purified by col-
umn chromatography on silica gel to give compounds 7n and 7o.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl methyl(pyridin-2-yl)carbamodithioate (7n). White amorph-
ous solid (yield: 9%, purity: 98%). 1H NMR (400MHz, CDCl3) d 8.57
(d, J¼ 3.9 Hz, 1H, Ar-H), 7.87–7.78 (m, 1H, Ar-H), 7.37–7.32 (m, 2H,
Ar-H), 5.16 (d, J¼ 10.2Hz, 1H, H-1), 3.86–3.79 (m, 2H, H-6, -13),
3.78 (s, 3H, N-CH3), 3.73 (dd, J¼ 14.3, 4.0 Hz, 1H, H-13), 2.82–2.74
(m, 1H, H-11), 2.71 (d, J¼ 8.9 Hz, 1H, H-5), 2.39–2.24 (m, 3H, CH2),
2.20–2.07 (m, 4H, H-7, CH2), 1.67 (s, 3H, H-14), 1.65–1.56 (m, 1H,
CH2), 1.26 (s, 3H, H-15), 1.24–1.16 (m, 1H, CH2);

13C NMR (100MHz,
CDCl3) d 198.8 (C-16), 175.7 (C-12), 156.4 (Ar-C), 150.0 (Ar-C), 138.8
(Ar-C), 134.9 (C-10), 125.1 (C-1), 124.0 (Ar-C), 122.5 (Ar-C), 82.5 (C-
6), 66.3 (C-5), 61.7 (C-4), 47.8 (C-11), 47.7 (C-7), 44.2 (N-CH3), 41.2
(C-9), 36.7 (C-3), 35.4 (C-13), 30.2 (C-8), 24.2 (C-2), 17.3 (C-14), 17.0
(C-15); HRMS (ESI) calcd for C22H29N2O3S2 [MþH]þ 433.1614,
found 433.1606.

((3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,9a,
10a,10b-decahydrooxireno [2’,3’:9,10]cyclodeca[1,2-b]furan-3-
yl)methyl methyl(pyridin-3-yl)carbamodithioate (7o). White amorph-
ous solid (yield: 18%, purity: 96%). 1H NMR (400MHz, CDCl3) d
8.64 (d, J¼ 4.3 Hz, 1H, Ar-H), 8.51 (s, 1H, Ar-H), 7.60 (d, J¼ 8.1 Hz,
1H, Ar-H), 7.41 (dd, J¼ 8.0, 4.8 Hz, 1H, Ar-H), 5.14 (d, J¼ 10.3 Hz,
1H, H-1), 3.79 (t, J¼ 9.2 Hz, 1H, H-6), 3.76 (s, 3H, N-CH3), 3.74–3.60
(m, 2H, H-6, -13), 2.81–2.71 (m, 1H, H-11), 2.66 (d, J¼ 8.9 Hz, 1H, H-
5), 2.41–2.24 (m, 3H, CH2), 2.16–2.03 (m, 4H, H-7, CH2), 1.67 (s, 3H,
H-14), 1.65–1.58 (m, 1H, CH2), 1.25 (s, 3H, H-15), 1.23–1.12 (m, 1H,
CH2);

13C NMR (100MHz, CDCl3) d 199.5 (C-16), 175.5 (C-12), 150.0
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(Ar-C), 148.2 (Ar-C), 134.8 (2 C, Ar-C, C-10), 125.1 (C-1), 124.4 (Ar-C),
82.4 (C-6), 66.2 (C-5), 61.7 (C-4), 48.3 (C-11), 47.3 (2 C, N-CH3, C-7),
41.1 (C-9), 36.6 (C-3), 36.0 (C-13), 30.1 (C-8), 24.1 (C-2), 17.2 (C-14),
17.0 (C-15); HRMS (ESI) calcd for C22H29N2O3S2 [MþH]þ 433.1614,
found 433.1609.

(3S,3aS,9aR,10aS,10bS,E)-6,9a-dimethyl-3-((methylthio)methyl)-
3a,4,5,8,9,9a,10a,10b-octahydrooxireno[2’,3’:9,10] cyclodeca[1,2-b]
furan-2(3H)-one (8). To a solution of PTL (248mg, 1.0mmol) and
NaH2PO4�2H2O (378mg, 1.05mmol) in THF (2ml), triethylamine
(0.15ml), and 15% aqueous sodium methanethiolate solution
(0.5ml, 1.0mmol) were added sequentially. After stirred for 1 h,
the reaction was quenched by adding saturated aqueous ammo-
nium chloride solution, extracted with ethyl acetate (3� 15ml).
Organic phase was washed with water and saturated brine. The
combined organic was dried over anhydrous Na2SO4, concen-
trated under reduced pressure and purified by column chroma-
tography on silica gel (ethyl acetate:hexane ¼60:40) to give
compound 8 as a white amorphous solid (144mg, yield: 49%, pur-
ity: 98%). 1H NMR (400MHz, CDCl3) d 5.20 (d, J¼ 10.9 Hz, 1H, H-1),
3.84 (t, J¼ 9.0 Hz, 1H, H-6), 2.95 (dd, J¼ 14.0, 4.6 Hz, 1H, H-13),
2.89 (dd, J¼ 14.0, 4.6 Hz, 1H, H-13), 2.74 (d, J¼ 9.0 Hz, 1H, H-11),
2.61 (dt, J¼ 11.7, 4.6 Hz, 1H, H-5), 2.43–2.33 (m, 2H, CH2), 2.25 (dd,
J¼ 13.2, 6.3 Hz, 1H, H-7), 2.16 (s, 3H, S-CH3), 2.15–2.03 (m, 3H,
CH2), 1.94 (dd, J¼ 15.0, 6.3 Hz, 1H, CH2), 1.73–1.61 (m, 1H, CH2),
1.68 (s, 3H, H-14), 1.27 (s, 3H, H-15), 1.21 (td, J¼ 13.0, 6.0 Hz, 1H,
CH2);

13C NMR (100MHz, CDCl3) d 175.7 (C-12), 134.6 (C-10), 125.2
(C-1), 82.4 (C-6), 66.4 (C-5), 61.6 (C-4), 47.9 (C-11), 47.6 (C-7), 41.1
(C-9), 36.7 (CH2), 32.5 (C-13), 30.1 (CH2), 24.2 (CH2), 17.3 (C-14),
17.2 (C-15), 17.0 (S-CH3); HRMS (ESI) calcd for C16H25O3S [MþH]þ

297.1519, found 297.1522.
Potassium (pyridin-3-ylmethyl) carbamodithioate (10). 3-(amino-

methyl) pyridine (9) (265mg, 2.45mmol) in methanol (10ml) was
mixed with CS2 (1.03ml, 17.04mmol) and KOH (137mg,
2.44mmol), then stirred at 0 �C for 2 h, concentrated under
reduced pressure and recrystallisation in ethanol to afford com-
pound 10 as a white amorphous solid (377mg, yield: 69%, purity:
96%). 1H NMR (400MHz, CD3OD) d 8.55 (d, J¼ 1.4 Hz, 1H, Ar-H),
8.44–8.37 (m, 1H, Ar-H), 7.87 (d, J¼ 7.9 Hz, 1H, Ar-H), 7.45–7.33 (m,
1H, Ar-H), 4.90 (s, 2H, CH2);

13C NMR (100MHz, CD3OD) d 216.4
(S¼C), 149.6 (Ar-C), 148.4 (Ar-C), 137.8 (Ar-C), 137.1 (Ar-C), 125.1
(Ar-C), 68.2 (CH2); HRMS (ESI-MS) calcd for C7H9N2S2 [MþH] þ

185.0202, found 185.0202.
Methyl (pyridin-3-ylmethyl) carbamodithioate (11). A mixture of

TEA (0.3ml, 2.15mmol), CS2 (0.18ml, 2.98mmol), and 3-(amino-
methyl) pyridine (9) (212mg, 1.96mmol) was dissolved in THF
(5ml), the mixture was stirred at 0 �C for 10min. MeI (134 ml,
2.16mmol) was added to the reaction and stirred for 4 h. Water
(10ml) was added to quench the reaction. The resulting mixture
was extracted with ethyl acetate (3� 25ml). Organic phase was
washed with water and saturated brine. The combined organic
layer was dried over anhydrous Na2SO4, concentrated under
reduced pressure, and purified by column chromatography on sil-
ica gel (ethyl acetate:hexane ¼50:50) to give compound 11 as a
white amorphous solid (366mg, yield: 94%, purity: 97%). 1H NMR
(400MHz, CDCl3) d 8.43 (t, J¼ 19.0 Hz, 3H, Ar-H, N-H), 7.70 (d,
J¼ 7.6 Hz, 1H, Ar-H), 7.26 (t, J¼ 6.1 Hz, 1H, Ar-H), 4.95 (d,
J¼ 5.2 Hz, 2H, CH2), 2.65 (s, 3H, CH3);

13C NMR (100MHz, CDCl3) d
200.1 (S¼C), 149.1 (Ar-C), 148.9 (Ar-C), 136.2 (Ar-C), 132.5 (Ar-C),
123.7 (Ar-C), 48.1 (CH2), 18.3 (CH3); HRMS (ESI) calcd for C8H11N2S2
[MþH] þ 199.0358, found 199.0359.

((3S,3aS,9aR,10aS,10bS, E)-6,9a-dimethyl-2-oxo-2,3,3a,4,5,8,9,
9a,10a,10b-decahydrooxireno [2’,3’:9,10] cyclodeca[1,2-b] furan-3-yl)
methyl (pyridin-3-ylmethyl) carbamodithioate oxalate (12). To a

solution of compound 7l (42mg, 0.097mmol) in methanol (1ml),
oxalic acid (8.7mg, 0.097mmol) was added. The mixture was
stirred for 0.5 h and concentrated under vacuum. The residue was
washed three times with ethyl acetate to afford compound 12 as
a white amorphous solid (49.9mg, yield 98%). 1H NMR (400MHz,
DMSO-d6) d 12.82 (s, 2H, COOH), 10.67 (t, J¼ 5.3 Hz, 1H, N-H),
8.65–8.37 (m, 2H, Ar-H), 7.73 (d, J¼ 6.7 Hz, 1H, Ar-H), 7.49–7.29 (m,
1H, Ar-H), 5.01 (d, J¼ 10.2Hz, 1H, H-1), 4.87 (ddd, J¼ 39.4, 15.0,
5.6 Hz, 2H, H-7’), 4.10–3.93 (m, 1H, H-6), 3.81–3.71 (m, 1H, H-13),
3.60 (dd, J¼ 14.3, 4.3 Hz, 1H, H-13), 2.99–2.88 (m, 1H, H-11), 2.64
(d, J¼ 9.1 Hz, 1H, H-5), 2.33 (ddd, J¼ 25.6, 12.9, 5.1 Hz, 1H, CH2),
2.11–2.00 (m, 5H, H-7, CH2), 1.90 (t, J¼ 12.3 Hz, 1H, CH2), 1.75–1.65
(m, 1H, CH2), 1.61 (s, 3H, H-14), 1.18 (d, J¼ 3.5 Hz, 3H, H-15),
1.12–1.04 (m, 1H, CH2).

13C NMR (100MHz, DMSO-d6) d 197.0 (C-
16), 176.0 (C-12), 161.1 (COOH), 148.7 (C-2’), 148.2 (C-6’), 135.8 (C-
4’), 134.4 (C-10), 133.0 (C-3’), 124.4 (C-5’), 123.6 (C-1), 81.5 (C-6),
65.5 (C-5), 61.2 (C-4), 59.7 (C-7’), 47.4 (C-11), 46.7 (C-7), 40.5 (C-9),
36.0 (C-3), 32.3 (C-13), 29.1 (C-8), 23.6 (C-2), 16.8 (C-14), 16.6 (C-
15). HRMS (ESI) calcd for C22H29N2O3S2 [MþH] þ 433.1614,
found 433.1613.

Materials

Cell culture medium (1640) and foetal bovine serum were pur-
chased from Gibco (NY, USA). H4434 culture medium was pur-
chased from stem cell. MTT, cremophor EL, and DMSO were
purchased from Sigma Chemical Company (St. Louis, MA, USA).
Cell lysis buffer was purchased from Beyotime Institute of
Biotechnology (Beijing, China). AnnexinV-fluorescein isothiocyan-
ate (FITC) and propidium iodide (PI) apoptosis detection kit,
human CD34-APC, and human CD38-PE.cy7 antibody were pur-
chased from BD (BD, USA). Rabbit polyclonal anti-human p65,
XIAP, Bax, Bcl-2, JNK, p-JNK, ERK1/2, p-ERK1/2, p38, p-p38, c-Jun,
p-c-Jun, c-Fos, c-Myc, PARP, caspase-3, caspase-9, and b-actin anti-
bodies were purchased from Cell Signaling Technology (Beverly,
MA, USA). ECL-Plus Kit was purchased from Thermo Scientific
(Rockford, IL, USA). Kunming mice and NOD/SCID mice were pur-
chased from Chinese Academy of Sciences (Shanghai, China).

Cell isolation and culture

Human leukaemia cell lines HL-60, HL-60/adriamycin (ADR), THP-1,
K562, and KG1a were cultured in 1640 containing supplements
(10% foetal bovine serum, penicillin/streptomycin, and L-glutam-
ine) at 37 �C, 5% CO2. Primary human AML samples were obtained
from Yuhuangding Hospital (Yantai, Shandong).

Cytotoxicity assay

Leukaemia cells in exponential growth were seeded in 96 well
plates (1� 104 each well). After 24 h different concentrations of
the compounds were added into each well. After 72 h, 20 ll MTT
(5mg/ml) were added and incubated for 4 h. The cells were centri-
fuged by 2000 rpm for 20min in follow, then the supernatant
were removed and 200ll DMSO was added to measure the
absorbance at 570 nm. The IC50 was calculated by GraphPad
Prism 5.

Apoptosis assay

Leukaemia cells treated with different concentrations of the com-
pound 7l for 48 h (for cultured cells) or 24 h (for leukaemia cells
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from primary specimens) were collected and re-suspended by
100 ll� loading buffer. Annexin-V FITC and PI were added for
15min according to the manufacturer’s protocol. Then the cells
were analysed by flow cytometry.

Methylcellulose colony-forming cell assay

Mononuclear cells from primary AML specimens were incubated in
serum-free Iscove’s modified dulbecco medium (IMDM) in the pres-
ence or absence of 0.5, 1, and 2lM 7l for 24h. After then 2� 105 cells
were plated into 24 well plates in Methocult H4434. The number of
colonies was recorded after 10days.

Acute toxicity assay in Kunming mice

To verify the toxicity of 7l, Kunming mice were administrated
orally with compound 12 (salt form of 7l) or vehicle control with
a dose of 500mg/kg. The body weight was recorded every day.
After 22 days, the blood samples were collected and assayed by
blood routine analysis. Meanwhile, the viscus tissues included
liver, spleen, lung, kidney, and brain were collected for immune-
histochemical analysis.

Patient-derived xenograft model assay

To further evaluate the anti-AML effect of 12, patient derived
xenograft model of human AML was established. First, the mice
were irradiated with 200 centi-gray (cGy). After 8 h, 5� 106 pri-
mary AML mononuclear cells were injected by tail vein at a final
volume of 200 ll. After 30 days, the mice were administrated orally
with 12 with a dose of 100mg/kg every other day. The survival
rate was analysed and graphed by Kaplan-Meier plot.

Microarray transcriptional profiling

KG1a cells were treated with 2 mM 7l for 24 h. Gene chip assay
was performed by Genergy Biotechnology Company (Shanghai,
China). Each sample was performed in triplicate. These data are
available at National Center for Biotechnology Information Gene
Expression Omnibus with accession number GSE103717.

Western blotting assay

KG1a cells were collected after being treated with 7l at different
concentrations for 24 h. The cells were re-suspended by 200 ll
RIPA lysis for 30min on ice to extract the total protein. Equal
amounts of protein extract sample (50lg) was separated by SDS-
PAGE in a 12% gel and then transferred to a polyvinylidene fluor-
ide (PVDF) membrane. After blocked in 5% skim milk the mem-
branes were incubated with primary antibodies at 4 �C overnight.
Then the membrane was washed with phosphate buffered
saline+Tween-20 (PBST) and incubated with secondary antibodies
at room temperature for 2 h. Finally, bound antibodies were
assayed by ECL-Plus Kit.

Statistical analysis

Each experiment was performed in triplicate and all results were
repeated for three times. Student’s t-test was performed to analyse
the significance level by GraphPad Prism 5 software. A p-value of
less than 0.05 was considered to be statistically significant.

Results and discussion

Chemistry

The synthesis of compounds 7a–7o was shown in Scheme 1. The
desired compounds 7a–7m could be obtained by one-pot reac-
tion of corresponding amine, carbon disulphide, and PTL using
TEA as base with yields from 73% to 89%. For synthesis of com-
pounds 7n–7o, n-butyllithium was used as a base in tetrahydro-
furan solution. Michael addition of PTL with sodium
methanethiolate provided compound 8. As shown in Scheme 2,
treatment of 3-(aminomethyl) pyridine (9) and carbon disulphide
with KOH or iodomethane yielded compounds 10 and 11,
respectively. Reaction of compound 7l and oxalic acid in methanol
gives salt 12.

To determine the absolute stereospecificity of the PTL
Michael addition products, X-ray analysis of compound 7c was
performed (Figure 4). The details of the synthetic procedures and
structural characterisations are described in the Experimental
Section. The purity of all analogues was confirmed to be �95%
by HPLC.

Biological activities against AML cell lines

Compounds 7a–7o and 8, 10, 11 were evaluated for their effects
on viability of the AML cell lines KG1a and HL-60. In addition,
ADR was introduced as a positive control, and the natural prod-
uct, PTL (1), was also included for comparison. KG1a, a human
AML cell line, showed high multidrug resistance and self-renewal
potential. KG1a cells have characteristics of LSCs, a large portion
of cells bearing a CD34þCD38– immunophenotype. KG1a was
considered as a type of AML progenitor cell line66–68. The results
were shown in Table 1. The natural parent compound PTL (1)
exhibited moderate potency against the KG1a cells
(IC50¼ 6.1 lM) and HL-60 cells (IC50¼ 3.8 lM). Introduction of
dithiocarbamate moieties with linear aliphatic amino (7a–7g
with IC50 values of 6.5–24.7 lM) or with cyclic aliphatic amino
(7h–7k with IC50 values of 4.4–7.7 lM) led to comparable or
decreased activities against the HL-60 cell line. For KG1a cell line,
most of these compounds showed declined potencies with IC50
values of 6.9–50 lM, except that compound 7 b (IC50¼ 4.8 lM)
exhibited slightly improved activity compared with that of
PTL (IC50¼ 6.1 lM).

To further explore the influence of dithiocarbamate moiety
for the anti-AML activity, different patterns of heterocycle substi-
tution were introduced (7l–7o). To our surprise, a significant
advance was achieved when pyridinylmethylamino group was
installed to PTL, which is compound 7l. Compound 7l exhibited
more potent anti-AML activity than PTL. Compound 7l showed
greatly increased activities against KG1a and HL-60 with IC50 val-
ues of 0.7 and 1.7 lM, respectively, and the activities against
KG1a and HL-60 were 8.7- and 2.2-folds comparing to those of
PTL, respectively. It is worth noting that 7l was more active
against AML progenitor cell line KG1a (IC50¼ 0.7 lM) comparing
to sensitive cell line HL-60 (IC50¼ 1.7 lM). In contrast, ADR, a clin-
ically used drug, showed 34-folds drop of activity against KG1a
(IC50¼ 0.75 lM) than that against HL-60 (IC50¼ 0.022 lM).
Compound 7l may present superior physico/chemical properties
to penetrate the cellular biomembranes when compared to the
parent PTL with tricyclic scaffold. With introduction of a methyl
group to 7l (7m) or replacement of pyridinylmethylamino group
with pyridinylamino group (7n and 7o), the anti-AML activities
were significantly decreased.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1381



Scheme 2. Synthesis of Analogues 10–12a. aReagents and conditions: (a) CS2, KOH, MeOH, 0 �C to rt, 69%; (b) CS2, TEA, MeI, DCM, 0 �C to rt, 94%; (c) Oxalic acid,
MeOH, rt, 98%.

Scheme 1. Synthesis of compounds 7a–7o and 8a. aReagents and conditions: (a) for 7a–7m: amine, CS2, TEA, DCM-MeOH, 0 �C to rt, 68–89%; for 7n and 7o: amine,
CS2, n-BuLi, THF, 0 �C to rt, 7n: 9%, 7o: 18%; (b) MeSNa, NaH2PO4, TEA, THF, H2O, rt, 49%.
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To investigate the role of dithiocarbamate moiety in anti-AML
activity of 7l, we synthesised the derivatives 8, 10, and 11 for
comparison. Compound 8 lost anti-AML activity (IC50> 50lM).
Compounds 10 and 11 or combination of 10 and PTL (1:1) exhib-
ited moderate anti-AML activity, which were less potent than 7l.
These results suggest that the anti-AML activity of 7l may be
attributed to the synergic effects of both moieties of PTL and
dithiocarbamate.

Figure 4. X-ray structure of compound 7c.

Table 1. Inhibitory effects of dithiocarbamate esters of parthenolide against
KG1a and HL-60 cells.

Compounds R

IC50 (lM)
a

KG1ab HL-60c

PTL – 6.1 ± 1.8 3.8 ± 1.2

7a
O

8.6 ± 1.1 13.4 ± 2.0

7b 4.8 ± 3.2 7.3 ± 1.1

7c 16.0 ± 1.1 6.5 ± 2.5

7d 50.0 ± 14.0 20.7 ± 4.6

7e 13.5 ± 1.0 10.6 ± 2.1

7f 15.3 ± 4.0 11.3 ± 1.0

7g 7.9 ± 0.1 24.7 ± 2.4

7h 11.7 ± 1.1 7.7 ± 1.2

7i 9.1 ± 2.9 7.4 ± 0.4

7j 6.9 ± 1.8 4.4 ± 1.1

7k 8.1 ± 3.0 5.5 ± 0.8

7ld,e 0.7 ± 0.2 1.7 ± 0.5

(continued)

Table 1. Continued.

Compounds R

IC50 (lM)
a

KG1ab HL-60c

7m 6.4 ± 1.2 20.5 ± 5.3

7n 13.9 ± 1.8 38.9 ± 3.9

7o 9.3 ± 2.6 39.3 ± 1.9

8 – >50 >50

10 – 2.0 ± 0.6 4.1 ± 0.5

11 – 5.2 ± 1.8 5.7 ± 1.0

PTLþ10 (1:1) – 1.5 ± 0.3 2.1 ± 0.3

ADRf – 0.75 ± 0.05 0.022 ± 0.005
aAll values are the mean of three independent experiments.
bKG1a: human AML cell line, which is considered to be a type of AML progeni-
tor cell line.

cHL-60: cultured human AML cell line.
dThe IC50 values of compound 7l for K562 and HL-60/ADR were 1.3 ± 0.1 and
2.2 ± 0.4mM, respectively.

eThe IC50 value of compound 7l for normal cells from health donors
was 59.8 ± 10.6 mM.
fADR, a clinically used drug for treatment of AML, used as a positive control.
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Compound 7l inhibited the proliferation of different cultured
leukaemia cells

Compound 7l was further evaluated for inhibitory effects on other
different leukaemia cells by MTT assay using leukaemia cell lines
K562 and the ADR-resistant cell line HL-60/ADR. All leukaemia cells
were treated with 7l for 72 h. From the results (Table 1 and Figure
5), 7l showed strong inhibitory effects on K562 cells with the IC50
value of 1.3lM. Moreover, 7l showed similar inhibitory effects on

ADR-resistant cell line HL-60/ADR (IC50¼ 2.2lM) with sensitive cell
line HL-60 (IC50¼ 1.7lM).

Compound 7l selectively inhibited AML cells while sparing
normal cells

The most potent 7l was selected for further characterisation to
evaluate its selectivity against AML over normal cells. For the
study, normal cells were obtained from health donors. As shown
in Table 1 and Figure 5, compound 7l did not significantly affect
the viability of normal cells, which indicates that 7l could select-
ively eliminate AML cells (IC50¼ 0.7 and 1.7mM towards KG1a and
HL-60, respectively) with relatively low toxicity against normal cells
(IC50¼ 59.8mM). The selectivity indexes of compound 7l for AML
cells KG1a and HL-60 were 85.4 and 35.2, respectively.

Compound 7l induced the apoptosis of diverse cultured
leukaemia cells

The apoptosis induced by 7l on leukaemia cells were
detected by flow cytometry using AnnexinV/PI double staining
(Figure 6). As shown in Figure 6(b), 7l significantly induced the
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Figure 5. Compound 7l inhibited the proliferation of different cultured leukaemia
cells while sparing normal cells.

Figure 6. Compound 7l induced the apoptosis of diverse cultured leukaemia cells. (a) The representative picture of apoptosis induced by 7l in KG1a cells. (b)
Apoptosis of THP-1, HL-60/ADR, K562, KG1a cells after being exposed to different concentrations of 7l for 48 h. The percentages of apoptosis were determined by flow
cytometry using Annexin V/PI. (c) The representative picture of apoptosis induced by 7l and PTL in KG1a cells at 1mM. (d) Apoptosis of KG1a cells after being exposed
to 0.2, 0.5, 1mM of 7l or PTL for 48 h. These experiments were performed for three times. Analysis results represented mean± SD, �p< 0.05, ��p< 0.01, ���p< 0.001.
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Figure 7. Compound 7l induced the apoptosis of primary leukaemia cells and CD34þCD38– cells from AML patients. (a) Compound 7l reduced the percentage
of viability with a dose-dependent manner in primary AML cells after being treated for 24 h. (b) Compound 7l induced apoptosis with a dose-dependent manner
in primary AML cells after being treated for 24 h. (c) Compound 7l reduced the percentage of viability with a dose-dependent manner in primary AML CD34þCD38–

cells after being treated for 24 h. (d) Compound 7l induced apoptosis with a dose-dependent manner in primary AML CD34þCD38– cells after being treated
for 24 h. ���p< 0.001.

Figure 8. Compound 7l suppressed the colony formation of primary human leukaemia cells. �p< 0.05, ��p< 0.01.
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apoptosis of leukaemia cells HL-60, K562, THP-1, and
especially KG1a which was considered to be a leukaemia stem-
like cell line. Moreover, the percentages of apoptosis in the
KG1a cells after the treatment with 7l at a concentration of 1lM
were remarkably higher than those of PTL (Figure 6(d)).
These results indicated that the cytotoxicity of 7l to leukaemia cells
was accomplished through inducing apoptosis of leukaemia cells.

Compound 7l induced the apoptosis of total primary leukaemia
cells and CD341CD38– cells from clinical AML patients

To further identify the effects of 7l on leukaemia cells and LSCs,
18 primary AML specimens were collected. Cells bearing a

CD34þCD38– immune-phenotype were considered as LSCs. The
apoptosis of total leukaemia cells and CD34þCD38– LSCs were
assayed after being treated with 7l for 24 h. The result showed
that 7l could greatly ablate total leukaemia cells and CD34þCD38–

primary LSCs with a dose-dependent manner (Figure 7).

Compound 7l suppressed the colony formation of primary
human leukaemia cells

Colony formation was an important characteristic of LSCs when
cultured in methocult H4434 medium. To determine the effect of
7l on LSCs, colony formation assay was performed. From the
result in Figure 8, the numbers of colony-forming units were

Figure 9. Compound 12 displayed no observable toxicity to Kunming mice. (a) The body weights did not significantly reduced after being treated with 12 compared
with vehicle control. (b) The parameters of routine blood test included white blood cell count, lymphocyte count, neutrophil cell count, monocyte cell count, eosinophil
cell count, and basophil cell count were not changed apparently after treatment of 12 compared with vehicle control. (c) The blood parameters included the percent-
age of reticulocyte cell, neutrophil cell, lymphocyte cell, and monocyte cell were not changed significantly after being treated with 12 compared with vehicle control.
(d) The level of platelet was not changed significantly after treatment of 12 compared with vehicle control. (e) The level of haemoglobin was not changed clearly com-
pared with vehicle control. (f) The representative pictures of haematoxylin and eosin (H&E) staining of the liver, spleen, lung, kidney, and brain.

1386 Y. DING ET AL.



significantly reduced after being treated with 7l for 10 days with a
dose-dependent manner.

Compound 12 displayed no observable toxicity in Kunming mice

Taking account of the significant anti-AML activity of 7l, we
planned to evaluate its toxicity to mice by oral administration.
However, 7l showed low solubility in water. Therefore, 7l was con-
verted to its salt form, which is compound 12. To explore the safety
of 12 to haematopoietic system and main organs, acute toxicity
assay was performed. Kunming mice were treated with 12 (500mg/
kg) or vehicle control for 22days. At the end of the experiments,
blood samples, liver, spleen, lung, kidney, and brain were collected
and detected. The body weights did not significantly reduce after
being treated with 12 (Figure 9(a)). Furthermore, from the results of
complete blood counts, all the parameters of routine blood test
including red blood cell count, lymphocyte count, neutrophil cell
count, monocyte cell count, eosinophil cell count, basophil cell
count, platelet count, and the level of haemoglobin were not
changed apparently compared with vehicle control. No pathologic
changes were apparent in the examined tissues (Figure 9). These
results suggested that 12 was safe to mice.

Compound 12 prolonged the lifespan in patient-derived
xenograft model assay

Compound 7l showed significant cytotoxicity against cultured leu-
kaemia cells, total primary leukaemia cells, and LSCs in vitro, which
prompted us to further investigate the anti-AML effect in vivo.
Patient-derived xenograft model was established with primary
human AML mononuclear cells. Two clinical AML samples were
taken to establish nonobesediabetic/severe combined immuno-
deficiency (NOD/SCID) patient-derived xenograft model. After

injecting AML mononuclear cells from primary specimens by tail
vein for 30 days, compound 12, salt form of 7l, was administrated
orally with a dose of 100mg/kg for 7 times every other day
(Figure 10(a)). Meanwhile, the survival of human AML mice was
calculated. From the result (Figure 10), the lifespan of patient-
derived xenograft mice which was administrated with 12 was
improved compared to the control group which was administered
with PBS in two different patient-derived xenograft models
(Figure 10(b) and (c)). These results suggested that treatment
of 12 improved the survival of patient-derived xenograft mice.
Therefore, 12 might be considered as a potential promising drug
candidate for the treatment of AML.

Compound 7l induced apoptosis of leukaemia stem and
progenitor cells through MAPK signal pathway

To investigate the mechanism of 7l, microarray gene expression
profiling was performed. From the results of microarray gene
expression profiling, MAPK signal pathway in KG1a cells was
clearly changed after treatment of 7l for 24 h (Figure 11). ERK1/2,
p38 and JNK played significant roles in MAPK signal pathway
which was very important for CSC survival. Activation of ERK1/2
activity contributes to inhibition of apoptosis and rising activities
of p38 and JNK promotes apoptosis. From the results of western
blot assay in KG1a cells, 7l activated p38, JNK by phosphorylation
and inhibited ERK1/2. Furthermore, the level of apoptosis-related
protein Bax and c-Jun were clearly up-regulated. Meanwhile, the
level of anti-apoptosis protein c-Myc, XIAP, and Bcl-2 were signifi-
cantly down-regulated. The cleavage of proteins caspase-3, cas-
pase-9, and PARP that are associated with activating apoptosis
was increased significantly after the treatment of 7l. These data
prompted us to propose that 7l might induce apoptosis of leukae-
mia stem and progenitor cells through MAPK signal pathway.

Figure 10. Compound 12 prolonged the lifespan of mice in two patient-derived xenograft mice models. (a) The flowchart of establishing patient-derived xenograft
mice model. (b) The lifespan of the first AML patient-derived xenograft mice model which was orally administrated with 12 with a dose of 100mg/kg was extended
compared to the control group and ADR group. (c) The lifespan of the second AML patient-derived xenograft mice model which was administrated with 12 was
improved compared to the control group.
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Conclusion

In summary, a series of dithiocarbamate esters of PTL was synthes-
ised and evaluated for their anti-AML activity, which led to discov-
ery of the most potent compound 7l. Compound 7l exhibited
enhanced activities against KG1a and HL-60 with IC50 values of 0.7
and 1.7lM, respectively, and the activities against KG1a and HL-
60 were 8.7- and 2.2-folds comparing to those of PTL, respectively.
It is worth noting that compound 7l was more active against AML
progenitor cell line KG1a comparing to sensitive cell line HL-60
(Table 1). Importantly, 7l could induce apoptosis of total primary
leukaemia cells and CD34þCD38– primary LSCs from AML patients
with a dose-dependent manner (Figure 7) while sparing normal

cells from healthy donors (Table 1 and Figure 5). Compound 7l
significantly suppressed the colony formation of primary human
leukaemia cells in dose-dependent manner (Figure 8). Moreover,
compound 12, salt form of 7l, showed no observable toxicity with
a dose of 500mg/kg by oral (Figure 9).

These encouraging in vitro results and low acute toxicity
encouraged us to further evaluate its anti-AML efficacy in vivo.
The lifespan of patient-derived xenograft mice in 12-group was
improved compared to the control PBS-group in two NOD/SCID
patient-derived xenograft models (Figure 10).

Microarray assay indicated that 7l might mediate MAPK path-
way. Western blot analysis showed that 7l activated p38, JNK by

Figure 11. Preliminary mechanism study of 7l. (a) Heat map analysis of microarray data between control group and 7l-treated group in KG1a cells. (b) The KEGG
enrichment analysis of microarray data between control group and 7l-treated group in KG1a cells. (c) Heat map analysis of microarray data of MAPK pathway after
treatment of 7l at a concentration of 2mM. (d) Western blot analysis of MAPK pathway related proteins and apoptosis mediated proteins after exposing to different
concentrations of compound 7l for 24 h in KG1a cells.
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phosphorylation and inhibited ERK1/2. After treatment of 7l, west-
ern blot assay demonstrated up-regulation of apoptosis-related
proteins (Bax and c-Jun), down-regulation of anti-apoptosis pro-
teins (c-Myc, XIAP, and Bcl-2), and increase in the cleaved caspase-
3, caspase-9, and PARP proteins associated with activation of
apoptosis (Figure 11). These data showed that molecular mechan-
ism of 7l-mediated apoptosis is associated with MAPK signal path-
way (Figure 12).

On the basis of these studies, we propose that 12 might be
considered as a promising drug candidate deserving to be further
developed for ultimate discovery of anti-LSCs drug.
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